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ABSTRACT 

Cell segmentation and counting is a time-consuming and 

important experimental step in traditional biomedical research. 

Many current counting methods are Point-based methods 

which require exact cell locations. However, there are few such 

cell datasets with detailed object coordinates. Most existing cell 

datasets only have the total number of cells and a global 

segmentation annotation. To effectively use existing datasets, 

we divide the cell counting task into the cell’s number 

prediction and cell segmentation. We propose a GAN-based 

efficient lightweight multi-scale-feature-fusion multi-task 

model (ELMGAN). To coordinate the learning of these two tasks, 

we propose a Norm-Combined Hybrid loss function (NH loss) 

and use the method of the generative adversarial network to 

train our networks. We propose a new Fold Beyond-nearest 

Upsampling method (FBU) in our lightweight and fast multi-

scale-feature-fusion multi-task generator (LFMMG), which is 

twice as fast as the traditional interpolation upsampling 

method. We use multi-scale feature fusion technology to 

improve the quality of segmentation images. LFMMG reduces 

the number of parameters by nearly 50% compared with U-Net 

and gets better performance on cell segmentation. Compared 

with the traditional GAN model, our method improves the 

speed of image processing by nearly ten times. In addition, we 

also propose a Coordinated Multitasking Training 

Discriminator (CMTD) to refine the accuracy of the details of 

the features. Our method achieves non-Point-based counting 

that no longer needs to annotate the exact position of each cell 

in the image during the training and achieves excellent results 

in cell counting and segmentation. 
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1 Introduction 

Cell segmentation and counting have a very vital 

significance in medicine. The number of cells in a sample is an 

important measure of medical testing. For example, the disease 

can be verified by counting cells in a sample [1]. 

The cell counting plate-based counting method is the 

traditional cell counting method. Medical workers count the 

number of cells in each label repeated under the microscope to 

estimate the cell density of the whole sample. However, this 

method is manual work and has many shortcomings: At first, 

this is a labour-intensive job, which costs much time on 

monotonous physical work; Secondly, because of the use of 

manual counting and high intensity of repetitive labour, 

manually identifying cells may lead to uncontrollable 

subjective errors in statistics; Thirdly, the manual counting 

method lacks the quantization of the error range; Finally, 

although there are several devices available for rapid cell 

counting tasks, these devices are expensive and often lack the 

ability to locate images of the cells being counted. 

In the past decade, deep convolutional networks have 

shown excellent performance in many visual recognition tasks 

[2-5]. It has become a trend to use computer technology for cell 

image recognition and statistics: He et al. designed a 

concatenated fully-convolutional-regression network to 

regress the density map of cells and count the number of cells 

in microscopy images [1]; Xie proposed a synthetic-data-

trained two fully convolutional density regression networks for 

cell counting [5]; Graham et al. leveraged the instance-rich 

information encoded within the vertical and horizontal 

distances of nuclear pixels to their centres of mass to segment 

the nuclear [6]; Dan, Alessandro and et al. developed a deep 

max-pooling convolutional neural network to detect breast 

histology images [7]; Carlos et al. first used the Extremal Region 

Trees to detection of overlapping objects in microscopy [8]; Liu 

and Yang proposed general cell detection algorithm based on a 

deep convolutional neural network [9]. 

The training process of these methods is based on the 

accurate coordinate of each target on the image. Depending on 

these labelled points, these kinds of neural network models 

learn the characteristics of the labelled points and their vicinity. 

Therefore, these methods are point-based, trained on datasets 

with detailed cell coordinates annotation. And their datasets 

are required detailed coordinate labelling. However, the work 

of labelling is time-consuming and laborious. Such datasets 

need to be mathematically converted into density maps when 
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used. Such mathematical transformations are error-prone, 

resulting in an insufficient accuracy of the ground truth values. 

At present, most existing cell datasets only have segmentation 

annotation and the total cell count. To make use of these 

datasets, we propose the non-Point-based method, which can 

segment and count at the same time. However, in the process 

of training such a multi-task convolutional neural network, 

more manual design is usually needed to get better 

performance. Fortunately, the generative adversarial network 

(GAN) allows us to give a high-level target task simply and then 

automatically learn a loss function suitable for that task [10]. 

GANs can judge the authenticity of the generated image and try 

to make the generated image less fuzzy. Thus, GANs learn 

losses based on data situations, so they can be applied to tasks 

that require complex loss functions [11].  

Therefore, we propose a GAN-based efficient lightweight 

multi-scale-feature-fusion multi-task model (ELMGAN) to 

segment and count cell images simultaneously. Furthermore, 

we design a lightweight and fast multi-scale-feature-fusion 

multi-task generator (LFMMG). Compared with the backbone 

model, this generator has obvious simplification in memory 

consumption and realizes the simultaneous generation of 

multiple prediction targets. We also take the discriminator as 

an important part of multi-tasking training. We design a 

Coordinated Multitasking Training Discriminator (CMTD) as 

the discriminator to improve the performance of the generator 

and independently coordinate the weight of multi-task learning. 

Training of discriminator can reduce the difficulty of our loss 

function design and make us use simple loss function to 

complete the coordination of multi-task training. To coordinate 

the learning of these two tasks, we propose a Norm-Combined 

Hybrid loss function (NH loss). Our ELMGAN achieves non-

Point-based counting that overcomes the limitation of 

traditional Point-based counting methods, which required 

datasets with detailed cell coordinates annotation. We use two 

cell microscope image datasets without the exact position 

annotation of each cell to validate the model. According to the 

experimental results, compared with other methods that just 

can complete only one task, our method can complete multiple 

tasks, and our method achieves excellent results in both 

counting and segmentation tasks. In short, our contributions 

are: 

• We propose ELMGAN to segment and count cell images. 

• We propose the NH loss. 

• We propose a new upsampling method: FBU. 

• Our ELMGAN overcomes the limitation of traditional 

Point-based counting methods. 

• The result of ELMGAN is better than state-of-the-art. 

2 Background 

Recently, Deep Convolutional Neural Networks (DCNNs) 

have shown great success in both the natural and medical 

image domains [2, 3, 5, 8]. The fully convolutional networks 

(FCN) [3] method is one of the most widely used segmentation 

networks of convolutional neural networks in computer vision. 

FCN uses convolutional layers instead of fully connected layers 

and uses skip layers to retain advanced image features. Many 

medical image segmentation networks use FCN for medical 

image segmentation [12-15]. Schmitz et al. used multi-scale 

fully convolutional neural networks for histopathology image 

segmentation [15]; Vigueras et al. obtained that a convolutional 

network is superior to a sliding window network in cell 

segmentation through experimental comparison [16]. 

