
Journal Pre-proof

YogNet: A two-stream network for realtime multiperson yoga action
recognition and posture correction

Santosh Kumar Yadav, Aayush Agarwal, Ashish Kumar,
Kamlesh Tiwari, Hari Mohan Pandey, Shaik Ali Akbar

PII: S0950-7051(22)00541-X
DOI: https://doi.org/10.1016/j.knosys.2022.109097
Reference: KNOSYS 109097

To appear in: Knowledge-Based Systems

Received date : 6 October 2021
Revised date : 15 May 2022
Accepted date : 17 May 2022

Please cite this article as: S.K. Yadav, A. Agarwal, A. Kumar et al., YogNet: A two-stream network
for realtime multiperson yoga action recognition and posture correction, Knowledge-Based Systems
(2022), doi: https://doi.org/10.1016/j.knosys.2022.109097.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2022.109097
https://doi.org/10.1016/j.knosys.2022.109097

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

YogNet: A Two-Stream Network for Realtime Multiperson
Yoga Action Recognition and Posture Correction

Santosh Kumar Yadava,b, Aayush Agarwalc, Ashish Kumarc, Kamlesh Tiwaric,
Hari Mohan Pandeyd, Shaik Ali Akbara,b

aAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India
bCyber Physical System, CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani-333031, India
cDepartment of CSIS, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India

dDepartment of Computing and informatics, Bournemouth University,United Kingdom

Abstract

Yoga is a traditional Indian exercise. It specifies various body postures called asanas, practic-

ing them is beneficial for the physical, mental, and spiritual well-being. To support the yoga

practitioners, there is a need of an expert yoga asanas recognition system that can automatically

analyze practitioner’s postures and could provide suitable posture correction instructions. This

paper proposes YogNet, a multi-person yoga expert system for 20 asanas using a two-stream deep

spatiotemporal neural network architecture. The first stream utilizes a keypoint detection approach

to detect the practitioner’s pose, followed by the formation of bounding boxes across the subject.

The model then applies time distributed convolutional neural networks (CNNs) to extract frame-

wise postural features, followed by regularized long short-term memory (LSTM) networks to give

temporal predictions. The second stream utilizes 3D-CNNs for spatiotemporal feature extraction

from RGB videos. Finally, the scores of two streams are fused using multiple fusion techniques.

A yoga asana recognition database (YAR) containing 1206 videos is collected using a single 2D

web camera for 367 minutes with the help of 16 participants and contains four view variations i.e.

front, back, left, and right sides. The proposed system is novel as this is the earliest two-stream

deep learning-based system that can perform multi-person yoga asanas recognition and correction

in realtime. Simulation result reveals that YogNet system achieved 77.29%, 89.29%, and 96.31%

accuracies using pose stream, RGB stream, and via fusion of both streams, respectively. These

results are impressive and sufficiently high for recommendation towards general adaption of the

system.

Keywords: Action recognition, Computer vision, Posture correction, Yoga and exercise

Email addresses: santosh.yadav@pilani.bits-pilani.ac.in (Santosh Kumar Yadav),
f2016716@pilani.bits-pilani.ac.in (Aayush Agarwal), f2016636@pilani.bits-pilani.ac.in (Ashish Kumar),
kamlesh.tiwari@pilani.bits-pilani.ac.in (Kamlesh Tiwari), hpandey@bournemouth.ac.uk
(Hari Mohan Pandey), saakbar@ceeri.res.in (Shaik Ali Akbar)

Preprint submitted to Knowledge-Based Systems, Elsevier May 15, 2022

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of1. Introduction

Yoga is an ancient Indian science that is in practice for long to unite the body, mind, and

soul [1]. Fundamental aspects of yoga include asanas (physical postures), pranayama (breathing

techniques), dhyana (meditation), mantras (chants), and sutras (wisdom teachings) [2]. The most

common form of yoga in the western world is Hatha yoga, which is a combination of asanas (physical

postures), pranayama (diaphragmatic breathing), and dhyana (meditation) [3]. It consists of mul-

tiple stretching exercises and prolonged physical poses, that elongate the key muscles and trigger

the stretch receptors in joints, ligaments, and muscles [3, 4]. The regular practice of yoga asanas

improves body alignment, agility, flexibility, muscular strength, endurance, relaxation, and overall

fitness [4, 5].

Limited availability of yoga centers and high demand for proper instructors lead to a need for

an expert yoga asanas recognition system that can analyze practitioner’s postures and can pro-

vide valuable correction measures to the yoga performers on their asanas. To determine human

postures, it is necessary to extract certain keypoints of the human skeleton [6, 7]. Popular skele-

tonization techniques, like thinning and distance transformation are sensitive to noise and have very

high computational cost [8]. Recent pose estimation methods provide high-level human skeleton

keypoints from a 2D image. These methods aim to localize body joint keypoints and/or finding

the individual’s body parts [9, 10]. Architectures following top-down approaches such as DeepPose

[11], AlphaPose [12] and Mask R-CNN [13], first leverage a person detector on an image and then

proceed with pose estimation for each person detected. However, there is no alternate for recovery

in case of the failure of the person detector. Moreover, the computational cost and running-time

increases with the increase in the number of people. In contrast, bottom-up approaches such as

DeepCut [14], DeeperCut [15] and OpenPose [9, 16] first estimate the human body parts’ locations

in an image and then articulate a human pose on the basis of the parts detected earlier. Here, the

prediction time is independent of the number of people present in an image frame.

Deep learning algorithms are getting popular for activity recognition due to their capability of

automatic feature extraction. The convolutional neural networks (CNNs) are being preferred for

spatial feature extraction while recurrent neural networks (RNNs) are being used for extracting

sequential information present in the data [17]. The conventional RNN models suffer from the

2

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Trikonasana (b) Virabhadrasana1 (c) Shavasana (d) Pawanmuktasana

(e) Tadasana (f) Virabhadrasana2 (g) Padmasana (h) Sarvangasana

(i) Vrikshasana (j) Adho-mukha Svanasana (k) Ustrasana (l) Dhanurasana

(m) Padahastasana (n) Phalakasana (o) Shashankasana (p) Marjariasana

(q) Ardha-chakrasana (r) Bhujangasana (s) Setu-bandhasana (t) Vakrasana

Figure 1: Twenty postures of yoga asanas considered in this paper.

3

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

problem of vanishing and exploding gradients [18]. To overcome these challenges and enable long-

term dependencies, various RNN variants have been proposed such as long short-term memory

(LSTM), gated recurrent unit (GRU), etc. [19]. Also, many works of literature utilized deep

hybrid models (like ConvLSTM, Conv-SVM, etc.) for different activity recognition applications

[20]. A few works have utilized 3D-CNNs for for extracting the spatiotemporal features from

videos [21, 22, 23]. Karpathy et al. [22] proposed a 3D-CNN architecture for large-scale video-based

sports action classification. Tran et al. [24] proposed an efficient 3D-CNN architecture named C3D.

Varol et al. [23] stated that 3D-CNN’s performance can be improved by expanding the temporal

temporal lengths of input sequences for activity recognition.

Recognition of the yoga asanas falls within a general framework of computer vision called activity

recognition. These systems aim to automatically determine human actions based on the data

obtained from sensors [25, 26]. The applications of human activity recognition include video-

surveillance, human-computer interaction, assisted-living, in-home health monitoring, etc. [27, 28,

29, 30]. Wang et al. [31] tried to address the issues with joint training of multi-stream model

by proposing a new metric, overfitting-to-generalization ratio (OGR) to quantify the quality of

training. They proposed a new method, Gradient Blending which generates weights to minimize

OGR to improve the performance of multi-stream models. However, in the proposed YogNet model

training of streams is done separately and fused later. Zhu et al. [32] proposed novel cross-layer

attention and center attention layer. They fused multiple scales of different granularity based on

their importance as determined by the attention framework, however, it still uses a single stream

of RGB data. In contrast, our YogNet model is a 2 stream deep spatiotemporal method, which

helps the model understand cross-orientation of various body parts. Wang et al. [33] proposed a

framework to tackle egocentric action recognition problem, where every class is annotated by a

combination of noun (object) and verb (action). The authors proposed three-stream network to

classify the two parts, i.e. noun and verb. Yoga asana detection, when seen as an activity recognition

problem, poses more challenge as it involves very complex body postures and twisting the body

into multiple manners.

The proposed YogNet system consists of a two-stream network i.e. pose and RGB streams.

First, the pose stream utilizes a keypoint detection technique followed by the formation of bounding

boxes across the subject. The hybrid model of pose stream network consists of time-distributed

CNNs and regularized LSTMs to train the yoga classifier, where, the CNN and LSTM are used

4

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

for extracting postural and temporal features, respectively. Second, the RGB stream utilizes 3D-

CNNs for spatiotemporal feature extraction from the raw RGB videos. It is a modified version of

C3D [24] architecture of 3D-CNNs. Finally, the Softmax scores of the two streams are fused at the

feature and decision levels for the final classification. The model is capable of realtime multi-person

classification using a pseudo-tracking mechanism, specific to multi-person yoga pose detection and

correction, wherein each yoga practitioner’s keypoints are sorted based on their bounding boxes

from left to right, as explained in Section 4.4. Further, posture correction techniques are applied,

based on angles and distances between keypoints, to provide the correction measures in realtime,

as described in Section 3.5. A schematic diagram of the proposed methodology is presented in

Figure 2. The paper considers twenty asanas (as shown in Figure 1) and a ’No Activity’ class, for

actions that do not belong to any of the predefined classes, in YogNet.

