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Abstract: Many important real-world applications involve time-series data with 

skewed distribution. Compared to conventional imbalance learning problems, the 

classification of imbalanced time-series data is more challenging due to high    

dimensionality and high inter-variable correlation. This paper proposes a structure 

preserving Oversampling method to combat the High-dimensional Imbalanced 

Time-series classification (OHIT). OHIT first leverages a density- ratio based 

shared nearest neighbor clustering algorithm to capture the modes of minority 

class in high-dimensional space. It then for each mode applies the shrinkage 

technique of large-dimensional covariance matrix to obtain accurate and reliable 

covariance structure. Finally, OHIT generates the structure-preserving synthetic 

samples based on multivariate Gaussian distribution by using the estimated 

covariance matrices. Experimental results on several publicly available time-series 

datasets (including unimodal and multimodal) demonstrate the superiority of 

OHIT against the state-of-the-art oversampling algorithms in terms of F1, G-mean, 

and AUC.  
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1 Introduction 

In this paper, we focus our attention on oversampling techniques in data-level approaches, since 

oversampling directly addresses the difficulty source of classifying imbalanced data by compensating the 

insufficiency of minority class information, and, unlike undersampling, does not suffer the risk of 

discarding informative majority samples.  

2 The Proposed OHIT Framework  

Algorithm 1 OHIT(P, k, κ, drT, η) 



Require: P: the minority sample set;  k, κ, drT : three parameters in DRSNN clustering; η: the number 

of synthetic samples required to be generated;  

Ensure: Syn: the generated synthetic sample set  

1: Employ DRSNN to cluster the minority class sample set, Ci ← DRSNN(P, k, κ, drT), i = 1, 2, ...m, 

where m is the number of discovered clusters.  

2: Compute the shrinkage covariance matrix 𝐒𝑖
∗ for each cluster 𝐶𝑖 by combining Eqns. 7, 14, and 15.  

3: Generate the synthetic sample set 𝑆𝑦𝑛𝑖 with size ⌊𝜂
|𝐶𝑖|

|𝑃|
⌋ for each cluster 𝐶𝑖 based on N(µi, 𝐒𝑖

∗), then 

add 𝑆𝑦𝑛𝑖 into Syn.  

3 Experimental Results and Discussion  

Table 1: Summary of the imbalanced unimodal time-series datasets used in the experiments 

Dataset 
Minority 

Class 
Length 

Training data Testing data 

Class 

Distribution 
IR 

Class 

Distribution 
IR 

Yoga (Yg) '1' 426 137/163 1.19 1393/1607 1.15 

Herring (Hr) '2' 512 25/39 1.56 26/38 1.46 

Strawberry (Sb) '1' 235 132/238 1.8 219/394 1.8 

PhalangesOutlinesCor

rect (POC) 
'0' 80 628/1172 1.87 332/526 1.58 

Lighting2 (Lt2) '-1' 637 20/40 2 28/33 1.18 

ProximalPhalanxOutli

neCorrect  (PPOC) 
'0' 80 194/406 2.09 92/199 2.16 

ECG200 (E200) '-1' 96 31/69 2.23 36/64 1.78 

Earthquakes (Eq) '0' 512 35/104 2.97 58/264 4.55 

Two_Patterns (Tp) '2' 128 237/763 3.22 1011/2989 2.96 

Car '3' 577 11/49 4.45 19/41 2.16 

ProximalPhalanxOutli

neAgeGroup (PPOA) 
'1' 80 72/328 4.56 17/188 11.06 

Wafer (Wf) '-1' 152 97/903 9.3 665/5499 8.27 

IR is the imbalance ratio (#majority class samples/#minority class samples). 

Table 2: Summary of the imbalanced multimodal time-series datasets used in the experiments 

Dataset 
Minority 

class 
Length 

Training data Testing data 

Class 

distribution 
IR 

Class 

distribution 
IR 

Worms (Ws) '5','2','3' 900 31/46 1.48 73/108 1.48 

Plane (Pl) '3','5' 144 36/69 1.92 54/51 .944 

Haptics (Ht) '1','5' 1092 51/104 2.04 127/181 1.43 

FISH '4','5' 463 43/132 3.07 57/118 2.07 

UWaveGestureLibr

aryAll (UWGLA) 
'8','3' 945 206/690 3.35 914/2668 2.92 

InsectWingbeatSou

nd (IWS) 
'1','2' 256 40/180 4.5 360/1620 4.5 

Cricket_Z (CZ) '3','5' 300 52/338 6.5 78/312 4 

SwedishLeaf (SL) '10','7' 128 54/446 8.26 96/529 5.51 

FaceAll (FA) '1','2' 131 80/480 12 210/1480 7.05 



            

MedicalImages (MI) '5','6','8' 99 23/358 15.57 69/691 10 

ShapesAll (SA) '1','2','3' 512 30/570 19 30/570 19 

NonInvasiveFatalE

CG_Thorax1 

(NIFT) 

'1','23' 750 71/1729 24.35 100/1865 18.65 

IR is the imbalance ratio (#majority class samples/#minority class samples). 