In previous studies, most networks used the encoder-

decoder model [17]. Input data are gradually feature extracted 

through several successive downsampling units. After the 

sampling passes through the final bottleneck layer, highly 

abstract features are continuously re-stored to their original 

dimensions. However, the downsampling process can cause the 

feature to lose detailed information. In order to preserve the 

details of advanced features, in ResNets [18], researchers used 

residual layers to convey information about advanced features 

downward. Nevertheless, there is a lack of direct 

communication between each bottleneck layer of ResNets. 

Based on FCN and ResNets, U-Net has shown excellent 

performance in medical imaging [2]. U-net uses skip layers to 

transfer the encoder features to the decoder and carries out 

multi-scale feature fusion, which performs well in medical 

image segmentation. Many image segmentation networks are 

inspired by U-Net [19-21]. 

In addition, image upsampling is an important part of the 

decoder. Researchers often use upsampling methods to restore 

the feature vector to the desired image. At present, there are 

two commonly used upsampling methods: interpolation 

upsampling methods and non-interpolation upsampling 

methods. The non-interpolation upsampling method usually 

uses dilated convolution to enlarge the image. However, the 

dilated convolution usually produces a Checkerboard pattern, 

blurring the generated image [22]. Although the image size is 

enlarged, the quality of the image is reduced. Expanding the 

image size in large steps can reduce the quality of the image to 

an unbearable level. The computer can only process and save 

discrete data, and the results of many image-processing are 

continuous. In order to obtain the values of discrete points, 

interpolation is necessary.  

Therefore, researchers prefer to use interpolation methods 

to expand the images. At present, the most commonly used 

interpolation upsampling methods are the nearest upsampling 

method and the bilinear upsampling method. The logic of the 



 

nearest interpolation method is very simple. It only compares 

the distance between the interpolated pixel and the original 

pixel. The interpolated pixels come from the surrounding 

original pixels without generating any new pixel values. 

However, some lines and edges in the image have an obvious 

sawtooth effect. The bilinear interpolation method requires 

cubic linear interpolation from two directions. Although its 

calculation process is more complex than the nearest 

upsampling method, the new pixel values can usually fit the 

surrounding pixels, making the image’s colour transition softer. 

Although the current semantic segmentation models restore 

the image in size by applying various interpolation methods for 

the output of the last layer of the decoder, these methods have 

no learning parameters, which may lead to a suboptimal 

prediction result. [23]. 

On the other hand, most cell counting methods are divided 

into two categories: Point-based counting and non-Point-based 

counting. The Point-based methods are trained on datasets 

with detailed cell coordinates annotation and these methods 

could learn the characteristics of the annotated points. The two 

most common Point-based counting methods are the 

detection-based counting method and the density-map-based 

counting method. The detection-based counting method marks 

each cell by box and counts the boxes to get the number of cells 

[1, 24, 25]. Although the detection-based counting method has 

the highest accuracy, this method is severely limited by the 

complexity of images and requires a complex ground truth to 

frame each cell. The density-map-based counting method is to 

expand the annotation point of each cell into a spot with a 

similar cell size by Gaussian filter [1, 5]. In the image, these 

spots are similar to real cells, which reflect the location and 

density of cells well. Additionally, the total pixel value of the 

image is the number of cells. This method combines the two 

functions of counting and locating. However, like the detection-

based counting method, the density-map-based counting 

method also needs detailed object coordinates. Non-Point-

based counting does not require datasets to contain detailed 

object coordinates. The early non-Point-based counting 

method, the direct counting method, usually uses foreground 

feature and edge feature extraction to construct the mapping 

between features and the number of objects, such as standard 

background subtraction techniques to get foreground features 

[26]. But direct counting lacks the position information of the 

target. 

Currently, few datasets with detailed cell coordinate labels 

are available specifically for cell counting because accurate 

labelling of high-density cells is a time-consuming and labour-

intensive task. Most datasets still only have the classification, 

segmentation information, and the total number of cells. It may 

be a convenient and efficient method to count cells by 

predicting cell numbers and semantic segmentation to present 

cell location [6, 27, 28]. Although it is a relatively simple task to 

predict the numerical value with the help of neural networks, it 

may be difficult for the network to correctly learn effective 

knowledge if it wants to complete the generation of 

segmentation image and prediction of cell counting at the same 

time using traditional training methods. Because image 

segmentation and cell count prediction are two different jobs. 

Image segmentation is similar to the answer question, which 

has high requirements for the detailed restoration of the 

generated image. Another is closer to the True or False, which 

needs to judge the potential number of cells from the image 

features and give the possible prediction value. 

The generation of segmented images from cell images can 

be regarded as image-to-image translation. At present, 

generative adversarial networks perform well in this area [11, 

29]. Andreini et al. successfully used GAN in the segmentation 

of colony images [30]. In some papers, GAN is working for 

image-to-image translation. With the using of conditional 

constraints, GAN has shown impressive performance in style 

transfer and so on [31-33]. Therefore, we use conditional 

generative adversarial networks further to enhance the 

semantic segmentation capability of the model. 

3 Methods 

We propose a GAN-based efficient lightweight multi-scale-

feature-fusion multi-task model (ELMGAN) that can segment 

and count cells simultaneously. In the whole GAN structure, We 

propose a lightweight and fast multi-scale-feature-fusion 

multi-task generator (LFMMG) and a Coordinated Multitasking 

Training Discriminator (CMTD). In order to optimize multi-

tasking, we propose a Norm-Combined Hybrid loss function 

(NH loss). 

3.1 Lightweight Fast Multi-scale-feature-fusion 
Multi-task Generator 

We expect to build a lightweight and fast multi-scale-

feature-fusion multi-task generator (LFMMG). Although the 

multi-scale feature fusion based on encoder-decoder 

segmentation models can well generate segmentation images 

with good low-level features, such architectures are 

complicated, and the model occupies a large memory, which 

does not meet our goal of lightweight. However, without the 

Encoder-Decoder architecture, the model does not perform as 

well as we need. Fortunately, we noted that the feature 

extraction networks like VGG [34] already have good feature 

extraction capability and have a lot of redundancy in network 

structure. 

Therefore, in our encoder, we optimize the structure design 

of the model. As Figure 1 shows, we use six downsampling units, 



 

 

which is only 36% the size of VGG16. This leaves a lot of 

memory for further addition of decoders. The convolutional 

layer with a step size of two is used in the downsampling unit, 

which reduces the feature map size while extracting features 

and avoids feature loss caused by using the pooling layer. 

Therefore, each of our Down-Sampling Units could reduce the 

size of the feature map by half, and our encoder could reduce 

the image by 64 times in total. 

For upsampling, we use the Fold Beyond-nearest 

Upsampling (FBU) to expand the size of our feature map. After 

studying and comparing a variety of upsampling methods, we 

design FBU, which will be introduced in the next section. 