In particular, the major contributions of this paper are highlighted as follows:

1. We propose a novel two-stream deep spatiotemporal architecture referred to as YogNet. The

first stream incorporates time-distributed CNNs and regularized LSTMs, respectively, to per-

form postural feature extraction and to give temporal predictions. The second stream incorpo-

rates 3D-CNNs for extracting spatiotemporal features from RGB videos. The Softmax scores

of the two streams are fused using feature and decision level fusion. The system is capable of

recognizing multi-person yoga asanas in realtime and, can be used as a posture correction sys-

tem. To the best of our knowledge, this is the earliest attempt using the two-stream network

to recognize yoga asanas and provide multi-person posture corrections.

2. A new dataset is presented for yoga asanas recognition named as YAR dataset. This dataset

has all features and enough complexity generally required for training of a system. We used

this dataset during computer simulations to determine the effectiveness of YogNet in the area

of yoga asana recognition and posture correction (described in Section 4.1).

3. Robustness of the YogNet is analyzed for different environments (with varying lighting con-

ditions, places, etc.). Result reveals that the proposed system is robust in realistic scenarios

with impressive accuracy. It is noted that YogNet can work in a multi-person setting for

recognizing the asanas, even if participants practice different asanas at a time.

4. Extensive computer simulations are conducted using the YAR dataset containing 1206 videos.

These videos have been collected from 16-participants using a 2D RGB web camera. Result

reveals that YogNet model showed high value of accuracy using pose stream (77.29%) and

5

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

RGB (89.29%) stream. After fusion of both streams, the system was able to achieve even

higher accuracy i.e. 96.31%. Aditionally, a comparison of the performance of Yadav et al. [34]

(75.00%) and Jain et al. [35] (85.47%) on our proposed YAR dataset is presented (Table 9).

5. Finally, concluding remarks along with future research scope is presented.

The manuscript is organized as follows. Section 2 presents the literature review of yoga and

posture recognition. Section 3 discusses the methodology of the proposed work, including data

preprocessing, keypoint detection, yoga asanas recognition using pose stream and RGB streams,

fusion of both streams, and posture correction models. Section 4 describes the data collection

procedure and presents the experimental results and discussions. Finally, Section 5 presents the

concluding remarks and future works.

2. Related Works

Few studies presented wearable sensors based yoga recognition systems, for example, Luo et al.

[36] proposed a training system for yoga with an interface outfit containing 16 inertial measurement

units (IMUs) and 6 tactors to detect motion features based on motion replication techniques. Wu

et al. [37] proposed wearable sensors based yoga recognition and evaluation system for 18 static

yoga postures. They collected a dataset from 11 participants, each wearing 11 IMUs on different

parts of their body, to measure the yoga posture data with the quaternion format. Their model

scored an accuracy of 95.39% by adopting a two-stage classifier mechanism, where the first one,

backpropagation-artificial neural networks (BP-ANN) was used to divide yoga postures into different

categories, while the second classifier, fuzzy C-means (FCM) was utilized to classify the postures

in a category. However, wearing many sensors on different parts of the body is not convenient for

the user in a practical scenario. Also, the system’s obtrusiveness can affect the user’s exercise.

There are some vision-based yoga recognition systems, for example, Rector et al. [38] developed

an exergame, Eyes-Free Yoga, to teach six common postures to the blind and people with low-

vision. They used a Kinect depth sensor for skeletal tracking and to give auditory feedback to the

user. Patil et al. [39] proposed a ‘yoga tutor’ to detect the posture difference between a beginner

and an expert yoga practitioner, using the speeded-up robust features (SURF) algorithm. However,

capturing the unidirectional contour information was not enough for describing and comparing the

poses precisely. Wu et al. [40] developed an expert system for yoga using problem-oriented analysis

6

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

and decision expert system (POADES) [41], for providing training instructions using images and

texts. However, there was no posture analysis conducted, so the user does not know if they are

doing the asanas correctly.

Hsieh et al. [42] developed a yoga training system with the help of a web camera and image

processing that can interact remotely using the internet. The system matched the distance trans-

formation between the practitioner’s silhouette and standard yoga posture to give an evaluation

score. The authors collected the dataset with the help of six practitioners for 23 asanas and at least

three videos were collected for each asana with overall 414 videos. Their system gives an evaluation

score for pose recognition on a scale of 0 to 100. Around 86% difference between the computer and

yoga teacher’s evaluation scores lie within a range of -2.5 to 2.5.

Chen et al. [43] proposed a self-training system for yoga posture recognition and gave instruction

for posture correction using visual instructions, to help the user in doing the asanas correctly. The

contour information, skeletal features, and body coordinates were extracted using two Kinect depth

sensors, one for front view and the other one for side view, by placing them perpendicular to each

other. Chen et al. [8] proposed a yoga posture recognition system for self-training using a Kinect

depth sensor camera. Their dataset contains 300 clips for twelve different yoga postures in which

five yoga practitioners have performed each asana five times. The model first extracted the contour

information and then applied the star skeleton method for posture representation and obtained an

accuracy of 99.33%.

Likewise, Trejo et al. [44] and Pullen et al. [45] proposed yoga posture recognition using the

Kinect depth sensor camera and AdaBoost algorithm for six asanas (accuracy >94.78%) and five

asanas (accuracy >90%) respectively. Furthermore, Islam et al. [46] proposed a yoga recognition

system using 15 different human body joint keypoints extracted from Kinect depth sensor images.

Their dataset contains 45 videos, each of duration 5-8 seconds for three different asanas, namely

Goddess squat, Warrior, and Reverse Warrior, performed by 5 different practitioners. Their model

scored a test accuracy of 97%. Chen et al. [47] proposed a self-training system for yoga posture

recognition to assist the practitioners in rectifying their postures if they do the asanas incorrectly.

A Kinect depth sensor was used for recognizing twelve different asanas. However, their system

makes separate models for each asana and calculates the features manually. Additionally, using a

depth-sensor camera is not quite ubiquitous and may not be available in general homes.

Gochoo et al. [48] built an IoT-enabled yoga recognition system for 26 yoga postures using a

7

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

deep CNN and three WSN nodes with an infrared sensor. Their system scored an average F1-score

of 0.9854 and 0.9989 for one and three wireless sensor network (WSN) nodes, respectively. Maddala

et al. [49] presented a 3D joint motion representation system for yoga postures using a joint angular

distance map (JADM) encoding mechanism and a single-stream CNN model. They evaluated their

model on a self-collected dataset using 9 cameras, 8 IR, and 1 RGB video for 42 yoga poses, and on

two publicly available datasets (i.e. CMU [50] and HDM05 [51]). Their system scored cross-subject

accuracies of 87.27% and 87.92%, and cross-view accuracies of 88.67% and 89.15%, on the CMU [50]

and HDM05 [51] datasets, respectively. However, there were no posture correction instructions to

the practitioner.

Recently, Verma et al. [52] proposed Yoga-82 dataset, which consists of 28.4k images for 82 classes

of yoga asanas. They provided three-level hierarchy in their dataset, where top, middle, and class

level hierarchies are 6, 20, and 82, respectively. They tested different variants of CNN architectures

i.e. ResNet [53], DenseNet [54], MobileNet [55], and ResNext [56]. However, as yoga asanas consist

of a sequence of multiple postures, recognizing asanas using a single image may lead to false results

in a realistic scenario. In [34], a yoga recognition system was built to classify 6 different asanas. It

used OpenPose [9] to generate 18 keypoints of the human body and passed them through a hybrid

model of CNN and LSTM. The system scored a test accuracy of 99.38% after polling. However, the

asanas were visually quite dissimilar to each other. Similarly, Yadav et al. [57] proposed activity

recognition and fall detection system using pose estimation based classification network. However,

detecting keypoints using pose estimation methods is hard for complex yoga asanas. Jain et al. [35]

proposed a yoga pose recognition system using 3D-CNNs for 10 yoga asanas. They collected an

in-house yoga dataset with the help of 27 individuals using smartphone cameras at 30 fps and 4K

resolutions. However, they have not yet released their dataset to the public. Moreover, the above

two systems [34, 35] were able to recognize single-person asanas only, and there were no feedback

instructions for the corrective measures to the practitioner. Table 1 presents a summary of the

literature study.

3. Proposed Methodology

This section describes the technical details of the proposed YogNet system. The system tar-

gets to recognize specific twenty asanas being performed by the practitioner in realtime with high

accuracy. The system is capable of identifying multiple practitioners simultaneously performing dif-

8

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Method Description
Dataset
Release?

Limitations

Rule based system, 2013, [43]
2 Kinect Sensors, 3 classes, 5 actors, 2 camera
views, and 82.84% accuracy

No Poor Performance

Rule based system with star skeleton
features, 2014, [8]

1 Kinect Sensor, 12 classes, 5 actors, 2 camera
views, and 99.33% accuracy

No
No posture correction in-
struction to the practitioner

Rule based feature calculation, 2017,
[46]

1 Kinect Sensor, 3 classes, 5 actors, 1 camera view,
and 97.00% accuracy

No
Classifying postures based
on joint angles only

Rule based system with template star
skeleton, 2018, [47]

1 Kinect Sensor, 12 classes, 5 actors, 2 camera
views, and 94.30% accuracy

No
Sets different and complex
rules for each posture

AdaBoost Algorithm, 2018, [45]
2 Kinect Sensors, 5 classes, 5 actors, 2 camera
views, and 90.00% accuracy

No
No posture correction in-
struction to the practitioner

AdaBoost Algorithm, 2018, [44]
1 Kinect Sensor, 6 classes, 1 actor, 1 camera view,
and 94.78% accuracy

No
The dataset consists 3 clips
of a single practitioner only.

