
ELMGAN: A GAN-based Efficient Lightweight Multi-scale-feature-
fusion Multi-task Model

Lijia Deng, Shui-Hua Wang, Yu-Dong Zhang*

1 School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
E-mails: ld232@le.ac.uk, shuihuawang@ieee.org, yudongzhang@ieee.org.

* Correspondence should be addressed to Yu-Dong Zhang

ABSTRACT

Cell segmentation and counting is a time-consuming and

important experimental step in traditional biomedical research.

Many current counting methods are Point-based methods

which require exact cell locations. However, there are few such

cell datasets with detailed object coordinates. Most existing cell

datasets only have the total number of cells and a global

segmentation annotation. To effectively use existing datasets,

we divide the cell counting task into the cell’s number

prediction and cell segmentation. We propose a GAN-based

efficient lightweight multi-scale-feature-fusion multi-task

model (ELMGAN). To coordinate the learning of these two tasks,

we propose a Norm-Combined Hybrid loss function (NH loss)

and use the method of the generative adversarial network to

train our networks. We propose a new Fold Beyond-nearest

Upsampling method (FBU) in our lightweight and fast multi-

scale-feature-fusion multi-task generator (LFMMG), which is

twice as fast as the traditional interpolation upsampling

method. We use multi-scale feature fusion technology to

improve the quality of segmentation images. LFMMG reduces

the number of parameters by nearly 50% compared with U-Net

and gets better performance on cell segmentation. Compared

with the traditional GAN model, our method improves the

speed of image processing by nearly ten times. In addition, we

also propose a Coordinated Multitasking Training

Discriminator (CMTD) to refine the accuracy of the details of

the features. Our method achieves non-Point-based counting

that no longer needs to annotate the exact position of each cell

in the image during the training and achieves excellent results

in cell counting and segmentation.

KEYWORDS

Convolutional neural network, Generative adversarial

networks, Cell segmentation, Cell counting

1 Introduction

Cell segmentation and counting have a very vital

significance in medicine. The number of cells in a sample is an

important measure of medical testing. For example, the disease

can be verified by counting cells in a sample [1].

The cell counting plate-based counting method is the

traditional cell counting method. Medical workers count the

number of cells in each label repeated under the microscope to

estimate the cell density of the whole sample. However, this

method is manual work and has many shortcomings: At first,

this is a labour-intensive job, which costs much time on

monotonous physical work; Secondly, because of the use of

manual counting and high intensity of repetitive labour,

manually identifying cells may lead to uncontrollable

subjective errors in statistics; Thirdly, the manual counting

method lacks the quantization of the error range; Finally,

although there are several devices available for rapid cell

counting tasks, these devices are expensive and often lack the

ability to locate images of the cells being counted.

In the past decade, deep convolutional networks have

shown excellent performance in many visual recognition tasks

[2-5]. It has become a trend to use computer technology for cell

image recognition and statistics: He et al. designed a

concatenated fully-convolutional-regression network to

regress the density map of cells and count the number of cells

in microscopy images [1]; Xie proposed a synthetic-data-

trained two fully convolutional density regression networks for

cell counting [5]; Graham et al. leveraged the instance-rich

information encoded within the vertical and horizontal

distances of nuclear pixels to their centres of mass to segment

the nuclear [6]; Dan, Alessandro and et al. developed a deep

max-pooling convolutional neural network to detect breast

histology images [7]; Carlos et al. first used the Extremal Region

Trees to detection of overlapping objects in microscopy [8]; Liu

and Yang proposed general cell detection algorithm based on a

deep convolutional neural network [9].

The training process of these methods is based on the

accurate coordinate of each target on the image. Depending on

these labelled points, these kinds of neural network models

learn the characteristics of the labelled points and their vicinity.

Therefore, these methods are point-based, trained on datasets

with detailed cell coordinates annotation. And their datasets

are required detailed coordinate labelling. However, the work

of labelling is time-consuming and laborious. Such datasets

need to be mathematically converted into density maps when

mailto:ld232@le.ac.uk
mailto:shuihuawang@ieee.org
mailto:yudongzhang@ieee.org

used. Such mathematical transformations are error-prone,

resulting in an insufficient accuracy of the ground truth values.

At present, most existing cell datasets only have segmentation

annotation and the total cell count. To make use of these

datasets, we propose the non-Point-based method, which can

segment and count at the same time. However, in the process

of training such a multi-task convolutional neural network,

more manual design is usually needed to get better

performance. Fortunately, the generative adversarial network

(GAN) allows us to give a high-level target task simply and then

automatically learn a loss function suitable for that task [10].

GANs can judge the authenticity of the generated image and try

to make the generated image less fuzzy. Thus, GANs learn

losses based on data situations, so they can be applied to tasks

that require complex loss functions [11].