Compared with the traditional nearest interpolation method, 

FBU has a simpler calculation process, which speeds the 

calculation of the model. Besides, FBU not only enlarges the 

feature size, but also reduces the involvement of external 

errors from the interpolate upsampling layers. Moreover, 

compared with the traditional no learning upsampling 

methods such as nearest neighbour upsampling and bilinear 

interpolation upsampling, FBU has learnability. We add 

learnable parameters to make the FBU better enlarge the 

boundary changes in the image. 

In the Decoder, we first magnified the image 36 times 

through five FBU blocks in total, and each FBU block can 

enlarge the image twice. Each FBU block contains an FBU layer, 

an Instance Normalization layer, and a Leaky ReLU activation 

layer. However, it is easy to blur the resulting image using the 

upsampling method alone, and the deep-seated feature map 

may lose many low-level features associated with image 

outlines and textures because it is highly abstract. 

According to the successful experience of U-Net, we use 

multi-scale feature fusion to alleviate this problem. The feature 

map is fused with the feature map of the same size in the 

encoder, after it was enlarged by the FBU block. 

Finally, we design another independent output layer to 

predict cell numbers. Based on the idea of FCN, we use the 1 × 1 

convolutional layers. At the same time, we set up the global 

average pooling layer so that the network could accommodate 

different sizes of input images. This direct prediction method 

overcomes the limitation of Point-based counting on datasets. 

In conclusion, we propose a lightweight and fast multi-scale-

feature-fusion multi-task generator, which achieves non-Point-

based counting, and gives the location of the target. 

Furthermore, our LFMMG reduces the number of parameters 

by 50% compared with U-Net, and its feature extraction 

encoder is 36% the size of VGG16. By reducing the number of 

convolutional layers and using FBU, our method significantly 

reduces the amount of computation and memory consumption. 



 
Figure 1 The structure of Lightweight Fast Multi-scale-feature-fusion Multi-task Generator (LFMMG); The LFMMG is the 
generator of ELMGAN, which is used for cell counting and cell segmentation. 

3.2 Fold Beyond-nearest Upsampling Method 
In the decoder, researchers often use upsampling methods 

to restore the feature vector to the desired image. However, 

some upsampling methods, like dilated convolutional layer, 

produce a Checkerboard pattern and blurry the generated 

images [22]. Although the image size is enlarged, the quality of 

the image is reduced. Expanding the image size in large steps 

reduces the quality of the image to an unbearable level. 

Therefore, researchers prefer to use interpolation methods to 

get larger images. Although the current semantic segmentation 

models restore the image in size by applying various 

interpolation methods in the last few layers of the decoder, 

these methods have no learning parameters, which may lead to 

a suboptimal prediction result. [23]. The classical nearest or 

bilinear interpolate upsampling method has a complex 

calculation process. Calculating a new pixel 𝑃𝑥𝑛,𝑦𝑛
 requires the 

dot product of four scalar numbers 𝑊 and the pixel values 𝑃 of 

four vertices: 

 𝑃𝑥𝑛,𝑦𝑛
 =  𝑊𝑥,𝑦𝑃𝑥,𝑦 + 𝑊𝑥+1,𝑦𝑃𝑥+1,𝑦 + 𝑊𝑥,𝑦+1𝑃𝑥,𝑦+1 +

𝑊𝑥−1,𝑦𝑃𝑥−1,𝑦 + 𝑊𝑥,𝑦−1𝑃𝑥,𝑦−1.  ( 1 ) 

In order to reduce the loss introduced by this method, the 

out stride of interpolating upsampling layers should be set 

small when restoring the image pixel by pixel. Because of that, 

the interpolate upsampling method often has to be used 

multiple times, and it causes a significant increase in 

computational complexity and memory requirements. For 

restoring an image 𝐼 ∈ 𝑅𝑤,ℎ,𝑐  to a new image 𝐼𝑛 ∈ 𝑅𝑤̂,ℎ̂,𝑐̂ , 

through 𝑁  Interpolate upsampling layers, the traditional 

interpolate upsampling method needs 𝑁 × 4 × 𝑤̂ × ℎ̂ × 𝑐̂ times 

multiplication.  

Although this kind of interpolation method avoids the 

chessboard effect caused by expansion convolution, these 

methods lack learnable parameters. Sometimes the result of 

interpolation may not be the best. The Beyond-bilinear Data-

dependent Upsampling (BDU) [23] uses convolutional layers to 

restore the feature map. It uses the learnable parameters 

brought by the convolutional layer to calibrate the accuracy of 

interpolation. For preset out stride 𝑑, BDU divided the image 

into 𝑑 × 𝑑  small patches with the size of 
𝑤

𝑑
×

ℎ

𝑑
× 𝑐 . Then the 

small patch arranges to a vector 𝑣 ∈ [0,1]𝑑×𝑑×𝑐 . The 𝑣  is 

compressed to 𝑢 ∈ 𝑅𝐶̂  by a convolutional layer, then 𝑢  are 

mapped vertically to 𝑣̂  by another convolutional layer as the 

new image 𝐼𝑛. 



 

 

In formal language, that is: 

 𝑢 = 𝐻𝑣; 𝑣̂ = 𝑉𝑢, ( 2 ) 

where 𝐻 and 𝑉 are two convolutional kernels, respectively. 

The total number of multiplications has been reduced to 

𝑤 × ℎ × 𝑐 + 𝑤̂ × ℎ̂ × 𝑐̂ . This method successfully applies a 

learnable convolutional layer to the interpolation sampling 

method. And, this method avoids the problem of the 

Checkerboard pattern when sampling on dilated convolution. 

In addition, the spatial encoder of SFCN effectively improves 

the continuity of the feature structure by folding and 

segmenting the image [35]. 

This method inspired us. We use the convolutional layer to 

generate multiple weighted new values of a pixel. We note that 

the 3 × 3 convolutional kernel can maximize the reference to 

the characteristics of the surrounding elements, to enhance the 

continuity of the image structure. While a 1 × 1 convolutional 

kernel also can do such tasks well and reduce the number of 

parameters greatly. Therefore, we use a 1 × 1  convolutional 

kernel for pixel value-added by default. Each new pixel is 

computed directly from the original pixels of the image. And, 

the image is scattered into pixels and then reorganized 

according to the sequence, which makes each point multi-pixel 

mixed and avoids the Checkerboard pattern. 

This process is much like the repeated folding of dough 

when making pastry. Therefore, we call this method as Fold 

Beyond-nearest Upsampling (FBU). In our FBU, the channels of 

feature map 𝑥 is expanded from 𝑐 to 𝑐̂ × 𝑑2. Then the expanded 

feature map 𝑥 is arranged into a one-dimensional vector 𝑣 in 

the horizontal direction, and then we rebuild the vector 𝑣 to a 

matrix 𝑣̂ ∈ 𝑅𝑤,ℎ𝑑,𝑐̂𝑑 . Similarly, the matrix 𝑣̂ is arranged into a 

one-dimensional vector 𝑢 in the vertical direction, and then we 

rebuild the vector 𝑢 to a matrix 𝑢̂ ∈ 𝑅𝑤𝑑,ℎ𝑑,𝑐̂. 