IoT based yoga recognition using
Deep-CNN, 2018, [48]

3 WSN nodes with 1 IR sensor, 26 classes, 18 actors,
2 views, and 0.9989 f1-score

No
No posture correction in-
struction to the practitioner

Hybrid model using CNNs and LSTM,
2019, [34]

1 Web Camera, 6 classes, 15 actors, 1 camera view,
and 99.38% accuracy

Yes
No posture correction in-
struction to the practitioner

Joint angular distance maps (JADMs)
along with CNN, 2019, [49]

9 Cameras, 8 IR and 1 RGB Video, 42 classes, 10
actors, 10 camera views, and 88.25% accuracy

No
No posture correction in-
struction to the practitioner

BP-ANN and Fuzzy C-Means (FCM),
2019, [37]

11 wearable IMUs, 18 classes, 11 actors, and 95.39%
accuracy

No Highly obtrusive

3D-CNNs, 2020, [35]
Smartphone cameras, 10 classes, 27 actors, 1 cam-
era view, and 91.15% accuracy

No
No posture correction in-
struction to the practitioner

Proposed YogNet (Ours)
1 RGB Camera, 20 classes, 16 actors, 4 camera
views, and 96.31% accuracy

Yes None

Table 1: Summary of the literature review and our proposed work.

ferent yoga asanas in a single go. At the same time, the system also recommends posture correction

instructions to correct the asana poses if required.

The proposed approach has five key steps. In the first step, keypoint detection is performed

using part affinity fields and bipartite matching. In the second step, the keypoints are fed to a

hybrid model consisting of time-distributed CNN layers followed by the regularized LSTM layers.

CNN layers capture the postural information and patterns whereas the LSTM layer captures the

temporal information present in the data. In the third step, for the RGB stream, the RGB frames

are preprocessed and passed to the 3D-CNNs for extracting the spatiotemporal features. In the

fourth step, either the probability scores of the pose and RGB streams are fused using the decision

level fusion, or spatiotemporal and postural features are fused together using feature-level fusion.

Finally, the fifth step establishes the posture correction model. The final prediction and pose

correction instructions are displayed to the respective practitioners in realtime. Figure 2 presents

the schematic diagram of the proposed YogNet system. These steps are described in detail in further

subsections.

3.1. Keypoint Detection and Data Generation

The videos of the yoga practitioners retrieved from the web camera are inputted to the pose

detection model. The model uses two-branch multi-stage CNNs to process the images using a

feedforward neural network for each stage. The first branch predicts the confidence maps for

localizing human body parts in an image, and the second branch predicts part affinity fields to

9

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofPart Confidence Maps

Input Image Part Affinity Fields Bipartite Matching Parsing Results

CNN

Feature 1

Feature 2

Feature N

Global
Average
Pooling

LSTM
Fully

Connected
Layer

Softmax Results

1

2

3

N

Frame 1
Keypoints

Frame 2
Keypoints

Frame N
Keypoints

Keypoints Detection

Yoga Pose Recognition

Pose Stream

Pose Stream

RGB Stream

Feature/
Decision
Level
Fusion

Need
Feedback?

No

Asanas
with

Keypoints

Yes Feature
Extraction

Matching
Threshold?

Results

Results with
Correction
Instructions

Yes

No Pose Correction
Fl

at
te

n

Fu
lly

 C
on

ne
ct

ed
 L

ay
er

So
ftm

ax
 S

co
re

s

Results

In
pu

t t
o

th
e

N
et

w
or

k

C
on

v3
D

-1

M
ax

Po
ol

3D
-1

C
on

v3
D

-2

M
ax

Po
ol

3D
-2

C
on

v3
D

-3
a

C
on

v3
D

-3
b

M
ax

Po
ol

3D
-3

C
on

v3
D

-4
a

C
on

v3
D

-4
b

M
ax

Po
ol

3D
-4

C
on

v3
D

-5
a

C
on

v3
D

-5
b

M
ax

Po
ol

3D
-5

Ze
ro

Pa
dd

in
g3

D

Keypoints

RGB Stream

Figure 2: The schematic diagram of the YogNet system. The proposed approach of YogNet has four main components
i.e. pose stream, RGB stream, fusion, and yoga pose correction. First, in the pose stream, human body keypoints
are extracted using parts affinity fields and bipartite matching. The preprocessed data is fed to the deep hybrid
(time-distributed CNNs and regularized LSTMs) neural networks model for yoga asanas recognition. Second, in the
RGB stream, the preprocessed video frames are inputted to especially designed 3D-CNNs for spatiotemporal feature
extraction. Third, the output of pose stream and RGB stream are fused using the feature and decision level fusion.
Finally, in the fourth step, a pose correction technique is used for providing the correction measures to the yoga
performer.

10

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 3: Twenty five keypoints detected [16]

No. Keypoint

0 Nose

1 Neck

2 Right Shoulder

3 Right Elbow

4 Right Wrist

5 Left Shoulder

6 Left Elbow

7 Left Wrist

8 Mid Hip

9 Right Hip

10 Right Knee

11 Right Ankle

12 Left Hip

13 Left Knee

14 Left Ankle

15 Right Eye

16 Left Eye

17 Right Ear

18 Left Ear

19 Left Big Toe

20 Left Small Toe

21 Left Heel

22 Right Big Toe

23 Right Small Toe

24 Right Heel

Table 2: List of the keypoints.

associate the detected body parts with individuals in the image. Finally, the predictions of each

stage and their corresponding image features are combined to output the 2D keypoints in the

images [16]. Figure 3 presents the location of 25 keypoints, and Table 2 presents the mapping of

the keypoint numbers to the joint locations.

For each frame of the practitioner’s video, we extract the X and Y coordinates of joint locations.

By this, we obtain X and Y coordinate vectors:

X = [x1, x2, x3, ..., x25] (1)

Y = [y1, y2, y3, ..., y25] (2)

These two vectors are then combined to form matrix T = [(x1, y1), (x2, y2), (x3, y3), ...(x25, y25)]

to represent the coordinates for a frame. The matrices corresponding to each frame are then

appended together in a window (T1, T2, T3, ..., TN).

Further, for the generation of all batch data samples, generator functions are written which

randomly selects a window comprising of 16 consecutive frames from each video (containing at

least 300 frames). It is made sure that each video can only be selected once per epoch cycle,

however, the order of videos and the window that each video provides, varies randomly in uniform

distribution. In the case of pose stream, there may be several maligned frames, i.e. frames without

11

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Results

M
ax

-P
oo

l

M
ax

-P
oo

l

C
on

vo
lu

tio
n

G
lo

ba
l A

ve
ra

ge
 P

oo
lin

g

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

25
 X

 2

25
 X

 1
6

12
 X

 1
6

12
 X

 1
28

6
X

12
8

6
X

50

1
X

50 LSTM

M
ax

-P
oo

l

M
ax

-P
oo

l

C
on

vo
lu

tio
n

G
lo

ba
l A

ve
ra

ge
 P

oo
lin

g

D
en

se

D
en

se

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

25
 X

 2

25
 X

 1
6

12
 X

 1
6

12
 X

 1
28

6
X

12
8

6
X

50

1
X

50

1
X

10
0

1
X

80

1
X

C
la

ss
es

LSTM

Fr
am

e
1

Fr
am

e
16

a b c d e

So
ftm

ax

Figure 4: The architecture of the proposed network. This is an extended version of pose recognition block of Figure 2,
where, a, b, c, d, and e represents the convolution layers, global average pooling, LSTM layer, fully connected layer,
and Softmax layer, respectively.

any keypoints. In such cases, these frames are skipped and the generator function picks up the next

good (non-maligned) frame until all 16 frames have been selected.

3.2. Yoga Asanas Recognition using Pose Stream

The proposed pose stream involves a combination of time-distributed CNNs and regularized

LSTM layers. The CNN layer captures the joint location positions and salient postural features,

while the LSTM layer analyses how the asanas are being performed over time and capture the

temporal features for the asanas. These features are then passed through a fully connected layer

and finally, the Softmax layer predicts the framewise probabilities of each yoga asana.

The model consists of 3 units of time-distributed CNN and max-pooling layers, with the CNN

in the first unit comprising of 16 filters followed by the next two time-distributed CNN layers with

128 and 50 filters each, all having a kernel size of 3× 3, and a ReLU activation function.

The output from the CNN layers is then flattened to one dimension (per frame in a training

example) using a global average pooling layer, the output of which is passed to a regularized LSTM

layer with 100-dimensional output and a unit forget bias of 0.2. LSTM layer helps in capturing

the changes in the performance of various asanas over time such as the motion of keypoints and

their temporal dependencies. The output of the regularized LSTM layer is then passed to a time-

distributed fully connected layer with 80 hidden units having a dropout rate of 0.5 and then finally

12

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

passed to the Softmax layer to predict the probabilities of each yoga asana. Adam optimizer is used

for optimization with a custom learning rate policy. A threshold value is then chosen to get the

prediction of the asanas performed by the practitioner. If the probability of an asana is above the

threshold value (hyperparameter), the model correctly predicts that asana. However, in the case

where probability scores are below the threshold, the system predicts ‘No Activity’. Thus, there

needs to be a minimal resemblance to the corresponding standard asana for the yoga performer

to receive appropriate correction instructions. This is further elaborated in Section 4. Figure 4

presents the architecture of the proposed network.

