Minority Oversampling for Imbalanced Time Series Classification
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Abstract: Many important real-world applications involve time-series data with
skewed distribution. Compared to conventional imbalance learning problems, the
classification of imbalanced time-series data is more challenging due to high
dimensionality and high inter-variable correlation. This paper proposes a structure
preserving Oversampling method to combat the High-dimensional Imbalanced
Time-series classification (OHIT). OHIT first leverages a density- ratio based
shared nearest neighbor clustering algorithm to capture the modes of minority
class in high-dimensional space. It then for each mode applies the shrinkage
technique of large-dimensional covariance matrix to obtain accurate and reliable
covariance structure. Finally, OHIT generates the structure-preserving synthetic
samples based on multivariate Gaussian distribution by using the estimated
covariance matrices. Experimental results on several publicly available time-series
datasets (including unimodal and multimodal) demonstrate the superiority of
OHIT against the state-of-the-art oversampling algorithms in terms of F1, G-mean,
and AUC.
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1 Introduction

In this paper, we focus our attention on oversampling techniques in data-level approaches, since
oversampling directly addresses the difficulty source of classifying imbalanced data by compensating the
insufficiency of minority class information, and, unlike undersampling, does not suffer the risk of
discarding informative majority samples.

2 The Proposed OHIT Framework
Algorithm 1 OHIT(P, k, x, drT, #)




Require: P: the minority sample set; K, «, drT : three parameters in DRSNN clustering; #: the number
of synthetic samples required to be generated;

Ensure: Syn: the generated synthetic sample set

1: Employ DRSNN to cluster the minority class sample set, Ci < DRSNN(P, k, «, drT),i=1, 2, ..m,
where m is the number of discovered clusters.

2: Compute the shrinkage covariance matrix S; for each cluster C; by combining Egns. 7, 14, and 15.
3: Generate the synthetic sample set Syn; with size ln %J for each cluster C; based on N(, S;), then
add Syn; into Syn.

3 Experimental Results and Discussion
Table 1: Summary of the imbalanced unimodal time-series datasets used in the experiments

Minority Training data Testing data
Dataset Class Length _ C!ass_ IR _ C!ass_ IR
Distribution Distribution

Yoga (YQ) 1 426 137/163 1.19 1393/1607 1.15
Herring (Hr) 2' 512 25/39 1.56 26/38 1.46
Strawberry (Sh) 1 235 132/238 1.8 219/394 1.8
PhalangesOutlinesCor .
rect (ch) 0 80 628/1172 1.87 332/526 1.58
Lighting2 (Lt2) -1 637 20/40 2 28/33 1.18
ProximalPhalanxOutli .
neCorrect (PPOC) 0 80 194/406 2.09 92/199 2.16
ECG200 (E200) -1 96 31/69 2.23 36/64 1.78
Earthquakes (Eq) ‘0 512 35/104 2.97 58/264 4,55
Two_Patterns (Tp) 2' 128 237/763 3.22 1011/2989 2.96
Car K 577 11/49 4.45 19/41 2.16
ProximalPhalanxOutli '
neAgeGroup (PPOA) 1 80 72/328 4.56 17/188 11.06
Wafer (Wf) -1 152 97/903 9.3 665/5499 8.27

IR is the imbalance ratio (#majority class samples/#minority class samples).
Table 2: Summary of the imbalanced multimodal time-series datasets used in the experiments

Minority Training data Testing data
Dataset class Length _ C_Iass_ IR _ C_Iass_ IR
distribution distribution

Worms (Ws) '5',2''3' 900 31/46 1.48 73/108 1.48
Plane (PI) '3','5' 144 36/69 1.92 54/51 .944
Haptics (Ht) '1','5' 1092 51/104 2.04 127/181 1.43
FISH '4''5' 463 43/132 3.07 57/118 2.07
UWaveGestureLibr ‘o1 1o
aryAll (UWGLA) 8''3 945 206/690 3.35 914/2668 2.92
InsectWingbeatSou o
nd (IWS) g 12 256 40/180 4.5 360/1620 45
Cricket_Z (C2) '3','5' 300 52/338 6.5 78/312 4
SwedishLeaf (SL) 10,7 128 54/446 8.26 96/529 5.51
FaceAll (FA) '17','2" 131 80/480 12 210/1480 7.05