Therefore, we propose a GAN-based efficient lightweight

multi-scale-feature-fusion multi-task model (ELMGAN) to

segment and count cell images simultaneously. Furthermore,

we design a lightweight and fast multi-scale-feature-fusion

multi-task generator (LFMMG). Compared with the backbone

model, this generator has obvious simplification in memory

consumption and realizes the simultaneous generation of

multiple prediction targets. We also take the discriminator as

an important part of multi-tasking training. We design a

Coordinated Multitasking Training Discriminator (CMTD) as

the discriminator to improve the performance of the generator

and independently coordinate the weight of multi-task learning.

Training of discriminator can reduce the difficulty of our loss

function design and make us use simple loss function to

complete the coordination of multi-task training. To coordinate

the learning of these two tasks, we propose a Norm-Combined

Hybrid loss function (NH loss). Our ELMGAN achieves non-

Point-based counting that overcomes the limitation of

traditional Point-based counting methods, which required

datasets with detailed cell coordinates annotation. We use two

cell microscope image datasets without the exact position

annotation of each cell to validate the model. According to the

experimental results, compared with other methods that just

can complete only one task, our method can complete multiple

tasks, and our method achieves excellent results in both

counting and segmentation tasks. In short, our contributions

are:

• We propose ELMGAN to segment and count cell images.

• We propose the NH loss.

• We propose a new upsampling method: FBU.

• Our ELMGAN overcomes the limitation of traditional

Point-based counting methods.

• The result of ELMGAN is better than state-of-the-art.

2 Background

Recently, Deep Convolutional Neural Networks (DCNNs)

have shown great success in both the natural and medical

image domains [2, 3, 5, 8]. The fully convolutional networks

(FCN) [3] method is one of the most widely used segmentation

networks of convolutional neural networks in computer vision.

FCN uses convolutional layers instead of fully connected layers

and uses skip layers to retain advanced image features. Many

medical image segmentation networks use FCN for medical

image segmentation [12-15]. Schmitz et al. used multi-scale

fully convolutional neural networks for histopathology image

segmentation [15]; Vigueras et al. obtained that a convolutional

network is superior to a sliding window network in cell

segmentation through experimental comparison [16].

In previous studies, most networks used the encoder-

decoder model [17]. Input data are gradually feature extracted

through several successive downsampling units. After the

sampling passes through the final bottleneck layer, highly

abstract features are continuously re-stored to their original

dimensions. However, the downsampling process can cause the

feature to lose detailed information. In order to preserve the

details of advanced features, in ResNets [18], researchers used

residual layers to convey information about advanced features

downward. Nevertheless, there is a lack of direct

communication between each bottleneck layer of ResNets.

Based on FCN and ResNets, U-Net has shown excellent

performance in medical imaging [2]. U-net uses skip layers to

transfer the encoder features to the decoder and carries out

multi-scale feature fusion, which performs well in medical

image segmentation. Many image segmentation networks are

inspired by U-Net [19-21].

In addition, image upsampling is an important part of the

decoder. Researchers often use upsampling methods to restore

the feature vector to the desired image. At present, there are

two commonly used upsampling methods: interpolation

upsampling methods and non-interpolation upsampling

methods. The non-interpolation upsampling method usually

uses dilated convolution to enlarge the image. However, the

dilated convolution usually produces a Checkerboard pattern,

blurring the generated image [22]. Although the image size is

enlarged, the quality of the image is reduced. Expanding the

image size in large steps can reduce the quality of the image to

an unbearable level. The computer can only process and save

discrete data, and the results of many image-processing are

continuous. In order to obtain the values of discrete points,

interpolation is necessary.

Therefore, researchers prefer to use interpolation methods

to expand the images. At present, the most commonly used

interpolation upsampling methods are the nearest upsampling

method and the bilinear upsampling method. The logic of the

nearest interpolation method is very simple. It only compares

the distance between the interpolated pixel and the original

pixel. The interpolated pixels come from the surrounding

original pixels without generating any new pixel values.

However, some lines and edges in the image have an obvious

sawtooth effect. The bilinear interpolation method requires

cubic linear interpolation from two directions. Although its

calculation process is more complex than the nearest

upsampling method, the new pixel values can usually fit the

surrounding pixels, making the image’s colour transition softer.

Although the current semantic segmentation models restore

the image in size by applying various interpolation methods for

the output of the last layer of the decoder, these methods have

no learning parameters, which may lead to a suboptimal

prediction result. [23].

On the other hand, most cell counting methods are divided

into two categories: Point-based counting and non-Point-based

counting. The Point-based methods are trained on datasets

with detailed cell coordinates annotation and these methods

could learn the characteristics of the annotated points. The two

most common Point-based counting methods are the

detection-based counting method and the density-map-based

counting method. The detection-based counting method marks

each cell by box and counts the boxes to get the number of cells

[1, 24, 25]. Although the detection-based counting method has

the highest accuracy, this method is severely limited by the

complexity of images and requires a complex ground truth to

frame each cell. The density-map-based counting method is to

expand the annotation point of each cell into a spot with a

similar cell size by Gaussian filter [1, 5]. In the image, these

spots are similar to real cells, which reflect the location and

density of cells well. Additionally, the total pixel value of the

image is the number of cells. This method combines the two

functions of counting and locating. However, like the detection-

based counting method, the density-map-based counting

method also needs detailed object coordinates. Non-Point-

based counting does not require datasets to contain detailed

object coordinates. The early non-Point-based counting

method, the direct counting method, usually uses foreground

feature and edge feature extraction to construct the mapping

between features and the number of objects, such as standard

background subtraction techniques to get foreground features

[26]. But direct counting lacks the position information of the

target.

