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Abstract

Blind image deblurring is an important yet very challenging problem in low-
level vision. Traditional optimization based methods generally formulate this task
as a maximum-a-posteriori estimation or variational inference problem, whose
performance highly relies on the handcraft priors for both the latent image and
the blur kernel. In contrast, recent deep learning methods generally learn, from a
large collection of training images, deep neural networks (DNNs) directly mapping
the blurry image to the clean one or to the blur kernel, paying less attention to the
physical degradation process of the blurry image. In this paper, we present a deep
variational Bayesian framework for blind image deblurring. Under this framework,
the posterior of the latent clean image and blur kernel can be jointly estimated in an
amortized inference fashion with DNNs, and the involved inference DNNs can be
trained by fully considering the physical blur model, together with the supervision
of data driven priors for the clean image and blur kernel, which is naturally led to
by the evidence lower bound objective. Comprehensive experiments are conducted
to substantiate the effectiveness of the proposed framework. The results show that
it can not only achieve a promising performance with relatively simple networks,
but also enhance the performance of existing DNNs for deblurring.

1 Introduction

Image deblurring is an important problem in the field of image restoration and has attracted wide
attention with a long history [39, 8, 5]. The goal of deblurring is to recover the underlying clean
image from an observed blurry one. Such a blurry image can be resulted by different reasons, such as
defocusing and camera shaking, which can in general be modeled as (assuming the blur process is
uniform and spatially invariant)

y = h ∗ z + n, (1)
where y is the blurry image, z is the corresponding clean one, h is the blur kernel (point spread
function), n is the noise, often modeled as additive white Gaussian noise, and ∗ denotes the 2D
convolution operator. When the blur kernel h is unknown, we need to simultaneously estimate h
and z solely from the given observation y, which is commonly referred as blind image deblurring or
blind deconvolution. It is a highly ill-posed inverse problem, since there can be different pairs of z
and h explaining one same blurred image y.

Many different methods have been proposed to address this problem, which can be mainly categorized
into two groups, i.e., optimization-based methods and deep learning ones. Traditional optimization-
based methods, from the probabilistic perspective, generally formulate the image deblurring task
as a maximum-a-posteriori (MAP) estimation problem [23, 43, 49, 34, 35, 27, 22] or Bayesian
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posterior inference (specifically variational inference (VI)) one [8, 56, 2], by properly designing
priors to both the to-be-estimated image [49, 34, 35, 22, 8, 27] and blur kernel [28, 56]. However,
the manually designed priors are still subjective and may not precisely characterize the intrinsic
distributions of natural images and blur kernels in real world, limiting the performance of a deblurring
algorithm. Besides, solving the complex optimization usually causes heavy computational cost,
which is always unaffordable in real applications. Recently, motivated by their great success in
computer vision, especially for other image restoration problems, [6, 54], deep learning methods have
also attracted increasing attention in image deblurring research. Early attempts along this line used
deep neural networks (DNNs) as a component of traditional methods, e.g., estimating the blur kernel
[45, 11, 42, 4]. Later, learning an explicit mapping from a blurred image to its deblurred one in an
end-to-end fashion has become a dominant methodology [17, 30, 46]. This approach is especially
superior in extracting underlying knowledge from large datasets and fast deblurring for test images.

Existing deep deblurring methods mainly focus on designing fancy network architectures, while
pay less attention to make full use of the information delivered by physical blur model (1), which
limits further performance improvement for them. In contrast, (1) plays a crucial role for achieving a
promising performance in optimization based methods, especially Bayesian ones [8, 26, 32]. Based
on these observations, and also inspired by recent advances in deep Bayesian modeling for image
restoration [50], we propose a deep variational Bayesian framework for training deblurring neural
networks in the blind setting, aiming at simultaneously estimating the clean image and blur kernel.
Specifically, under the generative model of blurry image, we construct the variational distributions
parameterized by DNNs to approximate the true posteriors of both the latent clean image and blur
kernel, and learn the network parameters by optimizing the evidence lower bound (ELBO). After
training, the inference networks can then be directly used to approximate the corresponding posteriors
of clean image and blur kernel in an amortized way, efficiently from an observed blurry image.

The main advantages of the proposed method can be summarized as follows. First, by virtue of the
Bayesian generative model, the physical blur model (1) can be naturally encoded as the likelihood
term in the ELBO to guide learning the inference networks. Therefore, the inference networks for the
clean image and blur kernel can both be jointly trained under the supervision of data driven priors,
and interact with each other due to the likelihood. Second, the proposed framework provides, in
principle, a natural unification of previous methodologies that consider kernel information for training
deblurring DNNs, in a concise Bayesian way, and thus is expected to achieve a better performance.
Third, our framework can also be straightforwardly incorporated with any existing end-to-end DNNs
to enhance their performance. All of these advantages have been substantiated by our experiments.

The remainder of this paper is organized as follows: Section 2 introduces the related studies. Section
3 presents the proposed deep Bayesian framework, including Bayesian generative model, deep VI
procedure and network architectures. Section 4 shows the experimental results and analyses. Final
conclusion is made in Section 5.