In formal language, that is: 

 𝑥 = 𝑤𝑥 + 𝑏; 𝑥 → 𝑣𝑤,ℎ,𝑐;   𝑣̂ = 𝑣ℎ↔𝑐;  𝑢̂ = 𝑢𝑤↔𝑐 , ( 3 ) 

where 𝑤 is the weight of the convolutional layer. The process is 

shown in Figure 2. 

Only one convolution calculation is carried out in the whole 

upsampling process, and the total number of multiplications 

has been reduced to 𝑤 × ℎ × 𝑐̂. Compared with the traditional 

upsampling methods, the FBU reduces the number of 

multiplication calculations greatly. The calculation process is 

so simple that can speed up the calculation of the model. In 

addition, compared with the traditional upsampling methods 

(such as nearest upsampling and bilinear interpolation 

upsampling), FBU has learnability. In the traditional 

upsampling method, the new pixel is generated by calculating 

the original pixel. New pixels in FBU are generated through the 

convolutional layer. By training the learnable parameters of the 

convolutional layer in FBU, FBU can generate new pixel values 

more consistent with the feature change trend and better 

enlarge the boundary changes in the image. 

 
Figure 2. The process of Fold Beyond-nearest Upsampling 

3.3 Coordinated Multitasking Training 
Discriminator 

Because the FBU is trainable, some new changes might be 

introduced when the feature map is expanded. As the result, 

sometimes the generated image has little visual difference, but 

the feature map of the generated image may have different 

features. Therefore, although the overall loss is decreasing 

during the training, only one task might be trained. The 

conditional GAN [36] can specify the generated range by 

entering specific additional information into the discriminator. 

Similarly, we want the model to remember the features needed 

for counting when generating segmented images. So, we train 

the discriminator with the original image that contains the 

features needed for counting. Besides, the segmented image is 

usually similar to the original image in the contour structure. 

The original picture with complete information is regarded as 

structural attention. 

Based on that thinking, we propose the Coordinated 

Multitasking Training Discriminator (CMTD) to coordinate the 

learning weights of the two tasks and improve the quality of the 

generated images. In CMTD, the original image 𝑥𝑖  fuses the 

generated segmentation image 𝐺𝑖  on the channel as the input 

of the discriminator to get the discriminant matrix 𝐷𝑖: 

 𝐷𝑖 = CMTD ([
𝑥𝑖

𝐺𝑖
] ∈ 𝑅𝑤,ℎ), ( 4 ) 

where 𝑖  represents the serial number of the image and ℎ, 𝑤 

represent the height and width of the image, respectively. 

We hope this can make the difference between the contour 

structure of the segmented image and the original image more 

prominent. By training the CMTD, the generator can predict cell 

structure profiles more accurately and maintain attention to 

the features required for counting. 

As the left part of Figure 3 shows, the original image is fused 

into the generated synthetic image as a part of the input. The 

fused image is fed into four consecutive convolutional units. 



 

Each convolutional unit contains a downsampling 

convolutional layer with stride two, a Leak-ReLU layer with a 

negative slope of 0.2, and an Instance Normalization Layer [37]. 

The image features were condensed 16 times in the process. 

Finally, we get a feature map that can reflect the difference in 

image structure. To amplify these structural differences, we 

choose L2 loss as the loss function of the discriminator. This 

discriminator identifies pixel errors between the two, making 

the synthetic image structurally closer to the original. 

In Section 4.3, we verified that CMTD could effectively 

improve the performance of the multi-task generator. 

 
Figure 3. The structure of Coordinated Multitasking Training Discriminator (CMTD); The CMTD is the discriminator of 
ELMGAN, which is used to assist in training LFMMG. 

3.4 ELMGAN Model with NH Loss 
In order to enhance the performance of our model and 

strengthen the connection between counting and segmentation, 

we propose the Efficient Lightweight Multi-scale-feature-

fusion Multi-task GAN model (ELMGAN) to train our LFMMG 

and CMTD. As shown in Figure 4, in the ELMGAN, the LFMMG 

generates the segmentation images and cell counts, and the 

CMTD estimates the probability that the input image comes 

from the real data rather than a generated sample by 

constructing a Markov random field.  

For ELMGAN training, LFMMG and CMTD are trained 

together under real data 𝑥, and ground truth 𝑦. The best model 

is obtained through the minimax two-player game: Fixed the 

CMTD and adjusted the parameters of LFMMG to minimize the 

expectation of log[1 − CMTD(𝑥, LFMMG(𝑥))]  and fixed the 

LFMMG and adjusted the parameters of CMTD to maximize the 

expectation log CMTD(𝑥, 𝑦). In formal language, that is: 

 min𝐿𝐹𝑀𝐺max𝑆𝐹𝐷ELMGAN(LFMMG, CMTD) =

 𝐸𝑥,𝑦[log CMTD(𝑥, 𝑦)] + 𝐸𝑥,𝑦 log[1 − CMTD(𝑥, LFMMG(𝑥))].( 5 

) 

We use our Norm-Combined Hybrid loss (NH loss) for 

Generators to learn multi-tasks. Using loss function matching 

tasks can effectively improve the learning efficiency of the 

model. L2 loss is the most commonly used loss function in 

counting tasks, so we use L2 loss to evaluate the counting task. 

For the generation of segmentation images, we pay more 

attention to the structural similarity of images. Because L1 loss 

can capture the low frequency correctly, the L1 loss is 

employed to adjust the structural error of the image at the pixel 

level. In addition, in GANs, the original loss of the generator is 

calculated by the discriminator’s loss, so our NH loss also 

includes a part of discriminator loss. In a word, our NH loss 

includes three parts: counting loss, pixel loss, and a part of 

discriminator loss. 

For counting loss, for R images, the i-th image with 𝑐𝑔𝑡 cells 

are predicted by the generator to obtain 𝑐𝑝𝑟𝑒𝑑  cells, we use 

 𝐿𝑐𝑜𝑢𝑛𝑡 =
1

𝑅
∑ (𝑐𝑔𝑡

𝑖 − 𝑐𝑝𝑟𝑒𝑑
𝑖 )

2𝑅
𝑖=1  ( 6 ) 

as the loss function of the counting task. 

The pixel loss is calculated by the generated image 𝐺𝑖  and 

segmentation ground truth 𝑆𝑔𝑡𝑖
: 

 𝐿𝑝𝑖𝑥𝑒𝑙 =
1

𝑅
∑ |(𝑆𝑔𝑡 − 𝐺𝑖)|𝑅

𝑖=1 . ( 7 ) 

Considering the discriminator’s influence on the generator’s 

task attention allocation, when training the generator, we need 

to calculate the discriminant loss of the generator by assuming 

that the generated segmentation image is completely reliable. 