3.3. Yoga Asanas Recognition using RGB Stream

The RGB stream of the proposed network utilizes a modified lightweight C3D [24] model as

its backbone structure which uses 3D CNNs for extracting spatiotemporal features. The first two

dimensions of 3D convolutions extract spatial features, while the third is responsible for temporal

features. Each input frame of a video is resized to a size of 112×112. Further, a window comprising

of 16 frames is extracted from a set of videos at random to form a single batch of input. A

single batch consisting of 16 frames concatenated together is referred to as a window. A single

video consists of at least 300 frames (10 seconds) as videos are shot at 30 FPS. However, only

16 consecutive frames are picked out of the collection per epoch at random. Thus a window has

collective dimension of 16 × 112 × 112 × 3. A batch size of 32 windows is used for training. The

model has a total of eight 3D-CNN layers and five max-pooling layers. 3D-CNN layer filters are of

size 3 × 3 × 3, with a stride of 1 × 1 × 1. The pooling layers however, are of size 2 × 2 × 2 with

stride 2 × 2 × 2 except for the first pooling layer which has a kernel size of 1 × 2 × 2 and a stride

of 1 × 2 × 2. All the convolution layers have no regularization, only the fully connected layers are

regularized with L2 and L1 regularization of 0.1 and 0.01, respectively. ReLU activation function

is used for all the layers except for the classification layer. The SGD optimizer is used to train the

model for 500 epochs with a learning rate of 0.001 for the first 400 epochs, 0.0001 for the last 100

epochs. The extracted features are then passed through fully connected layers with a dropout of

0.5 with softmax at the end for classification.

3.4. Fusion of Pose and RGB Streams

The fusion of the two streams helps in combining the postural and spatiotemporal features

extracted in the corresponding streams. In this paper, two types of fusions have been explored i.e.

13

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Decision level fusion and Feature level fusion.

Decision level fusion was performed by fusing the Softmax scores of the two streams i.e. pose

stream and RGB stream using max, average and weighted-average fusion techniques. Since the de-

cision level fusion does not require a separate classifier, it is faster than other fusion techniques [58].

The weighted average fusion (Equation 4) and max fusion (Equation 5) equations can be described

as follows, with average fusion equation (Equation 3) derivable from (Equation 4), if ∀j wj = 1,

where j refers to the jth stream.

c = argmax
i

(∑n
j=1 pj(ĉi|xj)

n

)
(3)

c = argmax
i

(∑n
j=1 wj × pj(ĉi|xj)

n

)
(4)

c = argmax
i

(
max

j
pj(ĉi|xj)

)
(5)

where, c denotes the predicted class, pj(ĉi|xj) is the probability of class ci on input xj belonging

to stream j, and wj is weight associated with stream j in (Equation 4) such that,
∑n

j=1 wj = 1,

while n is the number of streams.

In the average fusion, the probability scores of each activity returned by the Softmax layer of

each stream were averaged to give the final prediction. The maximum fusion technique takes the

prediction from the stream, which was more confident in its prediction, while the weighted average

fusion scales the Softmax scores according to the importance levels of both streams (using weights),

before combining the softmax scores.

Additionally, feature level fusion was also performed on two streams, by concatenating the final

layers of both streams to form a single column vector and then passing the features to a trainable

network of fully connected layers. The architecture that performed best was composed of a dense

neural network (DNN) of size 100× 50× 20.

3.5. Yoga Asanas Correction

Different joint angles and distance comparisons have been used for postural error detection. The

thresholds for common postural errors for different asanas can be different (Table 3) because the

skeletal structure of keypoints is formed using straight lines (not curved lines), whereas the human

14

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Sr. Asana Side Left Elbow Right Elbow Left Knee Right Knee Waist Angle
No. (p5, p6, p7) (p2, p3, p4) (p12, p13, p14) (p9, p10, p11) (smid, wmid, lmid)

1 Adho-mukha Left < 160◦ < 160◦ > 100◦
-svanasana Straighten Straighten Move your hands

your left your knees and legs close
elbow to each other

2 Ardha- Left > 145◦
chakrasana bend your waist

more

3 Dhanurasana Right > 160◦
Lift your chest
more

4 Marjariasana Right < 170◦ > 100◦
Straighten Bend knee
your elbows more

5 Padahastasana Left < 160◦ < 170◦ > 70◦
Straighten Straighten Bend more
your elbow your knees

6 Phalakasana Left < 160◦ < 170◦ < 170◦
Straighten Straighten Line hips with
your elbow your knees back and legs

7 Shashankasana Right > 35◦
Lower
your hips

8 Tadasana Front < 150◦ < 150◦
Straighten Straighten
your left your right
elbow elbow

9 Trikonasana Left < 165◦ < 165◦ < 165◦ < 165◦
Straighten Straighten Straighten Straighten
your left your right your left your right
elbow elbow knee knee

10 Virabhadrasana1 Left < 160◦ > 120◦ < 160◦
(left leg Straighten Bend left Straighten
bend) your left knee more your right

elbow knee

11 Virabhadrasana1 Left < 160◦ < 160◦ > 120◦
(right leg Straighten Straighten Bend right
bend) your left your left knee more

elbow knee

12 Virabhadrasana2 Left < 160◦ < 160◦ > 120◦ < 160◦
(left leg Straighten Straighten Bend left Straighten
bend) your left your right knee more your right

elbow elbow knee

13 Virabhadrasana2 Left < 160◦ < 160◦ < 160◦ > 120◦
(right leg Straighten Straighten Straighten Bend right
bend) your left your right your left knee more

elbow elbow knee

Table 3: Pose correction instructions for asanas and the joint angle threshold values.

body is not a structure of straight lines. So, the bend in a body part can not be fully mapped

to angles among straight lines. However, a threshold can be established for a particular postural

defect. The threshold values for a pose depends on the sensitivity between angles and the body

curves.

Unlike all other angles, waist angle (smid, wmid, lmid) is dependent on both left and right sides

of the body parts, and it is usually calculated for yoga asanas in left or right side views, so the

keypoints like p1, p2, p5 are expected to overlap in an ideal side-view, thus allowing us to take any

one of these for angle calculation. However, in practical scenarios, people are not in an ideal side-

view, so these keypoints may not overlap. We take the average of these keypoints, to account for

variations in the coordinates.

If pi denotes the ith keypoint number (Figure 3 and Table 2), then the coordinates for waist

angle can be calculated with the following equations:

15

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofSmid =

p1 + p2 + p3
3

(6)

wmid =
p9 + p8 + p12

3
(7)

lmid =
p10 + p13

2
(8)

where smid represents midpoint at shoulder, wmids represents midpoint at the waist and lmid

represents the midpoint between the left and right knee.

The thresholds of different angles and the corresponding instructions for asanas are mentioned in

Table 3. The posture correction instructions for the Tadasana, Virabhadrasana1, Virabhadrasana2,

and Vrikshasana also depends upon the following conditions:

1. Tadasana-front:

If dwaist < dfeet: Put your feet together

where, dwaist = |xcoord(p9)− xcoord(p12)| and dfeet = |xcoord(p11)− xcoord(p14)|
2. Virabhadrasana1-left-side:

xcoord(p13) > xcoord(p10): Right knee is bent

xcoord(p13) < xcoord(p10): Left knee is bent

3. Virabhadrasana2-left-side:

xcoord(p13) > xcoord(p10): Right knee is bent

xcoord(p13) < xcoord(p10): Left knee is bent

4. Vrikshasana-front:

• Right knee is bent: ycoord(p24) < ycoord(p21)

– If the right ankle is below the left knee i.e. ycoord(p24) > ycoord(p13): Bend the knee

more

• Left knee is bent: ycoord(p24) > ycoord(p21)

– If the left ankle is below the right knee i.e. ycoord(p21) > ycoord(p10): Bend the knee

more

16

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

4. Experimental Results and Discussion

This section consists of four subsections. The first subsection describes the data collection

procedure. The second subsection presents the experimental settings. The third subsection presents

the evaluation results using the pose stream, RGB stream, and by fusing both streams. Finally, the

fourth subsection presents the realtime pose detection and correction results for single and multiple

practitioners.

4.1. Data Collection

The YAR dataset was collected for specific 20 asanas (Figure 1) with the help of 16 participants

(11 males and 5 females). A single 2D RGB Logitech web camera (HD 1080p) was used in the

data collection with a frame rate of 30 frames per second (fps) and a resolution of 1280× 720. The

camera was kept in a static position at a height of 5 feet above the ground and the asanas were

performed at a distance of 3-8 meters from the camera. The age of participants varies from 22

years to 30 years. The age, gender, height, and weight details are mentioned in Table 4. All the

asanas were performed under the guidance of an expert yoga teacher. However, most of the par-

ticipants were not regular yoga practitioners. The specific twenty asanas include Trikonasana (tri-

angle pose), Tadasana (mountain pose), Vrikshasana (tree pose), Padahastasana (standing forward

bend), Ardha-chakrasana (half wheel pose), Virabhadrasana1 (warrior pose-1), Virabhadrasana2

(warrior pose-2), Adho-mukha svanasana (downward-facing dog), Phalakasana (plank pose), Bhu-

jangasana (cobra pose), Shavasana (corpse pose), Padmasana (lotus pose), Ustrasana (camel pose),

Shashankasana (rabbit pose), Setu-bandhasana (bridge pose), Pawanmuktasana (wind-relieving

pose), Sarvangasana (shoulder stand), Dhanurasana (bow pose), Marjariasana (cat stretch pose),

and Vakrasana (twisted pose) as shown in Figure 1.

Each practitioner performed all the asanas in front of the camera with a different view that

includes front (F), back (B), left (L), and right (R) sides. The duration of each asana is for

about one minute. Table 5 presents the YAR dataset details in terms of the specific time duration

details, number of participants, number of videos, and the total duration for each asana. The

variation in the number of participants is due to the fact that a few asanas are difficult to perform.