2 Related Work

Optimization based methods The main focus along this research line is to design priors that can
precisely characterize the intrinsic structures of clean images and blur kernels, in order to make the
ill-posed blind deblurring problem solvable. A series of priors have been developed for clean images,
including total variation [5], sparsity of gradients [8, 43], hyper-Laplacian [22], L0-norm prior
[49, 34], internal patch prior [27] and dark channel prior [35]. For blur kernels, the aforementioned
priors can still be applied, while there are also some specifically designed priors, e.g., Dirichlet prior
[28, 56] and piecewise-linear prior [31]. After specifying the priors, such a blind image deblurring
problem can be formulated as a MAP estimation[43, 49, 34, 35, 27, 22] or Bayesian posterior
inference (more specifically VI) [8, 56] problem, and solved by off-the-shelf optimization tools.

Deep learning based methods Having witnessed the great success in other fields, deep learning has
also been investigated in dealing with the image deblurring task. Early methods treat DNNs as a part
of traditional optimization based ones, by virtue of their prediction ability. For example, Schuler et
al.[42] designed a convolutional neural network (CNN) to simulate iterative optimization for image
deblurring. Sun et al.[45] used a CNN to classify the blur kernel in patch-level. Gong et al.[11] went
further to predict the motion flow in a pixel-level. Chakrabarti [4] used CNN to predict the kernel in
the frequency domain. It is then gradually popular to directly parameterize the mapping from a blurry
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image and its clean one with CNNs in a kernel free paradigm, and then learn the parameters by a large
collection of blurry-clean image pairs. Hradiš et al.[17] directly predicted latent clean images from
observed blurred images by a fully CNN. Nah et al.[30] introduced a multi-scale CNN to directly
recover the latent clean image. Tao et al.[46] improved the architecture by using a scale-recurrent
network and a ConvLSTM [44] layer. The generative adversarial network (GAN) [12] is also applied
to image deblurring, e.g., Kupyn et al.[24] utilized the Wasserstein GAN [1] to learn a generator that
restores the latent image. Recently, there are some studies that borrow fundamental principles from
traditional methods. Pan et al.[32] introduce the consistency loss motivated from the likelihood in
traditional methods. Cai et al.[3] embed the dark and bright channel prior to a deep multi-scale neural
network. Ren et al.[37] tried to directly solve the traditional blind deblurring optimization, while
constrain the solution space by deep image priors [47].

3 Deep Variational Bayesian Framework for Blind Image Deblurring

Let D = {x(j),y(j),k(j)}Nj=1 be the training dataset, where x(j), y(j) and k(j) denote the clean
image, blurry image and blur kernel, respectively, in the jth training tuple, and N be the number of
training tuples. Our goal is to construct parametric forms with DNNs to approximate the posteriors
of both clean image and blur kernel, given only the observed blurry image, under the Bayesian
framework. With these parametric variational posteriors trained on D, we can directly infer the
posterior distributions of both clean image and blur kernel from a test blurry image. Note that in
practical training deblurring datasets [30], for a blurry image, the corresponding “clean” image is
often obtained by complicated acquisition process, which might not be the exact latent clean image.
Besides, the groundtruth blur kernels are also unavailable. Nevertheless, these two issues can be
naturally addressed within our Bayesian formulation.

3.1 Bayesian Model of Blind Image Deblurring with Data Driven Priors

Let (x,y,k), with x ∈ Rh×w, y ∈ Rh×w, and k ∈ Rh′×w′
, be any training tuple in D, where h×w

and h′ × w′ are respectively the sizes of image and kernel. As aforementioned, the “clean” image x
and blur kernel k might be inaccurate or unavailable, and thus we introduce notations z and h for the
latent clean image and blur kernel, respectively. With these notations, we can build our Bayesian
model for blind image deblurring as follows.

Likelihood: Considering the physical blur model (1), we can have the following likelihood for the
observed blurry image y, given the latent clean image z and blur kernel h [8, 29]:

p(y|z,h) =
∏d

i=1
N (yi; (h ∗ z)i, σ

2), (2)

whereN (·;µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2, subscript i denotes
the ith pixel within the image (by taking the image matrix as a vector) and d = hw for notation
convenience. It should be mentioned that, in this work, we treat the variance σ2 as a hyper-parameter
to reduce the complexity of overall model. Nevertheless, we can also treat it as a to-be-estimated
variable and learn its posterior distribution from data as in [50].

To complete the full Bayesian model, we then need introduce priors to z and h. Different from that in
traditional optimization based methods, where the priors were specified in a subjective way, we place
these priors in a data driven fashion with the aid of training set D, which is detailed in the following.

Data Driven Prior for Clean Image: As mentioned before, x in the training set might not exactly
be the latent clean image z. Nevertheless, it can be expected that x is close to z, and thus provide
strong prior information to it. Thus, we can naturally assume the prior distribution of z as

p(z) =
∏d

i=1
N (zi;xi, ε

2
0) (3)

where ε2
0 is a hyper-parameter, which measures the uncertainty of z. Since typical deblurring datasets

are carefully collected, it is expected that x is close enough to z, and we can correspondingly assume
a small ε2

0. In the extreme case that ε2
0 tends to 0, the prior degenerates to the Dirac distribution with

all mass centered at x. We will empirically analyze the effect of ε2
0 in our experiments.