Currently, few datasets with detailed cell coordinate labels

are available specifically for cell counting because accurate

labelling of high-density cells is a time-consuming and labour-

intensive task. Most datasets still only have the classification,

segmentation information, and the total number of cells. It may

be a convenient and efficient method to count cells by

predicting cell numbers and semantic segmentation to present

cell location [6, 27, 28]. Although it is a relatively simple task to

predict the numerical value with the help of neural networks, it

may be difficult for the network to correctly learn effective

knowledge if it wants to complete the generation of

segmentation image and prediction of cell counting at the same

time using traditional training methods. Because image

segmentation and cell count prediction are two different jobs.

Image segmentation is similar to the answer question, which

has high requirements for the detailed restoration of the

generated image. Another is closer to the True or False, which

needs to judge the potential number of cells from the image

features and give the possible prediction value.

The generation of segmented images from cell images can

be regarded as image-to-image translation. At present,

generative adversarial networks perform well in this area [11,

29]. Andreini et al. successfully used GAN in the segmentation

of colony images [30]. In some papers, GAN is working for

image-to-image translation. With the using of conditional

constraints, GAN has shown impressive performance in style

transfer and so on [31-33]. Therefore, we use conditional

generative adversarial networks further to enhance the

semantic segmentation capability of the model.

3 Methods

We propose a GAN-based efficient lightweight multi-scale-

feature-fusion multi-task model (ELMGAN) that can segment

and count cells simultaneously. In the whole GAN structure, We

propose a lightweight and fast multi-scale-feature-fusion

multi-task generator (LFMMG) and a Coordinated Multitasking

Training Discriminator (CMTD). In order to optimize multi-

tasking, we propose a Norm-Combined Hybrid loss function

(NH loss).

3.1 Lightweight Fast Multi-scale-feature-fusion
Multi-task Generator

We expect to build a lightweight and fast multi-scale-

feature-fusion multi-task generator (LFMMG). Although the

multi-scale feature fusion based on encoder-decoder

segmentation models can well generate segmentation images

with good low-level features, such architectures are

complicated, and the model occupies a large memory, which

does not meet our goal of lightweight. However, without the

Encoder-Decoder architecture, the model does not perform as

well as we need. Fortunately, we noted that the feature

extraction networks like VGG [34] already have good feature

extraction capability and have a lot of redundancy in network

structure.

Therefore, in our encoder, we optimize the structure design

of the model. As Figure 1 shows, we use six downsampling units,

which is only 36% the size of VGG16. This leaves a lot of

memory for further addition of decoders. The convolutional

layer with a step size of two is used in the downsampling unit,

which reduces the feature map size while extracting features

and avoids feature loss caused by using the pooling layer.

Therefore, each of our Down-Sampling Units could reduce the

size of the feature map by half, and our encoder could reduce

the image by 64 times in total.

For upsampling, we use the Fold Beyond-nearest

Upsampling (FBU) to expand the size of our feature map. After

studying and comparing a variety of upsampling methods, we

design FBU, which will be introduced in the next section.

Compared with the traditional nearest interpolation method,

FBU has a simpler calculation process, which speeds the

calculation of the model. Besides, FBU not only enlarges the

feature size, but also reduces the involvement of external

errors from the interpolate upsampling layers. Moreover,

compared with the traditional no learning upsampling

methods such as nearest neighbour upsampling and bilinear

interpolation upsampling, FBU has learnability. We add

learnable parameters to make the FBU better enlarge the

boundary changes in the image.

In the Decoder, we first magnified the image 36 times

through five FBU blocks in total, and each FBU block can

enlarge the image twice. Each FBU block contains an FBU layer,

an Instance Normalization layer, and a Leaky ReLU activation

layer. However, it is easy to blur the resulting image using the

upsampling method alone, and the deep-seated feature map

may lose many low-level features associated with image

outlines and textures because it is highly abstract.

According to the successful experience of U-Net, we use

multi-scale feature fusion to alleviate this problem. The feature

map is fused with the feature map of the same size in the

encoder, after it was enlarged by the FBU block.

Finally, we design another independent output layer to

predict cell numbers. Based on the idea of FCN, we use the 1 × 1

convolutional layers. At the same time, we set up the global

average pooling layer so that the network could accommodate

different sizes of input images. This direct prediction method

overcomes the limitation of Point-based counting on datasets.

In conclusion, we propose a lightweight and fast multi-scale-

feature-fusion multi-task generator, which achieves non-Point-

based counting, and gives the location of the target.

Furthermore, our LFMMG reduces the number of parameters

by 50% compared with U-Net, and its feature extraction

encoder is 36% the size of VGG16. By reducing the number of

convolutional layers and using FBU, our method significantly

reduces the amount of computation and memory consumption.