In the last part of NH loss, we use the generated synthetic 

image 𝐺𝑖  and the original image to generate the discriminant 

matrix 𝐷𝑖  through the discriminator and calculate an L2 loss by 

using the discriminant matrix 𝐷𝑖  and the valid matrix 𝑣𝑎𝑙𝑖𝑑, 

which was full by one: 

 𝐿𝑜𝑠𝑠_𝐷𝑟𝑒𝑎𝑙  =  
1

𝑅
∑ (𝑣𝑎𝑙𝑖𝑑𝑖 − 𝐷𝑖  )2𝑅

𝑖=1 . ( 8 ) 



 

 

Then Finally, these three losses are combined to build our 

NH loss: 

 𝑁𝐻 𝐿𝑜𝑠𝑠 =  𝐿𝑜𝑠𝑠_𝐷𝑟𝑒𝑎𝑙  +  𝑎𝐿𝑝𝑖𝑥𝑒𝑙 + 𝑏𝐿𝑐𝑜𝑢𝑛𝑡, ( 9 ) 

where 𝑎  is the weight of pixel loss, and 𝑏  is the weight of 

counting loss. 

In LFMMG, the number of cells is predicted directly through 

the features extracted by the decoder. Loss count is employed 

to learn cell number prediction, which can directly affect the 

preference of LFMMG in feature extraction. The synthetic 

image is constructed based on these extracted features. Like 

the butterfly effect, changes in the extracted features can create 

a huge disturbance to the prediction of the synthetic image. 

Therefore, we recommend using a larger 𝑎  and smaller 𝑏  to 

balance the training of the two predictors. In Section 4.4, we 

experimentally verified this inference. So here, the preset value 

of 𝑎 is 100 and that of 𝑏 is 0.1. This preset value certainly does 

not represent an optimal parameter. Based on the experiment 

results, it is recommended to fine-tune the value of 𝑎  in ten 

units depending on the complexity of the data. However, 

turning up the value of 𝑏 need to be as precise as possible. 

When training the discriminator, in the first step, the 

Discriminant matrix 𝐷𝑖  calculates an L2 loss with the valid 

matrix, which is the same with 𝐿𝑜𝑠𝑠_𝐷𝑟𝑒𝑎𝑙 . 

Then the discriminant matrix is calculated with the fake 

matrix 𝑓𝑎𝑘𝑒, which was full by zero: 

 𝐿𝑜𝑠𝑠_𝐷𝑓𝑎𝑘𝑒  =  
1

𝑅
∑ (𝑓𝑎𝑘𝑒𝑖 − 𝐷𝑖  )2𝑅

𝑖=1 . ( 10 ) 

In the end, the total training loss of the discriminator is the 

average value of these two losses: 

 𝐿𝑜𝑠𝑠_𝐷 =  𝑎𝑣𝑔(𝐿𝑜𝑠𝑠_𝐷𝑟𝑒𝑎𝑙 + 𝐿𝑜𝑠𝑠_𝐷𝑓𝑎𝑘𝑒). ( 11 ) 

Algorithm 1 ELMGAN training process 

Input Data: image, segmentation ground truth, counting ground truth 

1. function Main: { 

2.  for i in epoch: { 

3.   function training: { 

4.    for j in range(data): { 

5.     Construct a valid matrix with all pixel values of 1 in the same size as 
the input image; 

6.     Construct a fake matrix with all pixel values of 0 in the same size as 
the input image; 

7.     input images are input into LFMMG to predict the cell’s number and 
segmentation; 

8.     Calculate the loss of the generator { 

9.      Calculate the structure loss between the input image and the 
generated segmentation image; 

10.      Calculate the counting loss between the counting ground truth 
and predict the cell’s number; 

11.      Calculate the generator Hybrid loss based on structure loss and 
counting loss; 

12.      } 

13.     Obtain the discrimination matrix by the generated segmentation 
images, and the input images are input into the CMTD; 

14.     Calculate the loss of the discriminator { 

15.      Calculate the generator discrimination loss between the 
discrimination matrix and the valid matrix; 

16.      Calculate the Norm-combined Hybrid loss based on 
discrimination loss and generator Hybrid loss; 

17.      } 

18.     Norm-combined Hybrid loss backward; 

19.     Train CMTD { 

20. 
     

Obtain the valid discrimination matrix by segmentation ground 
truth and input image; 

21. 
     

Calculate the valid CMTD loss of discrimination matrix and valid 
matrix and fake matrix, respectively; 

22. 
     

Obtain the valid discrimination matrix by the generated 
segmentation images and input images; 

23. 
     

Calculate the fake CMTD loss of discrimination matrix and valid 
matrix and fake matrix, respectively; 

24. 
     

Calculate the total CMTD loss by valid CMTD loss and fake CMTD 
loss; 

25.    }   

26.   Evaluate every few epochs: { 

27.    Evaluate LFMMG; 

28.    Print evaluation results; 

29.    } 

30.   Save the model; 

31.  } 

32. } 

 

 

Figure 4. The structure of ELMGAN; ELMGAN is used for training our LFMMG and CMTD so that we can get the best 

performance cell number and location prediction generator. 



4 Experiments and Results 

We performed segmentation and counting experiments on 

cell images with different degrees of overlap. The images were 

divided into five different levels of overlap. We use PSNR and 

SSIM to evaluate the segmentation of the generator. Besides, we 

use MCE and RMSE to evaluate the counting ability. 

4.1 Datasets and Experimental Environment 
We use the datasets from the Broad Bioimage Benchmark 

Collection (BBBC) [38]. The image samples are shown in Figure 

5. The BBBC04 dataset has five subsets of 20 images per group 

provided. Each image contains 300 objects, but objects overlap 

and aggregate with different probabilities in five subsets. 

Images were generated using SIMCEP simulating platform for 

fluorescent cell population images [39, 40]. The dataset 

contains images with a size of 950 by 950. To facilitate 

transformation in the neural network, we added a border of 0-

pixel value to the image and processed the image to a size of 

960×960. According to the records of BBBC on the official 

website of the dataset, we are the first team to use this data for 

segmentation counting multi-task deep convolutional neural 

network learning. 

Another dataset we used is the BBBC05 dataset. The dataset 

is a collection of simulated microscope images of 9600 stained 

cells. These images were generated using the SIMCEP 

simulation platform. The clustering probability of cells in this 

data set is 25%, and the cell area matches the average cell area 

of human U2OS cells [33, 34]. The focal blur is simulated by 

applying a variable Gaussian filter to the image. Each image is 

encoded in 8-bit TIFF format and has a size of 696×520. The 

model has been trained with 1,200 labelled images.  