The most difficult asanas experienced by some participants include Sarvangasana, Ustrasana, and

Phalakasana. The total length of 1206 videos for training is 06 hours, 06 minutes, and 20 seconds.

Table 6 presents the comparison of the recent video-based yoga action recognition datasets. The

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

User ID Age (year) Gender (M/F) Height (cm) Weight (kg)

UID-1 21 M 175.26 72
UID-2 21 M 185.42 79
UID-3 30 M 160.02 75
UID-4 24 F 160.02 65
UID-5 26 M 160.02 73
UID-6 20 F 144.78 59
UID-7 26 F 157.48 71
UID-8 22 F 162.56 83
UID-9 21 M 170.18 72
UID-10 28 M 189.15 87
UID-11 24 F 162.56 62
UID-12 21 M 187.96 82
UID-13 27 M 164.09 75
UID-14 26 M 160.02 70
UID-15 29 M 157.48 68
UID-16 22 M 167.64 66

Table 4: Anonimized demographic detail of the participants.

Sr. Asana Side wise Duration (in seconds) No. of No. of Duration
No. Left Right Front Back People Videos (in seconds)

1 Trikonasana 10 10 20 20 16 64 1107
2 Tadasana 10 10 30 10 16 64 1088
3 Vrikshasana 10 10 30 10 16 64 1087
4 Padahastasana 20 20 10 10 15 60 1012
5 Ardha-chakrasana 20 20 10 10 16 64 981
6 Virabhadrasana1 20 20 10 10 16 63 1054
7 Virabhadrasana2 20 20 10 10 16 65 1111
8 Adho-mukha svanasana 20 20 10 10 16 64 1133
9 Phalakasana 20 20 10 10 15 58 951
10 Bhujangasana 20 20 10 10 16 64 1110
11 Shavasana 20 20 10 10 16 63 1209
12 Padmasana 10 10 40 N/A 16 48 1184
13 Ustrasana 20 20 10 10 15 59 1074
14 Shashankasana 20 20 10 10 16 57 1104
15 Setu-bandhasana 20 20 10 10 15 59 1082
16 Pawanmuktasana 20 20 10 10 16 64 1166
17 Sarvangasana 20 20 10 10 12 45 890
18 Dhanurasana 20 20 10 10 16 62 1162
19 Marjariasana 20 20 10 10 16 64 1262
20 Vakrasana 20 20 10 10 16 55 1213

Total number of videos and duration: 1206 21980

Table 5: Time duration, number of participants and number of videos for each asana.

Sr. No. Reference Year Classes Subjects Videos Frames Viewpoints Duration (In Seconds) Is Public?

1 [34] 2019 6 15 88 111,750 1 3965 Yes

2 [35] 2020 10 27 261 68,190 1 2273 No

3 YAR Proposed 20 16 1206 677,419 4 21980 Yes

Table 6: Comparison of the proposed YAR dataset with recent video based yoga action recognition datasets

dataset has been made publicly available to the research community and can be accessed using link:

https://data.mendeley.com/datasets/k842kz6v4n/draft?a=f152b926-8be3-4c78-8f81-fe69ce636965.

The actors themselves are divided in 4:1 ratio (training and validation : test), such that 13

actors were seperated for the training and validation bucket while the remaining 3 actors were

selected for the test bucket at random. It was made sure that all 3 actors belonging to the test

bucket were able to perform all asanas. Validation and training data shared the same set of actors

in their data pool, but were still disjoint on the exercise videos performed by those actors, from

where the sample window of continuous frames were picked. It was made sure that the set of videos

were divided approximately in 3:1:1 ratio of training, validation, and test, respectively. In case such

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0 50 100 150 200 250 300
Epoch

0.2

0.4

0.6

0.8

1.0

M
od

el
 A

cc
ur

ac
y

Training Accuracy
Validation Accuracy

(a) Pose Stream Accuracy

0 50 100 150 200 250 300
Epoch

0

2

4

6

8

10

M
od

el
 L

os
s

Training Loss
Validation Loss

(b) Pose Stream Loss

0 100 200 300 400
Epoch

0.2

0.4

0.6

0.8

1.0

M
od

el
 A

cc
ur

ac
y

Training Accuracy
Validation Accuracy

(c) RGB Stream Accuracy

100 150 200 250 300 350 400 450
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
od

el
 L

os
s

Training Loss
Validation Loss

(d) RGB Stream Loss

Figure 5: Model accuracy and loss curves using Pose and RGB streams of YogNet.

a division was not possible because of fewer actors in training and validation bucket, the count of

validation set was made to sacrifice in favor of training set.

4.2. Experimental Settings

As pose estimation requires a high-performance computing device setup, a machine with an

Intel-Xeon processor with 32 GB RAM and Nvidia Titan X GPU was used for this task. We

used an open-source library for the keypoint detection called OpenPose [16]. The model has been

compiled using Keras API with TensorFlow backend. The input to our pose stream is of size

16× 25× 2, and 16× 112× 112× 3 for RGB stream. The first dimension for both streams having

value 16 represents the window size. In pose stream, 25 represents the number of joint locations

and 2 represents the X and Y coordinates of each joint location, while in RGB stream the last 3

dimensions refer to an RGB image of size 112× 112.

The streams were run for 300 epochs and 500 epochs, respectively, with a batch size of 32

where training took around 29 seconds per epoch and 22 seconds per epoch, respectively. The best

scoring weights after every epoch, having the highest validation accuracy, were stored and later

used for prediction. The model also uses a learning rate decay controller with a custom policy

which decreases the learning rate when set epoch boundaries are achieved. Figure 5 presents the

accuracy and loss curves of pose and RGB streams alongside epoch numbers.

From the accuracy curves in Figure 5(a) and 5(c), we can see that both train and validation

accuracy increases with time and asymptotically reaches a steady-state value, with train accuracy

above validation accuracy. From the graph, it can be seen that overfitting is minimal at 272 epochs

and 421 epochs respectively, as the validation curve saturates and the difference between the training