Figure 1 The structure of Lightweight Fast Multi-scale-feature-fusion Multi-task Generator (LFMMG); The LFMMG is the
generator of ELMGAN, which is used for cell counting and cell segmentation.

3.2 Fold Beyond-nearest Upsampling Method
In the decoder, researchers often use upsampling methods

to restore the feature vector to the desired image. However,

some upsampling methods, like dilated convolutional layer,

produce a Checkerboard pattern and blurry the generated

images [22]. Although the image size is enlarged, the quality of

the image is reduced. Expanding the image size in large steps

reduces the quality of the image to an unbearable level.

Therefore, researchers prefer to use interpolation methods to

get larger images. Although the current semantic segmentation

models restore the image in size by applying various

interpolation methods in the last few layers of the decoder,

these methods have no learning parameters, which may lead to

a suboptimal prediction result. [23]. The classical nearest or

bilinear interpolate upsampling method has a complex

calculation process. Calculating a new pixel 𝑃𝑥𝑛,𝑦𝑛
 requires the

dot product of four scalar numbers 𝑊 and the pixel values 𝑃 of

four vertices:

 𝑃𝑥𝑛,𝑦𝑛
 = 𝑊𝑥,𝑦𝑃𝑥,𝑦 + 𝑊𝑥+1,𝑦𝑃𝑥+1,𝑦 + 𝑊𝑥,𝑦+1𝑃𝑥,𝑦+1 +

𝑊𝑥−1,𝑦𝑃𝑥−1,𝑦 + 𝑊𝑥,𝑦−1𝑃𝑥,𝑦−1. (1)

In order to reduce the loss introduced by this method, the

out stride of interpolating upsampling layers should be set

small when restoring the image pixel by pixel. Because of that,

the interpolate upsampling method often has to be used

multiple times, and it causes a significant increase in

computational complexity and memory requirements. For

restoring an image 𝐼 ∈ 𝑅𝑤,ℎ,𝑐 to a new image 𝐼𝑛 ∈ 𝑅𝑤̂,ℎ̂,𝑐̂ ,

through 𝑁 Interpolate upsampling layers, the traditional

interpolate upsampling method needs 𝑁 × 4 × 𝑤̂ × ℎ̂ × 𝑐̂ times

multiplication.

Although this kind of interpolation method avoids the

chessboard effect caused by expansion convolution, these

methods lack learnable parameters. Sometimes the result of

interpolation may not be the best. The Beyond-bilinear Data-

dependent Upsampling (BDU) [23] uses convolutional layers to

restore the feature map. It uses the learnable parameters

brought by the convolutional layer to calibrate the accuracy of

interpolation. For preset out stride 𝑑, BDU divided the image

into 𝑑 × 𝑑 small patches with the size of
𝑤

𝑑
×

ℎ

𝑑
× 𝑐 . Then the

small patch arranges to a vector 𝑣 ∈ [0,1]𝑑×𝑑×𝑐 . The 𝑣 is

compressed to 𝑢 ∈ 𝑅𝐶̂ by a convolutional layer, then 𝑢 are

mapped vertically to 𝑣̂ by another convolutional layer as the

new image 𝐼𝑛.

In formal language, that is:

 𝑢 = 𝐻𝑣; 𝑣̂ = 𝑉𝑢, (2)

where 𝐻 and 𝑉 are two convolutional kernels, respectively.

The total number of multiplications has been reduced to

𝑤 × ℎ × 𝑐 + 𝑤̂ × ℎ̂ × 𝑐̂ . This method successfully applies a

learnable convolutional layer to the interpolation sampling

method. And, this method avoids the problem of the

Checkerboard pattern when sampling on dilated convolution.

In addition, the spatial encoder of SFCN effectively improves

the continuity of the feature structure by folding and

segmenting the image [35].

This method inspired us. We use the convolutional layer to

generate multiple weighted new values of a pixel. We note that

the 3 × 3 convolutional kernel can maximize the reference to

the characteristics of the surrounding elements, to enhance the

continuity of the image structure. While a 1 × 1 convolutional

kernel also can do such tasks well and reduce the number of

parameters greatly. Therefore, we use a 1 × 1 convolutional

kernel for pixel value-added by default. Each new pixel is

computed directly from the original pixels of the image. And,

the image is scattered into pixels and then reorganized

according to the sequence, which makes each point multi-pixel

mixed and avoids the Checkerboard pattern.

This process is much like the repeated folding of dough

when making pastry. Therefore, we call this method as Fold

Beyond-nearest Upsampling (FBU). In our FBU, the channels of

feature map 𝑥 is expanded from 𝑐 to 𝑐̂ × 𝑑2. Then the expanded

feature map 𝑥 is arranged into a one-dimensional vector 𝑣 in

the horizontal direction, and then we rebuild the vector 𝑣 to a

matrix 𝑣̂ ∈ 𝑅𝑤,ℎ𝑑,𝑐̂𝑑 . Similarly, the matrix 𝑣̂ is arranged into a

one-dimensional vector 𝑢 in the vertical direction, and then we

rebuild the vector 𝑢 to a matrix 𝑢̂ ∈ 𝑅𝑤𝑑,ℎ𝑑,𝑐̂.