In our experiments, the normalization process of 

subtracting the mean and dividing by the variance is carried out. 

Training images are cropped to a 4-point scale and placed in 

the same batch. Because no default testing subset segmentation 

is available, the model was evaluated by the use of 5-fold cross-

validation on both datasets.  

Our experiments are based on a Python environment. Batch 

size is set to 1, Adam is the optimizer, and 50 epochs are 

learned at a fixed learning rate of 2e-4. For training the 

generator, the beta of the optimizer is set to 0.5. For training 

the discriminator, the beta of the optimizer is set to 0.999. We 

use an RTX 2070 graphics card for the experiments.  

For the convenience of calculation, for images whose size 

does not meet the multiple of 128, we have zero padding on the 

left and bottom to make the image size a multiple of 128. 

 

Figure 5. The first row shows the cell images from the BBBC04 dataset; a. b, c, d, and e represent the images of cell overlap 

from 0%, 15%, 30%, 45%, and 60%, respectively. In the second row, f, g, h, i, and j are image samples from the BBBC05 

dataset 

4.2 Evaluation methods 
Our model performs two tasks simultaneously: one is to 

segment the cell image, and the other is to count the number of 

cells. For cell segmentation, the Peak signal-to-noise ratio 

(PSNR) and Structure Similarity Index Measure (SSIM) are used 

as the evaluation indexes between the generated segmentation 

map and the truth map. 

PSNR is an engineering term representing the ratio of the 

maximum possible signal power to the destructive noise power 

affecting its accuracy. Since many signals have a wide dynamic 

range, the peak signal-to-noise ratio (PSNR) is usually 

expressed in decibels. Researchers usually use PSNR to 

evaluate the quality of an image compared with the original 

image. The higher the PSNR, the smaller the distortion.  

SSIM can compare the structural distortion of the new image 

and reference images' structural distortion more instantly. 

Therefore, we also use SSIM to evaluate the quality of the 



 

 

generated image. SSIM is generally between 0 and 1. The larger 

its value, the better the image quality. 

We use two indexes to evaluate the prediction results to 

predict cell numbers. The mean counting error (MCE), which 

measures instance counting accuracy for R images: 

 𝑀𝐶𝐸 =
1

𝑅
∑ |𝐶𝑔𝑡

𝑖 − 𝐶𝑝𝑟𝑒𝑑
𝑖 |𝑅

𝑖=1 , ( 12 ) 

where 𝐶𝑔𝑡
𝑖  represents the ground truth number of cells in the i-

th picture, and 𝐶𝑝𝑟𝑒𝑑
𝑖  is the cell number predicted by the 

generator. MCE can numerically represent the average number 

of false identifications per image. A smaller value of MCE means 

a smaller amount of counting error per image on average 

The root mean squared error (RMSE) can reflect the 

deviation value of the prediction error of each instance: 

 𝑅𝑀𝑆𝐸 = √
1

𝑅
∑ (𝐶𝑔𝑡

𝑖 − 𝐶𝑝𝑟𝑒𝑑
𝑖 )

2𝑅
𝑖=1 , ( 13 )  

where R is the number of responses, 𝐶𝑔𝑡
𝑖 represents the ground 

truth number of cells in the i-th picture, and 𝐶𝑝𝑟𝑒𝑑
𝑖  is the cell 

number predicted by the generator. RMSE is a commonly used 

model performance evaluation metric in the field of object 

counting. A smaller value of RMSE means better accuracy of the 

model prediction. 

In addition, we use floating-point operations (FLOPs) to 

measure the complexity of the model. For a convolutional layer, 

FLOPs are calculated as: 

 𝐹𝐿𝑂𝑃𝑠 = 2𝐻𝑊(𝐶𝑖𝑛𝐾2 + 1)𝐶𝑜𝑢𝑡 ,  ( 14 ) 

where 𝐻 and 𝑊 represent the height and width of the output 

feature map, respectively; 𝐾  is the kernel size of the 

convolutional layer, 𝐶𝑖𝑛 is the channel of the input feature map, 

and 𝐶𝑜𝑢𝑡 is the channel of the output feature map. 

4.3 Validation of LFMMG and CMTD  
Based on the thinking of control variates, we first 

constructed a generator with VGG16-bn as the backbone and 

combined it with our CMTD to form a VGG+CMTD GAN. At the 

same time, we constructed an LFMMG GAN model with LFMMG 

and a general discriminator without structure fusion. We 

experimentally compared our ELMGAN with these two GAN 

models on the BBBC04 dataset. The experiment shows that our 

LFMMG and CMTD-based ELMGAN effectively could improve 

the accuracy of the image segmentation and the count 

prediction. 

Table 3 shows that ELMGAN, based on LFMMG and CMTD, 

achieves the best counting accuracy and image segmentation 

accuracy. Compared with the generator without multi-scale 

feature fusion based on VGG16, our LFMMG can significantly 

improve the accuracy of cell counting and image generation. 

Additionally, Figure 6 shows that images generated by LFMMG 

are smoother at the edges than images generated by VGG16 

without multi-scale feature fusion. Thus, using large stride 

upsampling to restore the image might lose more image details 

than using multi-scale feature fusion. Besides, from the 

comparison of count results, compared with the convolutional 

layer with a larger stride, the pooling layer for downsampling 

indeed causes information loss and change.  

On the other hand, in Table 3, according to the SSIM results 

of LFMMG+CMTD and LFMMG, the CMTD plays a good role in 

optimizing the structural accuracy of the generated images. 

Moreover, CMTD is helpful to feature extraction of the 

generator. The addition of the CMTD not only gives the model a 

better result in the segmentation of images, but also gives a 

surprising performance in predicting cell numbers.  

In addition, from Figure 7, our ELMGAN, based on LFMMG 

and CMTD, shows a great segmentation performance on every 

overlap level. The values of MCE and RMSE show that our 

method has few counting errors on the BBBC04 dataset. The 

values of PSNR and SSIM show that the generated segmentation 

images can be almost identical to the ground truth. Figure 8 

shows that our method also handles the details very well: 

Narrow gaps and voids were successfully segmented. 

Furthermore, we compare the difference in model 

complexity between LFMMG with feature fusion and the VGG-

based model without feature fusion based on images with the 

size of 256x256x3. 

The value of FLOPs shows the total number of floating-point 

calculations required for running the statistical model. The 

speed at which the generator processes a single picture is 

calculated by recording the total time of processing 100 

pictures. The memory usage shows the requirement of 

inference memory. The parameters show the total parameters 

of this model. FLOPs and speed can represent the time 

complexity of the model and the operation speed of the model. 

The memory usage and the parameters represent the spatial 

complexity of the model. 