19

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Ad
ho

m
uk

ha
sv

an
as

an
a

Ar
dh

ac
ha

kr
as

an
a

Bh
uj

an
ga

sa
na

Dh
an

ur
as

an
a

M
ar

ja
ria

sa
na

Pa
da

ha
st

as
an

a

Pa
dm

as
an

a

Pa
wa

nm
uk

ta
sa

na

Ph
al

ak
as

an
a

Sa
rv

an
ga

sa
na

Sa
sh

an
ka

sa
na

Se
tu

ba
nd

ha
sa

na

Sh
av

as
an

a

Ta
da

sa
na

Tr
ik

on
as

an
a

Us
tra

sa
na

Va
kr

as
an

a

Vi
rb

ha
dr

as
an

a1

Vi
rb

ha
dr

as
an

a2

Vr
ik

sh
as

an
a

Predicted Values

Adhomukhasvanasana

Ardhachakrasana

Bhujangasana

Dhanurasana

Marjariasana

Padahastasana

Padmasana

Pawanmuktasana

Phalakasana

Sarvangasana

Sashankasana

Setubandhasana

Shavasana

Tadasana

Trikonasana

Ustrasana

Vakrasana

Virbhadrasana1

Virbhadrasana2

Vrikshasana

Ac
tu

al
 V

al
ue

s

0.73 0.18 0.09

1

0.75 0.08 0.08 0.08

0.23 0.08 0.38 0.08 0.15 0.08

0.08 0.08 0.69 0.15

0.36 0.64

1

0.09 0.73 0.18

0.08 0.08 0.17 0.17 0.5

0.89 0.11

0.11 0.89

0.08 0.92

0.1 0.1 0.8

1

1

0.08 0.92

0.3 0.3 0.4

0.31 0.69

0.08 0.08 0.85

0.08 0.15 0.77

0.2

0.4

0.6

0.8

1.0

(a) Pose Stream Heatmap

Ad
ho

m
uk

ha
sv

an
as

an
a

Ar
dh

ac
ha

kr
as

an
a

Bh
uj

an
ga

sa
na

Dh
an

ur
as

an
a

M
ar

ja
ria

sa
na

Pa
da

ha
st

as
an

a

Pa
dm

as
an

a

Pa
wa

nm
uk

ta
sa

na

Ph
al

ak
as

an
a

Sa
rv

an
ga

sa
na

Sa
sh

an
ka

sa
na

Se
tu

ba
nd

ha
sa

na

Sh
av

as
an

a

Ta
da

sa
na

Tr
ik

on
as

an
a

Us
tra

sa
na

Va
kr

as
an

a

Vi
rb

ha
dr

as
an

a1

Vi
rb

ha
dr

as
an

a2

Vr
ik

sh
as

an
a

Predicted Values

Adhomukhasvanasana

Ardhachakrasana

Bhujangasana

Dhanurasana

Marjariasana

Padahastasana

Padmasana

Pawanmuktasana

Phalakasana

Sarvangasana

Sashankasana

Setubandhasana

Shavasana

Tadasana

Trikonasana

Ustrasana

Vakrasana

Virbhadrasana1

Virbhadrasana2

Vrikshasana

Ac
tu

al
 V

al
ue

s

0.92 0.08

0.92 0.08

0.73 0.09 0.18

0.7 0.1 0.1 0.1

1

0.09 0.91

1

1

1

1

0.08 0.75 0.17

0.75 0.25

0.09 0.91

1

1

1

1

1

0.91 0.09

0.09 0.91

0.2

0.4

0.6

0.8

1.0

(b) RGB Stream Heatmap

Ad
ho

m
uk

ha
sv

an
as

an
a

Ar
dh

ac
ha

kr
as

an
a

Bh
uj

an
ga

sa
na

Dh
an

ur
as

an
a

M
ar

ja
ria

sa
na

Pa
da

ha
st

as
an

a

Pa
dm

as
an

a

Pa
wa

nm
uk

ta
sa

na

Ph
al

ak
as

an
a

Sa
rv

an
ga

sa
na

Sa
sh

an
ka

sa
na

Se
tu

ba
nd

ha
sa

na

Sh
av

as
an

a

Ta
da

sa
na

Tr
ik

on
as

an
a

Us
tra

sa
na

Va
kr

as
an

a

Vi
rb

ha
dr

as
an

a1

Vi
rb

ha
dr

as
an

a2

Vr
ik

sh
as

an
a

Predicted Values

Adhomukhasvanasana

Ardhachakrasana

Bhujangasana

Dhanurasana

Marjariasana

Padahastasana

Padmasana

Pawanmuktasana

Phalakasana

Sarvangasana

Sashankasana

Setubandhasana

Shavasana

Tadasana

Trikonasana

Ustrasana

Vakrasana

Virbhadrasana1

Virbhadrasana2

Vrikshasana

Ac
tu

al
 V

al
ue

s

0.9 0.1

1

0.98 0.02

1

0.88 0.02 0.1

1

0.96 0.04

1

0.18 0.82

0.03 0.9 0.06

0.03 0.94 0.03

1

0.08 0.92

1

1

1

1

1

1

1

0.2

0.4

0.6

0.8

1.0

(c) Fusion Heatmap

Figure 6: Confusion matrix for 20 asanas using pose stream, RGB stream, and fusion of both streams on the YAR
dataset.

loss and the validation loss is minimum. Therefore, while training the model, early stopping is used

as a regularization mechanism for consequently stopping the training at 272 epochs and 421 epochs,

respectively. Figure 5(b) and 5(d) shows that training loss and the validation loss decreases with

epoch numbers.

4.3. Model Evaluation

This subsection presents the model evaluation performance of the YogNet system using the pose

stream, RGB stream, and by fusing both streams.

4.3.1. Pose Stream Results

The YAR dataset comprises yoga asanas performed from all four angles (i.e. front, back, left,

and right). During the training phase, the dataset was divided into 20 classes, each class containing

all four sides of the respective asanas. After training for 300 epochs with a batch size of 32, the

model could only achieve training, validation, and test accuracies of 96.59%, 79.46%, and 77.23%,

respectively. However, this model was unable to perform any better using this strategy on the

dataset even after using multiple regularization techniques aggressively. The classification score

using this strategy is presented in Table 7.

A few factors accounting for variance in the model are as follows:

1. Presence of Inter-asana Similarity: As the model contains all sides of asanas in each class,

many of these asanas from different classes are visually non-differentiable from each other.

20

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Sr. Asana Name Precision Recall F1-Score

1 Adho-mukha svanasana 0.8409 0.9024 0.8706
2 Ardha-chakrasana 1.0000 1.0000 1.0000
3 Bhujangasana 1.0000 0.9750 0.9873
4 Dhanurasana 0.9268 1.0000 0.9620
5 Marjariasana 1.0000 0.8750 0.9333
6 Padahastasana 0.8864 1.0000 0.9398
7 Padmasana 1.0000 0.9693 0.9811
8 Pawanmuktasana 1.0000 1.0000 1.0000
9 Phalakasana 0.9429 0.8250 0.8800
10 Sarvangasana 1.0000 1.0032 0.9492
11 Shashankasana 1.0000 0.9394 0.9688
12 Setu-bandhasana 1.0000 1.0000 1.0000
13 Shavasana 0.9722 0.9211 0.9459
14 Tadasana 1.0000 1.0000 1.0000
15 Trikonasana 1.0000 1.0000 1.0000
16 Ustrasana 0.8974 1.0000 0.9459
17 Vakrasana 0.9429 1.0000 0.9706
18 Virabhadrasana1 1.0000 1.0000 1.0000
19 Virabhadrasana2 0.9394 1.0000 0.9688
20 Vrikshasana 1.0000 1.0000 1.0000

Table 7: Precision, Recall and F1-Score after fusion of the two streams.

Figure 7: Body Keypoints from the front side for Marjariasana, Phlakasana, and Bhujangasana.

For example, when observed from the front-side or back-side Marjariasana, Phalakasana and

Bhujangasana are nearly similar and thus non-differentiable for an average observer with basic

knowledge of asanas, as shown in Figure 7. A similar case can be observed in Shashankasana

and Shavasana or Dhanurasana and Pawanmuktasana, etc.

2. Presence of Intra-asana Variability: As the YAR dataset contains all sides of asanas in each

class, most of these asanas are visually very dissimilar amongst themselves when observed

from different sides, and sometimes even unidentifiable as a pose of that asana when observed

from these sides as shown in Figure 8.

3. Limitations due to Openpose: OpenPose [16] can detect a practitioner when he/she is per-

fectly visible and is standing front-faced to an RGB camera, while it tends to present minor

fluctuations when the practitioner is side-faced or in back-angle positions. However, it shows

clear limitations when the practitioners are performing complex yoga asanas that require mul-

tiple twisting and turning sequences, or when the person is in an inverted upside-down pose.

21

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 8: Body keypoint structures for Setu-bandhasana (front, back, left and right) and Vakrasana (front, back,
left and right).

In such cases, a set of keypoints go undetected for several frames at once, which leads to a

drop in the quality of the training dataset as in the case of Sarvangasana and Ustrasana as

shown in Figure 9. Another kind of noise in this library is over-sensitivity towards person

detection, wherein it detects objects like chair, shoes, etc. to be partial humans. A problem

arises in this case when complex asanas are performed. It often detects these complex asanas

with lower confidence on keypoints, where the average thresholding mechanism may not give

proper results.

The presence of Inter-asana similarity and Intra-asana variability as well as limitations in

keypoint detection by Openpose, are significant factors causing poor generalization of the YogNet

model.

4.3.2. RGB Stream Results

The RGB stream achieved training, validation, and test accuracies of 98.72%, 91.51%, and

89.29%, respectively on YAR dataset. The models were trained for 400 epochs with each batch

comprising of 32 window sets. The Figure 6 shows normalized confusion matrix on the test dataset

of YAR dataset, wherein the model performs remarkably well on most asanas, with the exception

of a few asanas such as Sashankasana, Setubandhasana, Dhanurasana, and Bhujangasana. The loss

22

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 9: Body keypoint structures for Sarvangasana (first and second rows) and Ustrasana (third row) for ten and
five continuous frames, respectively.

and accuracy curve of training the RGB stream can be seen in the Figure 5.

It generalizes well on YAR dataset with the exception of the above-mentioned asanas, as these

asanas resemble each other in many angles and most of them share the same starting pose, for ex-

ample - Shashankasana and Setubandhasana have similar structures, while one is face-up, other is

face down. Similarly, Setubandhasana and Shavasana have exactly the same structure if not for the

angle that the legs form with the ground. Similar comparisons can be drawn out for other asanas

as well. However, pose stream clearly performs better on these asanas, as it is able to differentiate

between them by the clear difference of angles (postural feature) between the corresponding key-

points that are present, and does not rely simply on spatial feature extraction by the convolutional

network.

23

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Sr. Reference Dataset Name Their Result YogNet Result

1. [34] Deep Yoga 99.38% 99.67%
2. [35] in-house Yoga 91.15% 93.29%
3. [57] ADLF 89.64% 93.33%
4. Proposed YAR NA 96.31%

Table 8: Comparision results on different datasets using our proposed YogNet model.

4.3.3. Results After Fusing the Pose and RGB Streams

It can be seen from Subsections 4.3.1 and 4.3.2 that both the streams alone have some deficiencies

that prevent them from being a total package for the prediction of yoga asanas. However, it can be

seen that many of the features these two streams provide are complementary to each other. Decision

level fusion and feature level fusion are both an effort to bring together the streams in an optimal

manner to extract most of the different kinds of information available and perform high-quality

classification of the same.

In the current paper, we have used 3 types of Decision level fusion techniques, namely Aver-

age, Weighted Average, and Max fusion, while we use DNNs for feature level fusion. In decision

level fusion techniques average fusion achieved training, validation, and test accuracies of 94.46%,

92.41% and 92.03%, respectively, weighted average fusion achieved training, validation, and test

accuracies of 97.58%, 94.01% and 95.30%, respectively, and max fusion achieved training, valida-

tion, and test accuracies of 96.59%, 92.57% and 93.31%, respectively, on YAR dataset. Out of three

techniques weighted average fusion achieved highest f1 score and accuracy percentages of the lot,

with wpose stream = 0.3 and wC3D = 0.7. In feature level fusion techniques, the DNN architecture

that performed the best fusion was of size 100× 50 × 20, which achieved training, validation, and

test accuracies of 98.29%, 96.43%, and 96.31%, respectively on YAR dataset.

Table 8 presents the comparision results of our proposed YogNet model on different datasets

i.e., Deep Yoga [34], in-house Yoga [35], ADLF dataset [57], and on our proposed YAR dataset.