Data Driven Prior for Blur Kernel: Specifying a proper prior distribution for the blur kernel is
more difficult, since there is a constraint that the sum of all elements in a blur kernel should equal to

3



1. Fortunately, Dirichlet distribution defined on a simplex well meet this requirement. Its probability
density function, with parameter α=(α1, . . . , αM ), αm>0,m=1, . . . ,M has the following form:

Dir(π;α) =
1

Z(α)

∏M

m=1
παm−1
m , 0 < πm < 1, m = 1, . . . ,M, (4)

where Z(α) =
∏M
m=1 Γ(αm)/Γ

(∑M
m=1 αm

)
is the normalizing factor, with Γ(·) being the gamma

function. Besides, the mean and variance are given by, denoting α0 =
∑M
m=1 αm,

E[πm] = αm/α0, Var[πm] =
(
αm(α0 − αm)

)
/
(
α2

0(α0 + 1)
)
. (5)

With the above knowledge, we can naturally place a Dirichlet prior to the latent blur kernel h, and
the problem is how to set its hyper-parameter. Since k, if available, in the training set should provide
strong information to h, it is reasonable to assume E[h] = k. Also, as can be seen from (5), the mean
of a Dirichlet distribution remains the same under a scaling transformation of parameters. Therefore,
we can introduce the following prior distribution to h:

p(h) = Dir(h; ck) ∝
∏d′

i′=1
h
cki′−1
i′ , (6)

where d′ = h′w′ for convenience, and c > 0 is a scaling factor to be tuned. Although hyper-parameter
c does not affect the mean provided k being specified, it does determine the variance according to (5),
and correspondingly the prior uncertainty of h. Thus, if k is given in the training set, we may set
c to a relatively larger value, which results in a smaller prior uncertainty for h. In contrast, if k is
unavailable, we can only roughly estimate it from the given y and x, and it is better to set c small to
avoid the inaccurate prior information being too strong.

Posterior Inference Goal: Giving both the likelihood and priors, the goal then turns to inferring the
posterior distribution of the latent variables z and h from the observed blurry image y, which, by the
Bayes’ rule, can be theoretically formulated as

p(z,h|y) ∝ p(z,h,y) = p(y|z,h)p(z)p(h). (7)

Exactly computing this posterior is intractable, especially for a test image out of the training set.
Therefore, we turn to constructing the approximate posterior in an amortized way [21, 38] with
DNNs, and then train the inference networks on the training set. After that, the trained networks can
be used to directly infer the posterior of z and h by input a test blurry image y.

3.2 Variational Formulations of Posterior

In order to achieve the goal mentioned in the previous subsection, we first need to construct the
variational form of the posterior, denoted as q(z,h|y), to approximate the intractable true posterior
in (7). Since p(z,h|y) is a joint distribution of z and h, there are multiple ways to formulate the
variational posterior, and we discuss two possible ones according to the way of inferring z.

Kernel-free Inference Structure for z: The basic mean-field assumption for q(z,h|y) is

q(z,h|y) = q(z|y)q(h|y), (8)

which assumes the conditional independence between z and h given y. Then we further specify
q(z|y) and q(h|y) with the same families as q(z) and q(h), respectively:

qΨ(z|y) =
∏d

i=1
N
(
zi;µi(y; Ψ),m2

i (y; Ψ)
)
, qΦ(h|y) = Dir

(
h; ξ(y; Φ)

)
, (9)

where Ψ denotes the parameters of the inference network for z, which takes y as its input and outputs
the mean µi(y; Ψ) and variance m2

i (y; Ψ), and thus can be recognized as Deblur-Net; similarly, Φ
parameterizes the inference network for h, which also takes y as input while outputs the parameters
ξ(y; Φ) =

(
ξ1(y; Φ), . . . , ξd′(y; Φ)

)
, and thus can be referred to as Kernel-Net.

Kernel-dependent Inference Structure for z: Another formulation for variational posterior
q(z,h|y) is obtained by conditional probability rule:

q(z,h|y) = q(z|h,y)q(h|y), (10)
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where the posterior of z is also conditioned on h in addition to y. This dependence can be easily
achieved by taking both h and y as the inputs of Deblur-Net, leading to following variational form:

qΨ(z|h,y) =
∏d

i=1
N
(
zi;µi(h,y; Ψ),m2

i (h,y; Ψ)
)
. (11)

This parameterization is rational, since the blur kernel, if accurately estimated, can provide useful
information for deblurring an image. The variational form of qΦ(h|y) remains the same as in (9).

Remark: Mathematically, it is also hold that q(z,h|y) = q(h|z,y)q(z|y), which leads to another
valid variational posterior formulation. However, considering that our ultimate goal is to deblur y,
this formulation is less attractive, since it requires estimating z first before inferring h.