Medicallmages (M) '5''6','8' 99 23/358 15.57 69/691 10
ShapesAll (SA) '1,'2''3' 512 30/570 19 30/570 19
NonlnvasiveFatalE

CG_Thorax1 1,23 750 71/1729 24.35 100/1865 18.65
(NIET)

IR is the imbalance ratio (#majority class samples/#minority class samples).

Table 3: Performance results of all the compared methods on the imbalanced unimodal datasets

Metrics | Methods Datasets
Yg Hr Sb POC Lt2 PPOC E200 Eq TP Car PPOA Wf
NONE | .565 NaN 957 .358 .578 .701 .714 NaN .578 .688 .424 .316
ROS .607 .405 951 564 .612 .738 .743 111 .637 .813 532 .651
SMOTE | .595 .503 .937 .481 .696 .724 768 .195 .638 .840 .437 .600
F1 MDO | .607 .406 .948 .554 630 .747 .734 .062 .628 .688 .496 .600
INOS | .614 417 949 506 .604 743 754 .075 .647 .781 505 .615
MoGT | .572 392 945 535 .653 .743 774 .187 592 .688 .436 .684
OHIT | .613 .466 951 550 .654 .750 .765 .197 .649 .827 510 .561
NONE | .618 .000 .969 .475 .639 .751 .773 .000 .682 .742 626 .437
ROS .639 509 .968 .635 .662 .813 .800 .266 .772 .858 .769 .830
SMOTE | .623 582 960 .568 .722 .806 .822 .382 .786 .882 .831 .810
G-mean | MDO | .640 511 965 .630 .673 .814 .790 .184 .759 .742 726 .813
INOS | .645 521 967 .596 .656 .818 .809 .203 .779 .826 .776 .811
MoGT | .607 .499 964 .616 .689 .818 .826 .379 .742 .742 718 .813
OHIT | .642 558 969 .626 .695 .822 .818 .396 .783 .869 .793 .808
NONE | .677 .249 990 .669 .706 .904 .903 468 .850 .929 .891 .802
ROS 677 617 991 .669 .699 .884 894 532 .853 .936 .873 .885
SMOTE | .662 .634 993 .631 .722 .886 .900 .566 .856 .931 .901 .760
AUC MDO | .677 .603 .992 675 .727 899 .896 531 .856 .926 .900 .875
INOS | 686 .621 .992 .651 .700 .888 .892 532 .863 .931 .908 .863
MoGT | .637 .624 989 670 .701 .888 .913 .527 .820 .907 .896 .758
OHIT | .682 .627 992 665 .706 .899 901 .534 .860 .934 910 .871

Best (/Worst) results are highlighted in bold (/italics) Type.
Table 4: Performance results of all the compared methods on the imbalanced multimodal datasets

Datasets
Metrics | Methods UWG

Ws PI Ht FISH LA IWS Cz SL FA Ml SA NIFT
NONE | .027 .962 .439 .863 .718 .618 NaN .367 .826 .200 .667 .735
ROS 464 967 537 900 653 585 .370 .812 .834 .351 .478 .695
F1 SMOTE | .505 .980 .622 .875 .705 .660 .553 .639 .810 .393 .475 .354
MDO | 493 972 .608 .884 676 .675 .431 .733 .819 .610 .684 .646
INOS | .468 .968 .592 896 .735 .685 .473 .786 .815 .436 .476 .680
MoGT | .468 .975 .615 .888 .728 .696 .390 .787 .756 .443 .620 .587



file://///24

OHIT | .505 .967 .629 .893 .741 683 515 .787 .811 .449 .687 .693

NONE | .117 .962 .539 .875 .793 .708 .000 .478 .877 .358 .729 .804

ROS 549 967 612 922 767 772 530 .878 .886 .633 .867 .807

SMOTE | .568 .980 .672 .918 .836 .844 .754 875 .904 .756 .911 .879

G-mean | MDO | .572 .972 .667 .900 .786 .798 .599 .848 .888 .773 .930 .786
INOS | 553 .968 .654 916 .842 .847 .642 .890 .901 .766 .900 .837