Our proposed YogNet model outperforms the existing results on these datasets. Additionally, a

comparison of models of Yadav et al. [34] and Jain et al. [35] from YogNet are peresented in Table 9

using YAR dataset. It can be seen that the fusion model clearly outperforms both the models. Both

feature level fusion and decision level fusion with weighted average technique performed similarly,

with the latter being the most efficient of the two. However, the weights have to be hyper-tuned in

the case of the latter method, making feature level fusion with DNNs the most optimal choice for

classification. The final normalized confusion matrix of DNN (of size 100× 50× 20) is presented in

24

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Ref. Model Name Training Validation Testing

O
t
h
e
r Yadav et al. [34] 97.60% 76.34% 75.00%

Jain et al. [35] 98.58% 87.50% 85.47%

O
u
r
s

Pose Stream 96.59% 79.46% 77.23%

RGB Stream 98.72% 91.51% 89.29%

Average Fusion 94.46% 92.41% 92.03%

Max Fusion 96.59% 92.57% 93.31%

Weighted Average Fusion 97.58% 94.01% 95.30%

Feature Level Fusion 98.29% 96.43% 96.31%

Table 9: Training, validation and testing accuracies using different strategies on YAR dataset. Blue denotes the
previous method’s best result. Red denotes the best result.

Figure 6, alongside data on class-wise precision, recall and f1-score in Table 7.

4.4. Realtime Prediction

Realtime predictions for yoga asanas uses a single RGB camera as an input to the model, wherein

each captured frame is passed first through a keypoint detection library. The JSON file obtained

from the keypoint detection library contains keypoints for all detected people, so a separate list of

keypoints is created for every detected performer. These keypoints are collected for 16 consecutive

frames (window size), which are then inputted to the pose stream. Bounding boxes across subjects

are formed from the keypoints themselves using a set of equations in 9.

Xtop−left = min
j

(xi)

Ytop−left = max
j

(yi)

Xbottom−right = max
j

(xi)

Ybottom−right = min
j

(yi)

(9)

where, Xtop−left and Ytop−left denote the x and y coordinates of top-left point of the bounding

box, while Xbottom−right and Ybottom−right denote the x and y coordinates of bottom-right point

of the bounding box. The bounding box is then constructed for all the persons using the above

equations and then extracted and processed to a size of 112 × 112 before passing the frames into

the RGB stream.

The prediction is made for all the frames using a thresholding mechanism wherein windows (i.e.

set of 16 frames) having maximum class probability less than the threshold value are predicted as

having class ’No Activity’. The threshold value is tuned for an optimal prediction and is taken to

25

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 10: Realtime pose recognition of multiple practitioners. In the third row, the third and fourth columns show
the cases where predictions are interchanged for practitioners. The demo videos of our realtime yoga action recognition
using YogNet can be found on this link: https://data.mendeley.com/datasets/k842kz6v4n/draft?a=f152b926-8be3-
4c78-8f81-fe69ce636965.

be 0.9 in our case.

The prediction results are displayed over the bounding box of corresponding yoga performers

(Figure 10). The bounding boxes are created frame-wise as compared to predictions that are given

over the whole window (16 frames). The top-left and bottom-right coordinates from the JSON files

for a frame are used to form bounding boxes as mentioned in Equation 9.

A shortcoming of OpenPose [16] is that it does not provide any proper object-tracking mech-

anism within its bundle, due to which, in the JSON files generated by the key point detection

library for each frame, a person at index ’0’ in one frame may not be at the same index ’0’ in the

26

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

subsequent frames. For example, a person performing Tadasana alongside a Padmasana performer

maybe sometimes wrongly labeled as performing Padmasana. Thus, keypoint extraction and col-

lection of 16 frames for a practitioner based on just indexing in a multi-person environment may

result in different yoga poses negatively affecting each other’s predictions. In order to address this

issue, a pseudo-tracking mechanism specific to the current problem is proposed, wherein each yoga

practitioner’s keypoints are sorted based on their bounding boxes from left to right. This tracking

mechanism ensures that the collected 16 frame keypoints belong to the same practitioner and that

the corresponding prediction is labeled to the correct person. If a practitioner does indeed change

their order with another practitioner, all those whose orders have changed will have to wait for a

maximum time equivalent for collecting 32 frames (16 × 2) for a correct prediction, once for the

current session of frame collection from 16 frames to get over and secondly for collecting the new

frames. The ordering of keypoints in JSON files, however, does not affect bounding box construc-

tion which is only dependent on keypoint coordinates. The bounding boxes are refreshed every

frame, however, the labels are refreshed only at the end of 16 frames (i.e 1.875 times per second,

assuming asana video is shot at 30 FPS).

Note that the RGB frame extraction process is done only after keypoint detection and bounding

box formation from keypoints using Equation 9, and the order is decided based on the tracking

mechanism. Thus the above method resolves the issue for both pose stream and RGB stream

effectively.

Similar to pose prediction, pose correction has also been implemented for single as well as mul-

tiple practitioners. The pose correction includes twelve asanas which are complex to perform, while

pose prediction was for twenty asanas. In realtime pose correction, the angles and distances between

detected joints are used for suggesting corrective measures to the yoga performers, as mentioned

in Section 3.5. The thresholding mechanism mentioned in the section 4.4 is used (Table 3) with

attention to both single and multi-person pose correction in realtime, i.e. multiple pose correction

recommendations can be given to multiple practitioners performing asanas side-by-side. The pose

correction instructions are appended to the prediction and displayed on their respective bounding

boxes. Figure 11 presents the realtime pose correction results for single and multiple people in

different environments. The model was tested for three people simultaneously, in realtime, based

on the number of people that can be accommodated in a single camera frame while performing

the asanas. More people lead to more occlusion and hence, decrease the accuracy of our classifier.

27

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 11: Realtime pose correction feedback to the single as well as multiple yoga practitioners in different environ-
ment doing similar and different asanas at a time. The system does not provide any feedback to the practitioner if
they do the asana correctly (5th row’s 5th column). The demo videos of our realtime yoga posture correction using
YogNet can be found on this link: https://data.mendeley.com/datasets/k842kz6v4n/draft?a=f152b926-8be3-4c78-
8f81-fe69ce636965.

28

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Nevertheless, the method can be extended to any number of people.

5. Conclusion

This paper presented a realtime yoga expert system for yoga asanas recognition and posture

correction using a 2D web camera. The system recognizes multiple practitioners’ yoga asanas

simultaneously. Also, it recommends posture correction measures to the practitioner if required.

The system consists of a two-stream network. Pose stream network utilized a pose estimation

method to detect keypoints, after which time-distributed CNNs have been employed for postural

feature extraction followed by regularized LSTMs for temporal prediction. The second stream

utilized 3D-CNNs for extracting the spatiotemporal features from raw RGB videos. Finally, feature

level and decision level fusions of the two streams are performed to get final Softmax scores. The

system was able to generalize well overall the 20 asanas with high accuracy. It must be noted

that the system is able to recognize poses independent of posture correction instructions, both for

single as well as multiple people. The multiple pose correction part of the proposed YogNet system

comes into play only after the corresponding pose has been identified as it should bear a minimum

resemblance (threshold) to the correct pose in order to receive corrections for that pose. Multiple

pose correction works by calculating angles, distances, etc., between keypoints and thresholding

on those metrics. The system is able to provide multiple independent recommendations to all

performing yoga practitioners simultaneously in realtime.

The work demonstrates an application of activity recognition. The same system can be applied

to other similar applications such as exergaming, sports, surveillance, rehabilitation, and other

healthcare applications. Since many yoga asanas involve very complex body postures and multiple

body torsion and are sometimes unidentifiable as an activity of that asana by just visual means

from several camera angles or pose detection algorithms, in future works, inertial sensors can be

used alongside cameras for near-perfect recognition and correction.

Acknowledgements

Authors would like to thank anonymous reviewers and our parent organizations for extending

their support for the betterment of the manuscript. Special thanks to Dr. J. L. Raheja (Chief

Scientist, CSIR-CEERI, Pilani) and everyone who had participated in the data collection and

appreciates the assistance provided by CSIR, India.

29

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Funding Information

This research did not receive any specific grant from funding agencies in the public, commercial,

or not-for-profit sectors.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

[1] L. Ward, S. Stebbings, K. J. Sherman, D. Cherkin, G. D. Baxter, Establishing key components

of yoga interventions for musculoskeletal conditions: a delphi survey, BMC complementary and

alternative medicine 14 (1) (2014) 196.

[2] M. McCall, S. Thorne, A. Ward, C. Heneghan, Yoga in adult cancer: an exploratory, qualitative

analysis of the patient experience, BMC complementary and alternative medicine 15 (1) (2015)

245.

[3] M. Van Puymbroeck, A. Walter, B. L. Hawkins, J. L. Sharp, K. Woschkolup, E. Urrea-

Mendoza, F. Revilla, E. V. Adams, A. A. Schmid, Functional improvements in parkinson’s

disease following a randomized trial of yoga, Evidence-Based Complementary and Alternative

Medicine 2018 (2018).

[4] V. Gaurav, Effects of hatha yoga training on the health related physical fitness, International

Journal of Sports Science and Engineering 5 (03) (2011) 169–173.

[5] R. Lindquist, M. F. Tracy, M. Snyder, Complementary and alternative therapies in nursing,

Springer Publishing Company, 2018.

[6] Y. Liu, H. Zhang, D. Xu, K. He, Graph transformer network with temporal kernel attention

for skeleton-based action recognition, Knowledge-Based Systems (2022) 108146.

[7] S. K. Yadav, K. Tiwari, H. M. Pandey, S. A. Akbar, Skeleton-based human activity recognition

using convlstm and guided feature learning, Soft Computing (2021) 1–14.

30

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[8] H.-T. Chen, Y.-Z. He, C.-C. Hsu, C.-L. Chou, S.-Y. Lee, B.-S. P. Lin, Yoga posture recognition

for self-training, in: International Conference on Multimedia Modeling, Springer, 2014, pp.

496–505.

[9] Z. Cao, T. Simon, S.-E. Wei, Y. Sheikh, Realtime multi-person 2d pose estimation using

part affinity fields, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 7291–7299.