 

Table 3: Performance results of all the compared methods on the imbalanced unimodal datasets 

Metrics Methods 
Datasets 

Yg Hr Sb POC Lt2 PPOC E200 Eq TP Car PPOA Wf 

F1 

NONE .565 NaN .957 .358 .578 .701 .714 NaN .578 .688 .424 .316 

ROS .607 .405 .951 .564 .612 .738 .743 .111 .637 .813 .532 .651 

SMOTE .595 .503 .937 .481 .696 .724 .768 .195 .638 .840 .437 .600 

MDO .607 .406 .948 .554 .630 .747 .734 .062 .628 .688 .496 .600 

INOS .614 .417 .949 .506 .604 .743 .754 .075 .647 .781 .505 .615 

MoGT .572 .392 .945 .535 .653 .743 .774 .187 .592 .688 .436 .684 

OHIT .613 .466 .951 .550 .654 .750 .765 .197 .649 .827 .510 .561 

G-mean 

NONE .618 .000 .969 .475 .639 .751 .773 .000 .682 .742 .626 .437 

ROS .639 .509 .968 .635 .662 .813 .800 .266 .772 .858 .769 .830 

SMOTE .623 .582 .960 .568 .722 .806 .822 .382 .786 .882 .831 .810 

MDO .640 .511 .965 .630 .673 .814 .790 .184 .759 .742 .726 .813 

INOS .645 .521 .967 .596 .656 .818 .809 .203 .779 .826 .776 .811 

MoGT .607 .499 .964 .616 .689 .818 .826 .379 .742 .742 .718 .813 

OHIT .642 .558 .969 .626 .695 .822 .818 .396 .783 .869 .793 .808 

AUC 

NONE .677 .249 .990 .669 .706 .904 .903 .468 .850 .929 .891 .802 

ROS .677 .617 .991 .669 .699 .884 .894 .532 .853 .936 .873 .885 

SMOTE .662 .634 .993 .631 .722 .886 .900 .566 .856 .931 .901 .760 

MDO .677 .603 .992 .675 .727 .899 .896 .531 .856 .926 .900 .875 

INOS .686 .621 .992 .651 .700 .888 .892 .532 .863 .931 .908 .863 

MoGT .637 .624 .989 .670 .701 .888 .913 .527 .820 .907 .896 .758 

OHIT .682 .627 .992 .665 .706 .899 .901 .534 .860 .934 .910 .871 

Best (/Worst) results are highlighted in bold (/italics) Type. 

Table 4: Performance results of all the compared methods on the imbalanced multimodal datasets 