3.3 Network Learning with Evidence Lower Bound

After the variational posterior parameterized by DNNs having be constructed, we need to derive
the evidence lower bound (ELBO), which acts as the objective function for learning the network
parameters Ψ and Φ. For notation convenience, we simplify µi(y; Ψ) and µi(h,y; Ψ) to µi,m2

i (y; Ψ)
and m2

i (h,y; Ψ) to m2
i , and ξi′(y; Φ) to ξi′ in the following.

Based on conventional decomposition of marginal likelihood in VI, we can get

log p(y) = L(y; Ψ,Φ) +DKL

(
q(z,h|y)‖p(z,h|y)

)
, (12)

where DKL(·|·) is the KL divergence between two distributions, and L(y; Ψ,Φ) is the ELBO we
want to maximize. According to the two variational formulations (8) and (10), we correspondingly
have the following two ELBOs (derivations are provided in Appendix A):

LKF(y; Ψ,Φ) = Eq(z|y)q(h|y)[log p(y|h,z)]−DKL(q(z|y)||p(z))−DKL(q(h|y)||p(h)), (13)

and

LKD(y; Ψ,Φ) = Eq(z|h,y)q(h|y)[log p(y|h,z)]− Eq(h|y)[DKL(q(z|h,y)||p(z))]−DKL(q(h|y)||p(h)),
(14)

where we omit the subscripts in qΨ(z|h,y), qΨ(z|h,y) and qΦ(h|y). The KL divergence terms in
the above two equations can then be calculated analytically as follows:

DKL(q(z|y)||p(z)) = DKL(q(z|h,y)||p(z)) =

d∑
i=1

{
(µi − xi)2

2ε20
+

1

2

[
m2

i

ε20
− log

m2
i

ε20
− 1

]}
, (15)

DKL(q(h|y)||p(h)) = log Γ
(∑d′

i′=1
ξi′
)
− log Γ

(∑d′

i′=1
cki′

)
−
∑d′

i′=1
log Γ(ξk)

+
∑d′

i′=1
log Γ(cki′) +

∑d′

i′=1
(ξi′ − cki′)

(
ψ0(ξi′)− ψ0

(∑d′

i′=1
ξi′
))
,

(16)

where ψ0(·) is the digamma function. Note that DKL(q(z|y)||p(z)) and DKL(q(z|y,h)||p(z))
have the same form, since q(z|y) and q(z|h,y) both follow Gaussian distributions parameterized by
DNNs, while the difference lies in the parametric forms of µi and m2

i as can be seen in (9) and (11).
The first term in either (13) or (14) can not be analytically calculated due to the intractable integral.
Nevertheless, reparameterization trick [21, 38, 9] can be applied to obtaining an unbiased gradient
estimator for it, which has been integrated into modern deep learning frameworks like PyTorch [36].

Given a training dataset D, we now can optimize the network parameters Ψ and Φ with respect to the
ELBO (13) or (14), over all data in D, which respectively corresponds to the following objectives:

max
Ψ,Φ

∑N

j=1
LKF(y(j); Ψ,Φ), max

Ψ,Φ

∑N

j=1
LKD(y(j); Ψ,Φ). (17)

Remark: The three terms involved in the ELBO, either LKF or LKD, play important roles. Firstly,
the second term plays the role of supervising Deblur-Net by the clean training image, which acts
similarly as the loss functions of most end-to-end trained deblurring DNNs. Secondly, the third term
provides supervision information to Kernel-Net, which is often ignored in many existing methods.
Thirdly, the first term (likelihood), attributed to the physical blur model, includes both Deblur-Net
and Kernel-Net, making them interact with each other, which is also less considered in previous
methods. To summarize, with the derived ELBO, Deblur-Net and Kernel-Net can both be supervised
by data-driven priors and interact with each other during the training process.
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SkipConv

Figure 1: The architecture of the proposed framework with kernel-dependent inference structure.

3.4 Network Architecture

Design of Deblur-Net: For the kernel-free inference structure for z, we design a relative simple yet
effective baseline Deblur-Net for evaluation. We adopt the widely used U-Net [41], with four scales
in the encoder and decoder, to capture multi-scale features of an image, and make some modifications
to it. Specifically, we first use the modified ResBlock in [30] but replace the ReLU activation with
LeakyReLU one and use a small kernel size of 3. Then we stack a series of ResBlocks (the number
of ResBlocks varies in our experiments depending on different purposes) to construct the encoding
and decoding blocks. The number of channels at all layers is set to 64. The downsample is done by a
convolution layer with filter size 3 and stride 2, while the upsample by a transposed convolution layer
with filter size 5 and stride 2.

For the kernel-dependent inference structure for z, the Deblur-Net should also take the blur kernel, in
addition to the blurry image, as its input. To do so, we adopt the SFT layer in [13] to the encoding
and decoding blocks. We also use a sub-network to map the blur kernel from matrix to vector.