In formal language, that is:

 𝑥 = 𝑤𝑥 + 𝑏; 𝑥 → 𝑣𝑤,ℎ,𝑐; 𝑣̂ = 𝑣ℎ↔𝑐; 𝑢̂ = 𝑢𝑤↔𝑐 , (3)

where 𝑤 is the weight of the convolutional layer. The process is

shown in Figure 2.

Only one convolution calculation is carried out in the whole

upsampling process, and the total number of multiplications

has been reduced to 𝑤 × ℎ × 𝑐̂. Compared with the traditional

upsampling methods, the FBU reduces the number of

multiplication calculations greatly. The calculation process is

so simple that can speed up the calculation of the model. In

addition, compared with the traditional upsampling methods

(such as nearest upsampling and bilinear interpolation

upsampling), FBU has learnability. In the traditional

upsampling method, the new pixel is generated by calculating

the original pixel. New pixels in FBU are generated through the

convolutional layer. By training the learnable parameters of the

convolutional layer in FBU, FBU can generate new pixel values

more consistent with the feature change trend and better

enlarge the boundary changes in the image.

Figure 2. The process of Fold Beyond-nearest Upsampling

3.3 Coordinated Multitasking Training
Discriminator

Because the FBU is trainable, some new changes might be

introduced when the feature map is expanded. As the result,

sometimes the generated image has little visual difference, but

the feature map of the generated image may have different

features. Therefore, although the overall loss is decreasing

during the training, only one task might be trained. The

conditional GAN [36] can specify the generated range by

entering specific additional information into the discriminator.

Similarly, we want the model to remember the features needed

for counting when generating segmented images. So, we train

the discriminator with the original image that contains the

features needed for counting. Besides, the segmented image is

usually similar to the original image in the contour structure.

The original picture with complete information is regarded as

structural attention.

Based on that thinking, we propose the Coordinated

Multitasking Training Discriminator (CMTD) to coordinate the

learning weights of the two tasks and improve the quality of the

generated images. In CMTD, the original image 𝑥𝑖 fuses the

generated segmentation image 𝐺𝑖 on the channel as the input

of the discriminator to get the discriminant matrix 𝐷𝑖:

 𝐷𝑖 = CMTD ([
𝑥𝑖

𝐺𝑖
] ∈ 𝑅𝑤,ℎ), (4)

where 𝑖 represents the serial number of the image and ℎ, 𝑤

represent the height and width of the image, respectively.

We hope this can make the difference between the contour

structure of the segmented image and the original image more

prominent. By training the CMTD, the generator can predict cell

structure profiles more accurately and maintain attention to

the features required for counting.

As the left part of Figure 3 shows, the original image is fused

into the generated synthetic image as a part of the input. The

fused image is fed into four consecutive convolutional units.

Each convolutional unit contains a downsampling

convolutional layer with stride two, a Leak-ReLU layer with a

negative slope of 0.2, and an Instance Normalization Layer [37].

The image features were condensed 16 times in the process.

Finally, we get a feature map that can reflect the difference in

image structure. To amplify these structural differences, we

choose L2 loss as the loss function of the discriminator. This

discriminator identifies pixel errors between the two, making

the synthetic image structurally closer to the original.

In Section 4.3, we verified that CMTD could effectively

improve the performance of the multi-task generator.

Figure 3. The structure of Coordinated Multitasking Training Discriminator (CMTD); The CMTD is the discriminator of
ELMGAN, which is used to assist in training LFMMG.

3.4 ELMGAN Model with NH Loss
In order to enhance the performance of our model and

strengthen the connection between counting and segmentation,

we propose the Efficient Lightweight Multi-scale-feature-

fusion Multi-task GAN model (ELMGAN) to train our LFMMG

and CMTD. As shown in Figure 4, in the ELMGAN, the LFMMG

generates the segmentation images and cell counts, and the

CMTD estimates the probability that the input image comes

from the real data rather than a generated sample by

constructing a Markov random field.

For ELMGAN training, LFMMG and CMTD are trained

together under real data 𝑥, and ground truth 𝑦. The best model

is obtained through the minimax two-player game: Fixed the

CMTD and adjusted the parameters of LFMMG to minimize the

expectation of log[1 − CMTD(𝑥, LFMMG(𝑥))] and fixed the

LFMMG and adjusted the parameters of CMTD to maximize the

expectation log CMTD(𝑥, 𝑦). In formal language, that is:

 min𝐿𝐹𝑀𝐺max𝑆𝐹𝐷ELMGAN(LFMMG, CMTD) =

 𝐸𝑥,𝑦[log CMTD(𝑥, 𝑦)] + 𝐸𝑥,𝑦 log[1 − CMTD(𝑥, LFMMG(𝑥))].(5

)

We use our Norm-Combined Hybrid loss (NH loss) for

Generators to learn multi-tasks. Using loss function matching

tasks can effectively improve the learning efficiency of the

model. L2 loss is the most commonly used loss function in

counting tasks, so we use L2 loss to evaluate the counting task.