[10] S.-E. Wei, V. Ramakrishna, T. Kanade, Y. Sheikh, Convolutional pose machines, in: Pro-

ceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016, pp.

4724–4732.

[11] A. Toshev, C. Szegedy, Deeppose: Human pose estimation via deep neural networks, in: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 1653–

1660.

[12] H.-S. Fang, S. Xie, Y.-W. Tai, C. Lu, Rmpe: Regional multi-person pose estimation, in: ICCV,

2017.

[13] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: Proceedings of the IEEE interna-

tional conference on computer vision, 2017, pp. 2961–2969.

[14] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V. Gehler, B. Schiele,

Deepcut: Joint subset partition and labeling for multi person pose estimation, in: Proceedings

of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4929–4937.

[15] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, B. Schiele, Deepercut: A deeper,

stronger, and faster multi-person pose estimation model, in: European Conference on Com-

puter Vision, Springer, 2016, pp. 34–50.

[16] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, Y. Sheikh, Openpose: realtime multi-person 2d pose

estimation using part affinity fields, arXiv preprint arXiv:1812.08008 (2018).

[17] P. Wang, W. Li, C. Li, Y. Hou, Action recognition based on joint trajectory maps with con-

volutional neural networks, Knowledge-Based Systems 158 (2018) 43–53.

31

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[18] G. Shen, Q. Tan, H. Zhang, P. Zeng, J. Xu, Deep learning with gated recurrent unit networks

for financial sequence predictions, Procedia computer science 131 (2018) 895–903.

[19] I. D. Jordan, P. A. Sokol, I. M. Park, The expressive power of gated recurrent units as a

continuous dynamical system (2018).

[20] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, Deep learning for sensor-based activity recognition:

A survey, Pattern Recognition Letters 119 (2019) 3–11.

[21] S. Ji, W. Xu, M. Yang, K. Yu, 3d convolutional neural networks for human action recognition,

IEEE transactions on pattern analysis and machine intelligence 35 (1) (2012) 221–231.

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-scale video

classification with convolutional neural networks, in: Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.

[23] G. Varol, I. Laptev, C. Schmid, Long-term temporal convolutions for action recognition, IEEE

transactions on pattern analysis and machine intelligence 40 (6) (2017) 1510–1517.

[24] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning spatiotemporal features with

3d convolutional networks, in: Proceedings of the IEEE international conference on computer

vision, 2015, pp. 4489–4497.

[25] A. Wijekoon, N. Wiratunga, S. Sani, K. Cooper, A knowledge-light approach to personalised

and open-ended human activity recognition, Knowledge-based systems 192 (2020) 105651.

[26] X. Ji, Q. Zhao, J. Cheng, C. Ma, Exploiting spatio-temporal representation for 3d human

action recognition from depth map sequences, Knowledge-Based Systems (2021) 107040.

[27] R. Poppe, A survey on vision-based human action recognition, Image and vision computing

28 (6) (2010) 976–990.

[28] D. Weinland, R. Ronfard, E. Boyer, A survey of vision-based methods for action representation,

segmentation and recognition, Computer vision and image understanding 115 (2) (2011) 224–

241.

[29] T. Özyer, D. S. Ak, R. Alhajj, Human action recognition approaches with video datasets—a

survey, Knowledge-Based Systems 222 (2021) 106995.

32

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[30] S. K. Yadav, K. Tiwari, H. M. Pandey, S. A. Akbar, A review of multimodal human ac-

tivity recognition with special emphasis on classification, applications, challenges and future

directions, Knowledge-Based Systems (2021) 106970.

[31] W. Wang, D. Tran, M. Feiszli, What makes training multi-modal classification networks hard?,

in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2020, pp. 12695–12705.

[32] L. Zhu, H. Fan, Y. Luo, M. Xu, Y. Yang, Temporal cross-layer correlation mining for action

recognition, IEEE Transactions on Multimedia (2021).

[33] X. Wang, L. Zhu, Y. Wu, Y. Yang, Symbiotic attention for egocentric action recognition with

object-centric alignment, IEEE Transactions on Pattern Analysis and Machine Intelligence

(2020).

[34] S. K. Yadav, A. Singh, A. Gupta, J. L. Raheja, Real-time yoga recognition using deep learning,

Neural Computing and Applications 31 (12) (2019) 9349–9361.

[35] S. Jain, A. Rustagi, S. Saurav, R. Saini, S. Singh, Three-dimensional cnn-inspired deep learning

architecture for yoga pose recognition in the real-world environment, Neural Computing and

Applications (2020) 1–15.

[36] Z. Luo, W. Yang, Z. Q. Ding, L. Liu, I.-M. Chen, S. H. Yeo, K. V. Ling, H. B.-L. Duh,

“left arm up!” interactive yoga training in virtual environment, in: 2011 IEEE Virtual Reality

Conference, IEEE, 2011, pp. 261–262.

[37] Z. Wu, J. Zhang, K. Chen, C. Fu, Yoga posture recognition and quantitative evaluation with

wearable sensors based on two-stage classifier and prior bayesian network, Sensors 19 (23)

(2019) 5129.

[38] K. Rector, C. L. Bennett, J. A. Kientz, Eyes-free yoga: an exergame using depth cameras

for blind & low vision exercise, in: Proceedings of the 15th International ACM SIGACCESS

Conference on Computers and Accessibility, 2013, pp. 1–8.

[39] S. Patil, A. Pawar, A. Peshave, A. N. Ansari, A. Navada, Yoga tutor visualization and analysis

using surf algorithm, in: 2011 IEEE Control and System Graduate Research Colloquium,

IEEE, 2011, pp. 43–46.

33

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[40] W. Wu, W. Yin, F. Guo, Learning and self-instruction expert system for yoga, in: 2010 2nd

International Workshop on Intelligent Systems and Applications, IEEE, 2010, pp. 1–4.

[41] W. Yin, P. Tu, X. Chen, H. Zhang, Problem oriented analysis and decision expert system with

large capacity knowledge-base, in: 2008 3rd International Conference on Intelligent System

and Knowledge Engineering, Vol. 1, IEEE, 2008, pp. 32–37.

[42] C.-C. Hsieh, B.-S. Wu, C.-C. Lee, A distance computer vision assisted yoga learning system,

Journal of Computers 6 (11) (2011) 2382–2388.

[43] H.-T. Chen, Y.-Z. He, C.-L. Chou, S.-Y. Lee, B.-S. P. Lin, J.-Y. Yu, Computer-assisted self-

training system for sports exercise using kinects, in: 2013 IEEE International Conference on

Multimedia and Expo Workshops (ICMEW), IEEE, 2013, pp. 1–4.

[44] E. W. Trejo, P. Yuan, Recognition of yoga poses through an interactive system with kinect

device, in: 2018 2nd International Conference on Robotics and Automation Sciences (ICRAS),

IEEE, 2018, pp. 1–5.

[45] P. Pullen, W. Seffens, Machine learning gesture analysis of yoga for exergame development,

IET Cyber-Physical Systems: Theory & Applications 3 (2) (2018) 106–110.

[46] M. U. Islam, H. Mahmud, F. B. Ashraf, I. Hossain, M. K. Hasan, Yoga posture recognition

by detecting human joint points in real time using microsoft kinect, in: 2017 IEEE Region 10

Humanitarian Technology Conference (R10-HTC), IEEE, 2017, pp. 668–673.

[47] H.-T. Chen, Y.-Z. He, C.-C. Hsu, Computer-assisted yoga training system, Multimedia Tools

and Applications 77 (18) (2018) 23969–23991.

[48] M. Gochoo, T.-H. Tan, S.-C. Huang, T. Batjargal, J.-W. Hsieh, F. S. Alnajjar, Y.-F. Chen,

Novel iot-based privacy-preserving yoga posture recognition system using low-resolution in-

frared sensors and deep learning, IEEE Internet of Things Journal 6 (4) (2019) 7192–7200.

[49] T. K. K. Maddala, P. Kishore, K. K. Eepuri, A. K. Dande, Yoganet: 3-d yoga asana recogni-

tion using joint angular displacement maps with convnets, IEEE Transactions on Multimedia

21 (10) (2019) 2492–2503.

34

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[50] Y. Ke, R. Sukthankar, M. Hebert, Event detection in crowded videos, in: 2007 IEEE 11th

International Conference on Computer Vision, IEEE, 2007, pp. 1–8.

[51] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, A. Weber, Documentation mocap

database hdm05 (2007).

[52] M. Verma, S. Kumawat, Y. Nakashima, S. Raman, Yoga-82: a new dataset for fine-grained

classification of human poses, in: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops, 2020, pp. 1038–1039.

[53] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings

of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[54] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional

networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 4700–4708.

[55] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,

H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications,

arXiv preprint arXiv:1704.04861 (2017).

[56] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep

neural networks, in: Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017, pp. 1492–1500.

[57] S. K. Yadav, A. Luthra, K. Tiwari, H. M. Pandey, S. A. Akbar, Arfdnet: An efficient activity

recognition & fall detection system using latent feature pooling, Knowledge-Based Systems

(2021) 107948.

[58] J. Kittler, M. Hatef, R. P. Duin, J. Matas, On combining classifiers, IEEE transactions on

pattern analysis and machine intelligence 20 (3) (1998) 226–239.

35

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Declaratio if ioterettt

☒ The authors declare that they have no known competng fnancial interests or personal relatonships
that could have appeared to infuence the work reported in this paper.

☐The authors declare the following fnancial interestsppersonal relatonships which may be considered
as potental competng interests:

	YogNet: A two-stream network for realtime multiperson yoga action recognition and posture correction