Design of Kernel-Net: We use a ResNet [16] as feature extractor for Kernel-Net, followed by a linear
transformation layer. Then we apply a softmax layer after that and rescale it to make the final output
non-negative and normalized. It should be mentioned that accurately estimating the blur kernel is not
a easy task, and there is still a large room to improve the this baseline Kernel-Net.

The overall network architecture of the proposed framework with kernel-dependent inference is
illustrated in Fig. 1. For the kernel-free inference, the architecture is almost the same, except that the
output of Kernel-Net does not be input to Deblur-Net.

3.5 Further Discussions

Non-uniform Blur: Our deblurring framework is constructed based on the physical blur model (1),
which assumes uniform blur kernel across the spatial domain. For non-uniform blurring, we can
follow previous studies [33, 32], and treat the blur kernel locally uniform within a relatively small
image patch. Since in the training phase, we indeed train the inference networks with patches cropped
from images in the training set, the local uniformity of the blur kernel approximately holds, and
therefore the proposed framework is also applicable. In the testing phase, the kernel-free inference can
be done without any specific modification, while the kernel-dependent inference can be implemented
by first performing deblurring on overlapping image patches and then aggregating them to obtain
the final result, just like many traditional image restoration methods [7, 14]. However, the above
strategy is only a rough approximation, and the application to non-uniform deblurring is still a major
limitation of the proposed framework, which should be further investigated in future.

Relationship to Kernel-involved Methodologies: In previous studies, there are mainly two different
methodologies in deep learning based deblurring methods that take the kernel information into
consideration. The first is represented by Pan et al.[32], who introduced a loss term motivated by the
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physical blur model (1). This loss term plays the similar role as the likelihood in ELBOs (13) and (14)
under our framework. The second is by Kaufman et al.[19], who designed a network to estimate the
blur kernel from the blurry image, and input the estimated kernel to the main deblurring network as
auxiliary information. This strategy is consistent with the kernel-dependent inference structure for z
under our framework. Compared with the two existing kernel-involved methodologies, our framework
provides a more complete and concise unification, naturally by Bayesian inference principle without
any tricky designing, which can not only explain the effectiveness of the existing method from
Bayesian perspective, but also facilitate to network training as demonstrated in experiments.

Incorporating with Existing Networks: Though we have designed simple baseline networks in
Section 3.4, our proposed framework is indeed very general, and can be incorporated with any
existing DNNs designed for image deblurring task, as training guidance. As verified in Section 4.4,
the performance can be improved by virtue of the our Bayesian modeling and learning framework.

4 Experimental Results

In this section, we present the experimental results of the proposed blind image deblurring framework,
in comparison with current state-of-the-art methods. We call our method Variational Bayesian
Deblurring Network, denoted as VBDeblurNet. More results are provided in Appendix C.

4.1 Experiment Settings

Datasets: We evaluate the proposed method mainly on three datasets that are widely used for
evaluating the deep learning based image deblurring methods, including Text by Hradiš et al.[17],
RealBlur by Rim et al.[40] and GoPro by Nah et al.[30]. The three datasets represent typical
situations we may encounter when applying a deep learning based method. Specifically, the Text
dataset is composed of blurry-clean-kernel image tuples with uniform blur, 60,000 for training and
1,000 for testing; the RealBlur2 dataset contains 3,758 blurry-clean image pairs for training and
980 for testing, while the blur kernels are approximately uniform; and the GoPro dataset consists
of 2,103 blurry-clean training pairs from 22 sequences and 1,111 testing pairs from 11 sequences,
with non-uniform blur kernels. As mentioned in Section 3.1, on the latter two datasets, the prior
information of kernels can be estimated from training patches.

Implementation: The weights of networks are initialized according to [15]. In each iteration, we
randomly crop the entire images to a size of 256× 256 patch for training. The Adam optimizer [20]
using default parameters is adopted for training, with initial learning rate 1e-4, and being reduced
to 1e-5 as loss becoming stable and finally to 1e-6. Without explicitly specified, we set the hyper-
parameter σ2 in (2) to 1e-5, ε2

0 in (3) to 1e-6, and c in (6) to 2e4, respectively. Analyses for the
effects of these hyper-parameters are provided in Appendix B.

4.2 Model Verification and Ablation Study

We first construct experiments to verify the effectiveness of the proposed framework with ablation
study. Since the Text dataset contains the complete and accurate information of blur kernels, we can
use it to fully verify the effectiveness of the proposed framework. For a illustration purpose, we use
a relatively small Deblur-Net with 4 ResBlocks in each encoding or decoding block of the U-Net.
We consider four strategies, with different loss functions and inference structures, for obtaining
a deblurring network. The first two are training under the supervision of naive mean squared
error (MSE), with kernel-free and kernel-dependent inference structures, which are respectively
denoted as MSEKF and MSEKD. The latter two are the proposed framework with kernel-free and
kernel-dependent inference structures, denoted as VBDeblurNetKF and VBDeblurNetKD, respectively.