For the generation of segmentation images, we pay more

attention to the structural similarity of images. Because L1 loss

can capture the low frequency correctly, the L1 loss is

employed to adjust the structural error of the image at the pixel

level. In addition, in GANs, the original loss of the generator is

calculated by the discriminator’s loss, so our NH loss also

includes a part of discriminator loss. In a word, our NH loss

includes three parts: counting loss, pixel loss, and a part of

discriminator loss.

For counting loss, for R images, the i-th image with 𝑐𝑔𝑡 cells

are predicted by the generator to obtain 𝑐𝑝𝑟𝑒𝑑 cells, we use

 𝐿𝑐𝑜𝑢𝑛𝑡 =
1

𝑅
∑ (𝑐𝑔𝑡

𝑖 − 𝑐𝑝𝑟𝑒𝑑
𝑖)

2𝑅
𝑖=1 (6)

as the loss function of the counting task.

The pixel loss is calculated by the generated image 𝐺𝑖 and

segmentation ground truth 𝑆𝑔𝑡𝑖
:

 𝐿𝑝𝑖𝑥𝑒𝑙 =
1

𝑅
∑ |(𝑆𝑔𝑡 − 𝐺𝑖)|𝑅

𝑖=1 . (7)

Considering the discriminator’s influence on the generator’s

task attention allocation, when training the generator, we need

to calculate the discriminant loss of the generator by assuming

that the generated segmentation image is completely reliable.

In the last part of NH loss, we use the generated synthetic

image 𝐺𝑖 and the original image to generate the discriminant

matrix 𝐷𝑖 through the discriminator and calculate an L2 loss by

using the discriminant matrix 𝐷𝑖 and the valid matrix 𝑣𝑎𝑙𝑖𝑑,

which was full by one:

 𝐿𝑜𝑠𝑠_𝐷𝑟𝑒𝑎𝑙 =
1

𝑅
∑ (𝑣𝑎𝑙𝑖𝑑𝑖 − 𝐷𝑖)2𝑅

𝑖=1 . (8)

Then Finally, these three losses are combined to build our

NH loss:

 𝑁𝐻 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠_𝐷𝑟𝑒𝑎𝑙 + 𝑎𝐿𝑝𝑖𝑥𝑒𝑙 + 𝑏𝐿𝑐𝑜𝑢𝑛𝑡, (9)

where 𝑎 is the weight of pixel loss, and 𝑏 is the weight of

counting loss.

In LFMMG, the number of cells is predicted directly through

the features extracted by the decoder. Loss count is employed

to learn cell number prediction, which can directly affect the

preference of LFMMG in feature extraction. The synthetic

image is constructed based on these extracted features. Like

the butterfly effect, changes in the extracted features can create

a huge disturbance to the prediction of the synthetic image.

Therefore, we recommend using a larger 𝑎 and smaller 𝑏 to

balance the training of the two predictors. In Section 4.4, we

experimentally verified this inference. So here, the preset value

of 𝑎 is 100 and that of 𝑏 is 0.1. This preset value certainly does

not represent an optimal parameter. Based on the experiment

results, it is recommended to fine-tune the value of 𝑎 in ten

units depending on the complexity of the data. However,

turning up the value of 𝑏 need to be as precise as possible.

When training the discriminator, in the first step, the

Discriminant matrix 𝐷𝑖 calculates an L2 loss with the valid

matrix, which is the same with 𝐿𝑜𝑠𝑠_𝐷𝑟𝑒𝑎𝑙 .

Then the discriminant matrix is calculated with the fake

matrix 𝑓𝑎𝑘𝑒, which was full by zero:

 𝐿𝑜𝑠𝑠_𝐷𝑓𝑎𝑘𝑒 =
1

𝑅
∑ (𝑓𝑎𝑘𝑒𝑖 − 𝐷𝑖)2𝑅

𝑖=1 . (10)

In the end, the total training loss of the discriminator is the

average value of these two losses:

 𝐿𝑜𝑠𝑠_𝐷 = 𝑎𝑣𝑔(𝐿𝑜𝑠𝑠_𝐷𝑟𝑒𝑎𝑙 + 𝐿𝑜𝑠𝑠_𝐷𝑓𝑎𝑘𝑒). (11)

Algorithm 1 ELMGAN training process

Input Data: image, segmentation ground truth, counting ground truth

1. function Main: {

2. for i in epoch: {

3. function training: {

4. for j in range(data): {

5. Construct a valid matrix with all pixel values of 1 in the same size as
the input image;

6. Construct a fake matrix with all pixel values of 0 in the same size as
the input image;

7. input images are input into LFMMG to predict the cell’s number and
segmentation;

8. Calculate the loss of the generator {

9. Calculate the structure loss between the input image and the
generated segmentation image;

10. Calculate the counting loss between the counting ground truth
and predict the cell’s number;

11. Calculate the generator Hybrid loss based on structure loss and
counting loss;

12. }

13. Obtain the discrimination matrix by the generated segmentation
images, and the input images are input into the CMTD;

14. Calculate the loss of the discriminator {

15. Calculate the generator discrimination loss between the
discrimination matrix and the valid matrix;

16. Calculate the Norm-combined Hybrid loss based on
discrimination loss and generator Hybrid loss;

17. }

18. Norm-combined Hybrid loss backward;

19. Train CMTD {

20.