MoGT | .553 975 .673 905 .829 .841 576 .905 .887 .739 .908 .803

OHIT | 577 967 .684 913 845 850 .691 .907 .900 .780 .931 .852

NONE | .436 .998 .710 .950 .907 .884 .735 .959 .960 .856 .927 .961

ROS 555 996 674 949 863 .839 .721 951 .961 .712 911 971

SMOTE | .574 .998 .713 950 .909 .898 .822 .944 953 .798 .924 .953

AUC MDO | .559 .999 .711 946 877 .875 .760 .921 .954 .805 .933 .968
INOS | 565 .996 .708 952 907 901 .774 949 953 .855 .921 .972

MoGT | .560 .997 .711 945 910 .896 .695 .939 .939 .838 .927 .956

OHIT |.571 999 .729 951 911 901 .814 .961 .954 .877 .936 .973

Best (/Worst) results are highlighted in bold (/italics) Type.

Table 5: Summary of p-values of Wilcoxon significance tests between OHIT and each of the other
compared methods

Unimodal data Multimodal data

OHIT vs F1 G-mean  AUC F1 G-mean AUC
Original | 9.8e —4, 9.8e—4, 0.0552, [0.0122, 4.9e—4, 0.0044,
ROS 0.4131 0.0342, 0.0425, | 0.042, 0.0015, 0.0034,
SMOTE 0.6772 .9097 .3013 0.0342, 0.6221 0.0342,
MDO | 0.0342, 0.0093, 377 1099 0.0015,  0.0024,
INOS | 0.0342, 0.0049, 0.021, | 0.0425, 0.0068, 0.0015,
MoGT 0.064, 0.0122, 0.0269, | 0.0269, 0.0015, 4.9e—4,

Table 6: Recall, specificity, and precision of SMOTE and OHIT on the imbalanced unimodal datasets

Metrics Methods Datasets
Yg Hr Sb | POC | Lt2 | PPOC | E200 | Eq TP | Car | PPOA | Wf
SMOTE | .590 | 477 | 991 | .486 | .679 | .808 | .864 | .167 | .868 | .842 | .847 | .713
Recall OHIT | .605| .404 | .985| .559 | 589 | .796 | .806 | .185 | .771 | .816 | .694 | .732
Specificity SMOTE | .658 | .713 ] .930 | .664 | .770 | .805 | .783 | .879 | .712 | .924 | .816 | .919
OHIT | .682| .774] 952 | .703 | .821 | .849 | .831 | .849 | .796 | .927 | .907 | .893
Precision SMOTE | .600 | .533 | .888 | .477 | .716 | .658 | .692 | .235 | .505 | .838 | .295 | .518
OHIT | .622| .551 | .920 | .542 | .737 | .709 | .729 | .212 | .561 | .838 | .403 | .455

In terms of recall, specificity and precision, p-values of Wilcoxon test between OHIT and SMOTE are 0.1763, 0.0161,
and 0.0674, respectively.

Table 7: Average performance of OHIT and its variants across all the datasets within each group

Multimodal data
G-mean

Unimodal data
OHIT vs

F1 G-mean AUC F1 AUC




OHIT/DRSNN 6229 7290 7935 6641 8131 8751
OHIT/shrinkage .5988 .6977 .7938 .6523 7769 .8475
OHIT with ER 5938 6974 7939 6619 .7900 .8519
OHIT 6243 7316 7984 .6966 8247 .8813
4 Conclusion

Extensive experiments have been conducted to evaluate the effectiveness of OHIT on both the
unimodal datasets and multimodal datasets. In most of case, OHIT can significantly outperform existing
representative oversampling solutions in terms of F1, G-mean, and AUC (Table 5).
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