The deblurring performance of each strategy, in terms of peak signal-to-noise-ratio (PSNR) and
structure similarity (SSIM) [48], is summarized in Table 1. As can be seen from the table, with
the same inference structure, the performance can be largely improved by virtue of the proposed
VBDeblurNet framework. Besides, even with the simpler kernel-free inference structure, the proposed
VBDeblurNetKF can outperform MSEKD that uses kernel information in inference. These results
evidently verify the effectiveness of the proposed framework.

2We use the RealBlur-J subset in experiments.
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Table 1: Deblurring results on Text dataset, with different loss functions and inference structures. The
best and the second best results are highlighted in bold and Italic bold, respectively.

Method MSEKF VBDeblurNetKF MSEKD VBDeblurNetKD
PSNR 28.70 29.07 29.06 29.58
SSIM 0.9845 0.9860 0.9846 0.9855

Table 2: Comparison of competing methods in terms of PSNR and SSIM on Text dataset.
Method Xu et al.[49] Pan et al.[35] Hradiš et al.[17] Nah et al.[30] Pan et al.[32] Kaufman et al.[19] VBDeblurNetKF VBDeblurNetKD
PSNR 17.52 18.47 26.53 26.81 28.80 27.90 29.70 30.38
SSIM 0.4186 0.6127 0.9422 0.9743 0.9744 0.9604 0.9862 0.9872

Blurry Image
PSNR: 18.97dB 

Nah
PSNR: 22.39dB

Ground Truth Kaufman
PSNR: 22.56dB 

Hradiš
PSNR: 21.51dB 

Pan, 2020
PSNR: 21.62dB 

VBDeblurNetKF
PSNR: 24.74dB

VBDeblurNetKD
PSNR:24.81dB

Figure 2: Visual deblurring results of competing methods on Text dataset, together with the estimated
blur kernels if available.

Table 3: Comparison of competing methods in terms of PSNR and SSIM on RealBlur-J dataset.
Method Hu et al.[18] Xu et al.[49] Pan et al.[35] DeblurGAN-v2 [25] SRN [46] MPRNet [51] VBDeblurNetKF VBDeblurNetKD
PSNR 26.41 27.14 27.22 29.69 31.38 31.76 31.85 31.73
SSIM 0.8028 0.8303 0.7901 0.8703 0.9091 0.9220 0.9132 0.9106

4.3 Comparison with State-of-the-art Methods

In this subsection, we compared the proposed method with state-of-the-art methods, including
traditional optimization-based methods [49, 34, 35, 18] and deep learning-based methods [17, 30, 32,
37, 24, 25, 51, 53, 52], on the three datasets introduced in Section 4.1. The Deblur-Net used here is
with 6 Resblocks in each encoding or decoding block, in order to achieve a good performance. We
show the quantitative results in terms of two commonly used metrics, PSNR and SSIM, in Tables 2, 3
and 4. Note that the competing methods on different datasets are also different. This is because that
we want to make sure that each deep learning based method has been trained and tested on the same
dataset, by either citing the results from corresponding papers or retraining the models by ourselves.

It can be seen from Tables 2 that, both versions of the proposed framework significantly improve
the previous state-of-the-art results on Text dataset. This is not surprising, since the structure of
the training image tuples in this dataset can be faithfully characterized by our proposed Bayesian
generative model, and thus the performance can be naturally benefited by our deep variational
inference framework. On the other two datasets, although the groundtruth blur kernels are unavailable,
the benefits of the proposed framework can also be clearly observed from Tables 3 and 4. Specifically,
the proposed method performs at least comparable with the current state-of-the-art one, i.e., MPRNet,
in terms of both PSNR and SSIM, especially that it outperforms MPRNet on RealBlur-J dataset in
terms of PSNR. The promising performance of MPRNet is not surprising, since authors have made a
lot of efforts in network designing. Comparatively, our DNN architecture is much simpler, mainly
built on classic structures, such as U-Net and ResBlock, and its performance is mostly attributed
to the proposed VBDeblurNet framework. From this perspective, these quantitative results indeed
substantiate the effectiveness of the proposed framework. Besides, we can also straightforwardly
apply our framework to MPRNet, in order to further pursue better performance.

For a more intuitive illustration, we draw the example visual results in Figs. 2, 3 and 4 on the three
datasets, and more results are provided in Appendix C. Fig. 2 shows visual deblurring results an image
in Text dataset by different deep learning methods contained in Table 2. As can be seen, the deblurred
images by our method have better visual quality, especially for producing sharper edges and digits.
Compared the two inference structures of our method, kernel-dependent one unsurprisingly performs
better in more accurately recovering digit “5”, since it makes full use of the kernel information.
Besides, the estimated kernels by our method are also close to the ground truth. For the deblurring
example on RealBlur-J dataset, shown in Fig. 3, our method produces slightly better results than that
of MPRNet both in terms of PSNR and visual quality. Visual results on GoPro dataset shown in Fig.
4 are also very interesting. Specifically, although MPRNet achieves higher PSNR, its visual quality is
obviously not the best, especially that it fails to recover the number plate on the car. As a comparison,
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Blurry Image
PSNR: 25.21dB 

Ground Truth DeblurGAN-v2
PSNR: 26.65dB 

SRN
PSNR: 28.98dB 

MPRNet
PSNR: 29.65dB 

VBDeblurNetKF
PSNR: 29.85dB

VBDeblurNetKD
PSNR: 29.79dB

Figure 3: Visual deblurring results of competing methods on RealBlur-J dataset.
Table 4: Comparison of competing methods in terms of PSNR and SSIM on GoPro dataset.