Obtain the valid discrimination matrix by segmentation ground
truth and input image;

21.

Calculate the valid CMTD loss of discrimination matrix and valid
matrix and fake matrix, respectively;

22.

Obtain the valid discrimination matrix by the generated
segmentation images and input images;

23.

Calculate the fake CMTD loss of discrimination matrix and valid
matrix and fake matrix, respectively;

24.

Calculate the total CMTD loss by valid CMTD loss and fake CMTD
loss;

25. }

26. Evaluate every few epochs: {

27. Evaluate LFMMG;

28. Print evaluation results;

29. }

30. Save the model;

31. }

32. }

Figure 4. The structure of ELMGAN; ELMGAN is used for training our LFMMG and CMTD so that we can get the best

performance cell number and location prediction generator.

4 Experiments and Results

We performed segmentation and counting experiments on

cell images with different degrees of overlap. The images were

divided into five different levels of overlap. We use PSNR and

SSIM to evaluate the segmentation of the generator. Besides, we

use MCE and RMSE to evaluate the counting ability.

4.1 Datasets and Experimental Environment
We use the datasets from the Broad Bioimage Benchmark

Collection (BBBC) [38]. The image samples are shown in Figure

5. The BBBC04 dataset has five subsets of 20 images per group

provided. Each image contains 300 objects, but objects overlap

and aggregate with different probabilities in five subsets.

Images were generated using SIMCEP simulating platform for

fluorescent cell population images [39, 40]. The dataset

contains images with a size of 950 by 950. To facilitate

transformation in the neural network, we added a border of 0-

pixel value to the image and processed the image to a size of

960×960. According to the records of BBBC on the official

website of the dataset, we are the first team to use this data for

segmentation counting multi-task deep convolutional neural

network learning.

Another dataset we used is the BBBC05 dataset. The dataset

is a collection of simulated microscope images of 9600 stained

cells. These images were generated using the SIMCEP

simulation platform. The clustering probability of cells in this

data set is 25%, and the cell area matches the average cell area

of human U2OS cells [33, 34]. The focal blur is simulated by

applying a variable Gaussian filter to the image. Each image is

encoded in 8-bit TIFF format and has a size of 696×520. The

model has been trained with 1,200 labelled images.

In our experiments, the normalization process of

subtracting the mean and dividing by the variance is carried out.

Training images are cropped to a 4-point scale and placed in

the same batch. Because no default testing subset segmentation

is available, the model was evaluated by the use of 5-fold cross-

validation on both datasets.

Our experiments are based on a Python environment. Batch

size is set to 1, Adam is the optimizer, and 50 epochs are

learned at a fixed learning rate of 2e-4. For training the

generator, the beta of the optimizer is set to 0.5. For training

the discriminator, the beta of the optimizer is set to 0.999. We

use an RTX 2070 graphics card for the experiments.

For the convenience of calculation, for images whose size

does not meet the multiple of 128, we have zero padding on the

left and bottom to make the image size a multiple of 128.

Figure 5. The first row shows the cell images from the BBBC04 dataset; a. b, c, d, and e represent the images of cell overlap

from 0%, 15%, 30%, 45%, and 60%, respectively. In the second row, f, g, h, i, and j are image samples from the BBBC05

dataset

4.2 Evaluation methods
Our model performs two tasks simultaneously: one is to

segment the cell image, and the other is to count the number of

cells. For cell segmentation, the Peak signal-to-noise ratio

(PSNR) and Structure Similarity Index Measure (SSIM) are used

as the evaluation indexes between the generated segmentation

map and the truth map.

PSNR is an engineering term representing the ratio of the

maximum possible signal power to the destructive noise power

affecting its accuracy. Since many signals have a wide dynamic

range, the peak signal-to-noise ratio (PSNR) is usually

expressed in decibels. Researchers usually use PSNR to

evaluate the quality of an image compared with the original

image. The higher the PSNR, the smaller the distortion.

SSIM can compare the structural distortion of the new image

and reference images' structural distortion more instantly.

Therefore, we also use SSIM to evaluate the quality of the

generated image. SSIM is generally between 0 and 1. The larger

its value, the better the image quality.