From Table 1, the feature fusion method complicates the 

model and reduces the processing speed. However, although 

the decoder-encoder-based feature fusion method increases 

the complexity of the model, this method could improve the 

accuracy of cell contour segmentation and improve the 

performance of the model greatly. 

Table 1. The Network Complexity Analysis 

Feature 

fusion 
FLOPs Speed Memory usage Parameters 

Yes 5.12GFLOPs 89ms/p 56.34MB 15.83MB 

No 2.14GFLOPs 57ms/p 32.32MB 10.72MB 

 

4.4 Validation of Proposed NH Loss 
The model using our NH loss and the models using other loss 

functions (L1 loss, L2 loss, and Hybrid loss) are compared 

based on BBBC04 dataset. Hybrid loss (H loss) is our NH loss 



 

without pixel loss. As shown in Table 4, our NH loss-based 

method achieves the best counting accuracy and image 

segmentation accuracy. 

The model trained with L1 loss gets a better image accuracy. 

The L2 loss training model gets a better accuracy in predicting 

the number of cells. Therefore, we should use both L1 loss and 

L2 loss in the training process. L2 loss is suitable for counting 

tasks, and L1 loss is suitable for segmentation tasks. H loss 

integrates the characteristics of both L1 loss and L2 loss, which 

could balance the learning of the two tasks. 

However, if no pixel loss is calculated and only using the H 

loss to train the model, the segmented image generated by the 

model will be significantly worse than that generated by the 

model trained with our NH loss function. Moreover, the 

experiment results deteriorate as the level of cell overlap 

increases. Adding pixel loss can effectively control this trend. 

Besides, when training the model without combined loss, the 

counting ability decreases as the training time increases. 

In NH loss, we use two parameters to adjust the learning 

concerns of the model for the counting task and the 

segmentation task. In Table 2, As the ratio of the pixel loss 

weight 𝑎 to the counting loss weight 𝑏 increases, the quality of 

the generated image has been improved. However, the increase 

in the counting loss weight has no significant effect on the 

change in count results. Therefore, the default value of 𝑎 is 100 

and 𝑏 is 0.1. This default value does not represent an optimal 

parameter. We can enlarge the value of 𝑏 moderately when the 

counting task is more difficult, and we can enlarge the value of 

𝑎  moderately when the image segmentation is more 

complicated. 

Table 2. Comparison of different loss weights in NH loss on 

the BBBC05 dataset. 𝒂 is the weight of pixel loss, and 𝒃 is 

the weight of counting loss. 

Pixel loss 

weight (𝑎) 

Counting loss 

weight (𝑏) 
MCE RMSE PSNR SSIM 

1 10 1.01 1.3 63.07 0.465 

1 1 0.816 1.024 62.58 0.524 

10 1 0.966 1.302 65.41 0.569 

100 1 0.714 0.929 65.44 0.650 

100 

(Default) 
0.1 (Default) 0.803 1.023 64.33 0.983 

 

 

Figure 6. Segmentation comparison with (LFMMG) and without (VGG) feature fusion. The image is magnified in the red 

box. 

Table 3. Comparison of different network structures. Red means the best result. 

 Models Overlap levels 0% 15% 30% 45% 60% Avg. 

C
o

u
n

ti
n

g
 

LFMMG + CMTD 
MCE 0.27 0.18 0.33 0.29 0.64 0.34 

RMSE 0.34 0.25 0.4 0.33 0.7 0.40 

VGG + CMTD 
MCE 0.48 0.7 0.66 0.84 0.79 0.694 

RMSE 0.59 0.96 0.87 1.06 0.86 0.869 

LFMMG GAN 
MCE 0.43 0.33 0.27 0.63 0.83 0.50 

RMSE 0.52 0.43 0.31 0.87 0.92 0.61 



 

 

Se
gm

en
ta

ti
o

n
 LFMMG + CMTD 

PSNR 64.9 66.6 65.1 66.5 66.9 65.9 

SSIM 0.98 0.96 0.95 0.96 0.95 0.96 

VGG + CMTD 
PSNR 62.8 63.1 63.1 63.2 63.4 63.1 

SSIM 0.92 0.93 0.93 0.94 0.94 0.937 

LFMMG GAN 
PSNR 62.96 64.4 63.15 63.39 63.39 63.45 

SSIM 0.95 0.95 0.96 0.94 0.96 0.95 

 

 
Figure 7. The segmentation results of our ELMGAN were on the BBBC04 dataset. White dots are the cells in input images, 
and the blue dots are the sells in the segmentation images; From the left to right are the images of cell overlap from 0%, 
15%, 30%, 45%, and 60%, respectively. 

 
Figure 8. The detailed segmentation results of our ELMGAN on the BBBC04 dataset 

Table 4. Comparison of different loss functions. Red means the best result. 

 Models Overlap levels 0% 15% 30% 45% 60% Avg. 

C
o

u
n

ti
n

g
 

NH loss (ours) 
MCE 0.27 0.18 0.33 0.29 0.64 0.342 

RMSE 0.34 0.25 0.4 0.33 0.7 0.404 

L1 loss 
MCE 0.507 0.457 0.308 0.54 0.359 0.434 

RMSE 0.581 0.528 0.41 0.671 0.46 0.53 

L2 loss 
MCE 0.505 0.412 0.23 0.315 0.347 0.361 

RMSE 0.694 0.477 0.3 0.401 0.461 0.466 

H loss 
MCE 0.542 0.542 0.348 0.481 0.565 0.495 

RMSE 0.573 0.598 0.373 0.491 0.651 0.537 

Se
gm

en
ta

ti
o

n
 

NH loss (ours) 
PSNR 64.96 66.55 65.07 66.47 66.9 65.99 

SSIM 0.979 0.963 0.949 0.958 0.954 0.961 

L1 loss 
PSNR 63.02 63.33 63.22 63.54 64.05 63.43 

SSIM 0.956 0.926 0.975 0.962 0.955 0.954 



 

L2 loss 
PSNR 62.85 64.09 63.14 63.22 63.39 63.33 

SSIM 0.859 0.89 0.802 0.782 0.785 0.823 

H loss 
PSNR 63.2 63.47 63.27 63.47 66.12 63.90 

SSIM 0.725 0.218 0.27 0.306 0.592 0.422 

 

4.5 Comparison with FBU and other 
Upsampling Methods 

To verify the performance of FBU in the decoder of the 

model of LFMMG, we try FBU, the nearest interpolation 

sampling method, and the bilinear interpolation sampling 

method to expand the size of the image, respectively. 

Experiments are performed on the BBBC04 and the BBBC05 

datasets. 