Method Nah et al.[30] DeblurGAN [24] SRN [46] Gao et al.[10] DBGAN [55] Zhang et al.[52] MPRNet [51] VBDeblurNetKF VBDeblurNetKD
PSNR 29.08 28.70 30.21 30.92 31.10 31.20 32.66 31.87 32.03
SSIM 0.9135 0.858 0.9352 0.9421 0.9424 0.940 0.9589 0.9519 0.9531

Blurry Image
PSNR: 19.45dB

Ground Truth DeblurGAN
PSNR: 20.32dB 

SRN
PSNR: 23.40dB 

MPRNet
PSNR: 25.67dB 

VBDeblurNetKF
PSNR: 25.66dB

VBDeblurNetKD
PSNR: 25.21dB 

Figure 4: Visual deblurring results of competing methods on GoPro dataset.
Table 5: Comparison of existing networks trained with MSE and VBDeblurNet on Text dataset.

Method Nah et al.[30] Kaufman et al.[19]
MSE VBDeblurNet ∆ ↑ MSE VBDeblurNet ∆ ↑

PSNR 26.81 27.03 0.22 27.90 28.10 0.20
SSIM 0.9743 0.9756 0.0013 0.9607 0.9636 0.0029

our VBDeblurNetKD method can relatively better recover this number plate, especially for digit “4”
within it.

4.4 Enhancing Existing Networks by Proposed Framework

As discussed in Section 3.5, the proposed framework can be incorporated with existing DNNs, to
improve their deblurring performances. To verify this, we train on the Text dataset two existing
deblurring networks, i.e., the ones proposed by Nah et al.[30], and Kaufman and Fattal [19], under
MSE loss and with our framework, respectively. The former network uses kernel-free inference
structure and the latter adopt the kernel-dependent one. The results in terms of PSNR and SSIM are
summarized in Table 5. As can be seen from the Table that, the performance of existing networks can
be evidently improved by the proposed framework, no matter which types of inference structures
they are built on. These improvements can be attributed to two advantages led to by our Bayesian
modeling and learning framework. Firstly, the kernel information is naturally included in the training
objective as auxiliary supervision. More importantly, Deblur-Net and Kernel-Net can interact with
each other, under the guidance of the likelihood term led to by the physical blur model, to promote
the overall training.

5 Conclusion

We have proposed a new deep variational Bayesian framework, i.e., VBDeblurNet, for blind im-
age deblurring, under which, the approximate posterior of the latent clean image and blur kernel,
parameterized by DNNs, can be jointly learned in an amortized inference fashion. By virtue of
the fully Bayesian formulation, the inference networks for clean image and blur kernel can both
be supervised by data-driven priors, and interact with each other by the likelihood attributed to
the physical blur model during training, which thus leads to promising deblurring performance.
Comprehensive experiments have verified the effectiveness of the proposed framework, showing
that it can not only achieve a promising results with relatively simple networks, but also be able to
enhance the deblurring performance of existing DNNs. In the future, we will devote to improving the
applicability of VBDeblurNet in non-uniform deblurring.
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A Derivation of the Evidence Lower Bounds

In this section, we derive the evidence lower bounds (ELBOs), or more specifically, Eqs. (13) and
(14) in the main text. As presented in the paper, we introduced a variational form of the posterior,
denoted as q(z,h|y), where we omit the subscripts Ψ,Φ, to approximate the intractable true posterior
p(z,h|y). Then we have the following decomposition of the marginal log-likelihood:

log p(y) = Eq(h,z|y) [log p(y)]

= Eq(h,z|y)

[
log

p(h, z,y)

p(h, z|y)

]
= Eq(h,z|y)

[
log

q(h, z|y)

p(h, z|y)

p(h, z,y)

q(h, z|y)

]
= Eq(h,z|y)

[
log

p(h, z,y)

q(h, z|y)

]
+ Eq(h,z|y)

[
log

q(h, z|y)

p(h, z|y)

]
= Eq(h,z|y)

[
log

p(y|h, z)p(h)p(z)

q(h, z|y)

]
+DKL(q(h, z|y)||p(h, z|y))

, L(y; Ψ,Φ) +DKL(q(h, z|y)||p(h, z|y)).

(18)

The second term in last line of Eq. (18) is the Kullback-Leibler (KL) divergence between the
variational posterior q(z,h|y) and the true posterior p(z,h|y), which is non-negative, while the first
term is the ELBO, which we want to maximize.