Metrics Methods 

Datasets 

Ws Pl Ht FISH 
UWG 

LA 
IWS CZ SL FA MI SA NIFT 

F1 

NONE .027 .962 .439 .863 .718 .618 NaN .367 .826 .200 .667 .735 

ROS .464 .967 .537 .900 .653 .585 .370 .812 .834 .351 .478 .695 

SMOTE .505 .980 .622 .875 .705 .660 .553 .639 .810 .393 .475 .354 

MDO .493 .972 .608 .884 .676 .675 .431 .733 .819 .610 .684 .646 

INOS .468 .968 .592 .896 .735 .685 .473 .786 .815 .436 .476 .680 

MoGT .468 .975 .615 .888 .728 .696 .390 .787 .756 .443 .620 .587 

file://///24


OHIT .505 .967 .629 .893 .741 .683 .515 .787 .811 .449 .687 .693 

G-mean 

NONE .117 .962 .539 .875 .793 .708 .000 .478 .877 .358 .729 .804 

ROS .549 .967 .612 .922 .767 .772 .530 .878 .886 .633 .867 .807 

SMOTE .568 .980 .672 .918 .836 .844 .754 .875 .904 .756 .911 .879 

MDO .572 .972 .667 .900 .786 .798 .599 .848 .888 .773 .930 .786 

INOS .553 .968 .654 .916 .842 .847 .642 .890 .901 .766 .900 .837 

MoGT .553 .975 .673 .905 .829 .841 .576 .905 .887 .739 .908 .803 

OHIT .577 .967 .684 .913 .845 .850 .691 .907 .900 .780 .931 .852 

AUC 

NONE .436 .998 .710 .950 .907 .884 .735 .959 .960 .856 .927 .961 

ROS .555 .996 .674 .949 .863 .839 .721 .951 .961 .712 .911 .971 

SMOTE .574 .998 .713 .950 .909 .898 .822 .944 .953 .798 .924 .953 

MDO .559 .999 .711 .946 .877 .875 .760 .921 .954 .805 .933 .968 

INOS .565 .996 .708 .952 .907 .901 .774 .949 .953 .855 .921 .972 

MoGT .560 .997 .711 .945 .910 .896 .695 .939 .939 .838 .927 .956 

OHIT .571 .999 .729 .951 .911 .901 .814 .961 .954 .877 .936 .973 

Best (/Worst) results are highlighted in bold (/italics) Type. 

Table 5: Summary of p-values of Wilcoxon significance tests between OHIT and each of the other 

compared methods 

OHIT vs 
Unimodal data Multimodal data 

F1 G-mean AUC F1 G-mean AUC 

Original 𝟗. 𝟖𝐞 − 𝟒+ 𝟗. 𝟖𝐞 − 𝟒+ 𝟎. 𝟎𝟓𝟓𝟐∗ 𝟎. 𝟎𝟏𝟐𝟐+ 𝟒. 𝟗𝐞 − 𝟒+ 𝟎. 𝟎𝟎𝟒𝟒+ 

ROS 0.4131 𝟎. 𝟎𝟑𝟒𝟐+ 𝟎. 𝟎𝟒𝟐𝟓+ 𝟎. 𝟎𝟒𝟐+ 𝟎. 𝟎𝟎𝟏𝟓+ 𝟎. 𝟎𝟎𝟑𝟒+ 

SMOTE 0.6772 .9097 .3013 𝟎. 𝟎𝟑𝟒𝟐+ 0.6221 𝟎. 𝟎𝟑𝟒𝟐+ 

MDO 𝟎. 𝟎𝟑𝟒𝟐+ 𝟎. 𝟎𝟎𝟗𝟑+ .377 .1099 𝟎. 𝟎𝟎𝟏𝟓+ 𝟎. 𝟎𝟎𝟐𝟒+ 

INOS 𝟎. 𝟎𝟑𝟒𝟐+ 𝟎. 𝟎𝟎𝟒𝟗+ 𝟎. 𝟎𝟐𝟏+ 𝟎. 𝟎𝟒𝟐𝟓+ 𝟎. 𝟎𝟎𝟔𝟖+ 𝟎. 𝟎𝟎𝟏𝟓+ 

MoGT 𝟎. 𝟎𝟔𝟒∗ 𝟎. 𝟎𝟏𝟐𝟐+ 𝟎. 𝟎𝟐𝟔𝟗+ 𝟎. 𝟎𝟐𝟔𝟗+ 𝟎. 𝟎𝟎𝟏𝟓+ 𝟒. 𝟗𝐞 − 𝟒+ 

 

Table 6: Recall, specificity, and precision of SMOTE and OHIT on the imbalanced unimodal datasets 

Metrics Methods 
Datasets 

Yg Hr Sb POC Lt2 PPOC E200 Eq TP Car PPOA Wf 

Recall 
SMOTE .590 .477 .991 .486 .679 .808 .864 .167 .868 .842 .847 .713 

OHIT .605 .404 .985 .559 .589 .796 .806 .185 .771 .816 .694 .732 

Specificity 
SMOTE .658 .713 .930 .664 .770 .805 .783 .879 .712 .924 .816 .919 

OHIT .682 .774 .952 .703 .821 .849 .831 .849 .796 .927 .907 .893 

Precision 
SMOTE .600 .533 .888 .477 .716 .658 .692 .235 .505 .838 .295 .518 

OHIT .622 .551 .920 .542 .737 .709 .729 .212 .561 .838 .403 .455 

In terms of recall, specificity and precision, p-values of Wilcoxon test between OHIT and SMOTE are 0.1763, 0.0161, 

and 0.0674, respectively. 

Table 7: Average performance of OHIT and its variants across all the datasets within each group 

OHIT vs 
Unimodal data Multimodal data 

F1 G-mean AUC F1 G-mean AUC 



            

 

 

 

 

 

 

 

4 Conclusion  

Extensive experiments have been conducted to evaluate the effectiveness of OHIT on both the 

unimodal datasets and multimodal datasets. In most of case, OHIT can significantly outperform existing 

representative oversampling solutions in terms of F1, G-mean, and AUC (Table 5).  
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