From Table 5, we can see that our FBU is much better than 

the other two traditional interpolation sampling methods in the 

upsampling performance. From the results of SSIM, using the 

FBU method to get the segmented image can restore the edge 

structure of cells to the maximum extent. Additionally, as 

predicted by mathematical analysis, the FBU method is much 

faster in processing a single picture than the traditional 

interpolation sampling method because it reduces the amount 

of computation. The average speed at which the generator 

processes a single picture is calculated by recording the total 

time of processing 100 pictures. Furthermore, the unit of the 

image processing speed is the average number of milliseconds 

per picture. From Table 5, with the same model structure, 

simply changing the traditional sampling method to FBU 

increases the processing speed by about 30%. The FBU 

improves the computing speed of the network, dramatically 

enhances the efficiency of the network, and improves the 

network experience. 

Table 5. Comparison of different upsampling methods on 
two datasets. Red means the best result. 

Dataset Models PSNR↑ SSIM↑ Speed 

B
B

B
C

0
4

 FBU (ours) 65.99 0.960 1.9ms 

Nearest 63.278 0.824 2.9ms 

Bilinear 63.75 0.831 2.9ms 

B
B

B
C

0
5

 FBU (ours) 64.33 0.983 1.9ms 

Nearest 75.442 0.83 2.9ms 

Bilinear 76.64 0.876 2.9ms 

4.6 Comparison with other Methods 
We also compare our method with other studies on the 

BBBC04 and the BBBC05 datasets. The results are shown in 

Table 6. Our method has the best performance on both 

segmentation and counting tasks. Our method has the greatest 

advantage over other methods in that it can simultaneously 

perform the cell count and segment tasks. 

In the counting task, our method has a higher accuracy for 

predicting cell numbers than classical CNN models, such as 

VGG16. Some classical Point-based counting models cannot 

directly use these datasets without the coordinate information 

of each cell because they cannot generate the ground truth like 

density map and bounding box coordinates. 

Our model outperforms classical segmentation models, such 

as the U-Net, in the segmentation task. U-Net segmentation 

results are better than VGG-GAN, which illustrates the 

importance of multi-scale feature fusion for image 

segmentation. GAN and cGAN may not complete convergence 

due to slow training and the epoch limitation. 

 

Table 6. The experimental results of the models on the BBBC04 and the BBBC05. ‘↑’ shows that the larger the indicator, the 
better; ‘↓’ shows that the smaller the indicator, the better. ‘/shows that the test was not carried out in the original paper; ‘×’ 
shows that the model cannot do this task directly; Red means the best result, and Blue means the second-best result. 

Dataset Models MCE↓ RMSE↓ PSNR↑ SSIM↑ 

B
B

B
C

0
4

 

ELMGAN-NH loss (ours) 0.342 0.404 65.99 0.961 

ELMGAN-H loss (ours) 0.495 0.537 63.90 0.422 

ELMGAN-L1 loss (ours) 0.434 0.53 63.43 0.954 

ELMGAN-L2 loss (ours) 0.361 0.466 63.33 0.823 

LFMMG-NH loss (ours) 0.501 0.612 63.46 0.955 

VGG+CMTD 0.694 0.869 63.14 0.937 

U-Net [2] × × 62.312 0.951 

cGAN [36] × × 65.53 0.181 

GAN [10] × × 65.08 0.046 

FPNet [8] / / / / 

VGG16 [34] 2.192 2.748 × × 

B B B C
0 5
 ELMGAN-NH loss (ours) 0.803 1.023 64.33 0.983 

ELMGAN-H loss (ours) 0.867 1.083 62.82 0.393 



 

 

ELMGAN-L1 loss (ours) 0.928 1.157 63.09 0.988 

ELMGAN-L2 loss (ours) 0.868 1.08 59.44 0.878 

LFMMG-NH loss (ours) 0.828 1.038 74.56 0.851 

VGG+CMTD 2.35 3.47 65.17 0.8629 

U-Net [2] × × 61.0 0.874 

cGAN [36] × × 56.6 0.194 

GAN [10] × × 56.3 0.034 

FPNet [8] 2.4 3.34 / / 

VGG16 [34] 2.87 3.55 × × 

We also record the file size and average processing speed of 

each image of each method. We use the ‘torch.save’ function to 

save the main parameters of the generator models and 

compare their file sizes. The unit of file size is the Megabyte. In 

addition, we record how fast the generator was processing the 

pictures. The image processing speed is statistical from the 

time that the image is sent to the generator until the result is 

recorded. The average speed is calculated by recording the 

total time of processing 100 pictures. And the unit of the image 

processing speed is milliseconds per picture. 

In Table 7, our ELMGAN is a more lightweight model. 

MemR+W shows the sum of the size read from the memory and 

the size written into the memory while the network is running. 

At run time, our method consumes the least memory. And it 

only takes up half the disk space of the U-Net. The 

computational speed is extremely fast because of the 

simplification of the model. Our ELMGAN processing is ten 

times faster than GAN and twice the speed of the classical image 

processing models VGG16 and U-Net. The experimental results 

verify that our method achieves an excellent network light-

weighting result and successfully improves the processing 

efficiency of the model. 

Table 7. Comparison of file size and process speed of 
models; Red is the best result. 

Models 
File 

Size 

Parameter

s 
Speed MemR+W 

ELMGAN 

(ours) 
69.2MB 21.04M 1.9ms/p 

138.89M

B 

cGAN [36] 903MB 252.48M 3.6ms/p 965.66M 

GAN [10] 894MB 227.383M 
12.6ms/

p 
868.91M 

U-Net [2] 131MB 32.96M 2.9ms/p 1.11GB 

VGG16 [34] 93MB 138M 2.2ms/p 
499.09M

B 

 

5 Conclusion  

Cell segmentation and counting are important tasks. We 

propose a GAN-based efficient lightweight multi-scale-feature-

fusion multi-task model (ELMGAN) for cell segmentation and 

counting simultaneously. Point-based counting methods 

require datasets with detailed annotations of cell locations. 

This may lead to scarce datasets, tedious labelling processes 

and complex models. Our method achieves non-Point-based 

counting that overcomes the limitation of traditional Point-

based counting methods and can make wider use of existing 

datasets. Our NH loss function coordinates the training 

attention of the counting and segmentation tasks and helps 

ELMGAN better to train the multi-task model. Our CMTD makes 

ELMGAN to achieve higher segmentation accuracy and 

prediction ability. Experiments show that our method can 

generate high-quality segmentation images with excellent 

counting accuracy. In addition, the experimental results verify 

that our method achieves an excellent network lightweight 

result and successfully improves the processing efficiency of 

the model. 

Cell counting and segmentation have a strong basic 

demonstration significance in the whole field of object counting 

and segmentation. This non-Point-based counting method 

could be extended to the whole field of object counting, just like 

its predecessor density map-based counting method. 

Additionally, for a wider range of unlabeled datasets, models 

based on weakly-supervised or self-supervised learning may 

further strengthen the significance of non-Point-based 

counting in object counting. In the future, we plan to continue 

to expand the application of this counting method in other 

object counting tasks. 
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