For the kernel-free inference structure of z, we use the basic mean-field assumption for q(z,h|y)
i.e.,

q(z,h|y) = q(z|y)h|y). (19)
Under this assumption, the ELBO becomes:

LKF(y; Ψ,Φ) = Eq(h,z|y)

[
log

p(y|h, z)p(h)p(z)

q(h, z|y)

]
= Eq(z|y)q(h|y)[log p(y|h, z)]− Eq(z|y)q(h|y)

[
log

q(h|y)q(z|y)

p(h)p(z)

]
= Eq(z|y)q(h|y)[log p(y|h, z)]−DKL(q(z|y)||p(z))−DKL(q(h|y)||p(h)).

(20)

For the kernel-dependent inference structure of z, we use the variational form of q(z,h|y) by
conditional probability rule:

q(z,h|y) = q(z|h,y)q(h|y). (21)
Under the setting, the ELBO can be derived as:

LKD(y; Ψ,Φ) = Eq(h,z|y)

[
log

p(y|h, z)p(h)p(z)

q(h, z|y)

]
= Eq(z|y,h)q(h|y)[log p(y|h, z)]− Eq(z|y,h)q(h|y)

[
log

q(h|y)q(z|y,h)

p(h)p(z)

]
= Eq(z|y,h)q(h|y)[log p(y|h, z)]− Eq(z|y,h)q(h|y)

[
log

q(z|y,h)

p(z)

]
− Eq(z|y,h)q(h|y)

[
log

q(h|y)

p(h)

]
= Eq(z|h,y)q(h|y)[log p(y|h, z)]− Eq(h|y)[DKL(q(z|h,y)||p(z))]

−DKL(q(h|y)||p(h)).

B Hyper-parameter Analysis

In the proposed Bayesian models, there are three hyper-parameters to be tuned, i.e., σ2 in Eq. (2),
ε2

0 in Eq. (3) and c in Eq. (6) of the main text. Here, we conduct experiments on the Text dataset to
analyze the effects of these the hyper-parameters.
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Figure 5: Illustration for the effect of hyper-parameter c. (a): the true blur kernel; (b)-(f): blur kernels
sampled with c being set to 1e1, 1e2, 1e3, 5e3, 1e4, 2e4 and 3e4, respectively.

B.1 The Effect of σ2

σ2 measures the noise level of the degenerated images, which should be carefully set. As can be
seen in Table 6, the performances are close under when setting σ2 to 1e-4 and 1e-5, and degenerate
when setting it too small. This is not surprising, since according to the generation process of the Text
dataset [17], the standard deviation of the true noise comes from [0, 7/255], which is consistent with
the best setting we have found here.

Table 6: Performance under different σ2 on the Text dataset (kernel-free inference structure with 2
ResBlocks in each encoding and decoding block, and fixing ε2

0 to 1e-4 and c to 1e4).

σ2 1e-4 1e-5 1e-6 1e-7
PSNR 27.51 27.52 27.37 27.03
SSIM 0.9796 0.9796 0.9781 0.9657

B.2 The Effect of ε2
0

ε2
0 determines how much does the desired latent clean image z depend on the “clean” training image
x. It can be observed from Table 7 that, as ε2

0 decreasing, the performance first increases and then
decreases. This can be naturally explained. Since in the Text dataset, the clean training image is
indeed the ground truth one, it is better to use a small ε2

0. However, if setting ε2
0 too small, the risk of

overfitting increases.

Table 7: Performance under different ε2
0 on the Text dataset (kernel-free inference structure with 2

ResBlocks in each encoding and decoding block, and fixing σ2 to 1e-6 and c to 2e4).

ε2
0 1e-4 1e-5 1e-6 1e-7

PSNR 26.75 27.00 27.26 27.09
SSIM 0.9638 0.9761 0.9783 0.9779

B.2.1 The Effect of c

c reflects our confidence about the prior information of kernel. Its effect to the kernels sampled from
the Dirichlet distribution can be intuitively observed in Fig. 5. Specifically, small c leads to large
uncertainty of the sampled kernel, and vice versa. Besides, if c is too small, the sampled kernel will
largely deviate from the ground truth one, and therefore relatively larger c is preferred. Also, since in
Text dataset, the kernels are manually synthesize, we can strongly rely on them, and correspondingly
set c to a large value. This is verified by the results in Table 8, that the performance increases as c
tends to large. Note that we do not further increase c due to the numerical instability.

Table 8: Performance under different c on the Text dataset (kernel-dependent inference structure with
4 ResBlocks in each encoding and decoding block, and fixing σ2 to 1e-5 and ε2

0 to 1e-6).

c 5e3 1e4 2e4 3e4

PSNR 29.32 29.45 29.48 29.58
SSIM 0.9857 0.9859 0.9859 0.9856
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C More Visual Results

In this Section, we provide more visual results on the three datasets we considered in experiments,
as shown in Figs. 6, 8 and 7, respectively. These results further substantiate the effectiveness of the
proposed method.
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Figure 6: More Visual deblurring results of competing methods on Text dataset.
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Figure 7: More Visual deblurring results of competing methods on RealBlur-J dataset.
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Figure 8: More Visual deblurring results of competing methods on GoPro dataset.
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