We use two indexes to evaluate the prediction results to

predict cell numbers. The mean counting error (MCE), which

measures instance counting accuracy for R images:

 𝑀𝐶𝐸 =
1

𝑅
∑ |𝐶𝑔𝑡

𝑖 − 𝐶𝑝𝑟𝑒𝑑
𝑖 |𝑅

𝑖=1 , (12)

where 𝐶𝑔𝑡
𝑖 represents the ground truth number of cells in the i-

th picture, and 𝐶𝑝𝑟𝑒𝑑
𝑖 is the cell number predicted by the

generator. MCE can numerically represent the average number

of false identifications per image. A smaller value of MCE means

a smaller amount of counting error per image on average

The root mean squared error (RMSE) can reflect the

deviation value of the prediction error of each instance:

 𝑅𝑀𝑆𝐸 = √
1

𝑅
∑ (𝐶𝑔𝑡

𝑖 − 𝐶𝑝𝑟𝑒𝑑
𝑖)

2𝑅
𝑖=1 , (13)

where R is the number of responses, 𝐶𝑔𝑡
𝑖 represents the ground

truth number of cells in the i-th picture, and 𝐶𝑝𝑟𝑒𝑑
𝑖 is the cell

number predicted by the generator. RMSE is a commonly used

model performance evaluation metric in the field of object

counting. A smaller value of RMSE means better accuracy of the

model prediction.

In addition, we use floating-point operations (FLOPs) to

measure the complexity of the model. For a convolutional layer,

FLOPs are calculated as:

 𝐹𝐿𝑂𝑃𝑠 = 2𝐻𝑊(𝐶𝑖𝑛𝐾2 + 1)𝐶𝑜𝑢𝑡 , (14)

where 𝐻 and 𝑊 represent the height and width of the output

feature map, respectively; 𝐾 is the kernel size of the

convolutional layer, 𝐶𝑖𝑛 is the channel of the input feature map,

and 𝐶𝑜𝑢𝑡 is the channel of the output feature map.

4.3 Validation of LFMMG and CMTD
Based on the thinking of control variates, we first

constructed a generator with VGG16-bn as the backbone and

combined it with our CMTD to form a VGG+CMTD GAN. At the

same time, we constructed an LFMMG GAN model with LFMMG

and a general discriminator without structure fusion. We

experimentally compared our ELMGAN with these two GAN

models on the BBBC04 dataset. The experiment shows that our

LFMMG and CMTD-based ELMGAN effectively could improve

the accuracy of the image segmentation and the count

prediction.

Table 3 shows that ELMGAN, based on LFMMG and CMTD,

achieves the best counting accuracy and image segmentation

accuracy. Compared with the generator without multi-scale

feature fusion based on VGG16, our LFMMG can significantly

improve the accuracy of cell counting and image generation.

Additionally, Figure 6 shows that images generated by LFMMG

are smoother at the edges than images generated by VGG16

without multi-scale feature fusion. Thus, using large stride

upsampling to restore the image might lose more image details

than using multi-scale feature fusion. Besides, from the

comparison of count results, compared with the convolutional

layer with a larger stride, the pooling layer for downsampling

indeed causes information loss and change.

On the other hand, in Table 3, according to the SSIM results

of LFMMG+CMTD and LFMMG, the CMTD plays a good role in

optimizing the structural accuracy of the generated images.

Moreover, CMTD is helpful to feature extraction of the

generator. The addition of the CMTD not only gives the model a

better result in the segmentation of images, but also gives a

surprising performance in predicting cell numbers.

In addition, from Figure 7, our ELMGAN, based on LFMMG

and CMTD, shows a great segmentation performance on every

overlap level. The values of MCE and RMSE show that our

method has few counting errors on the BBBC04 dataset. The

values of PSNR and SSIM show that the generated segmentation

images can be almost identical to the ground truth. Figure 8

shows that our method also handles the details very well:

Narrow gaps and voids were successfully segmented.

Furthermore, we compare the difference in model

complexity between LFMMG with feature fusion and the VGG-

based model without feature fusion based on images with the

size of 256x256x3.

The value of FLOPs shows the total number of floating-point

calculations required for running the statistical model. The

speed at which the generator processes a single picture is

calculated by recording the total time of processing 100

pictures. The memory usage shows the requirement of

inference memory. The parameters show the total parameters

of this model. FLOPs and speed can represent the time

complexity of the model and the operation speed of the model.

The memory usage and the parameters represent the spatial

complexity of the model.

From Table 1, the feature fusion method complicates the

model and reduces the processing speed. However, although

the decoder-encoder-based feature fusion method increases

the complexity of the model, this method could improve the

accuracy of cell contour segmentation and improve the

performance of the model greatly.

Table 1. The Network Complexity Analysis

Feature

fusion
FLOPs Speed Memory usage Parameters

Yes 5.12GFLOPs 89ms/p 56.34MB 15.83MB

No 2.14GFLOPs 57ms/p 32.32MB 10.72MB

4.4 Validation of Proposed NH Loss
The model using our NH loss and the models using other loss

functions (L1 loss, L2 loss, and Hybrid loss) are compared

based on BBBC04 dataset. Hybrid loss (H loss) is our NH loss

without pixel loss. As shown in Table 4, our NH loss-based

method achieves the best counting accuracy and image

segmentation accuracy.

The model trained with L1 loss gets a better image accuracy.

The L2 loss training model gets a better accuracy in predicting

the number of cells. Therefore, we should use both L1 loss and

L2 loss in the training process. L2 loss is suitable for counting

tasks, and L1 loss is suitable for segmentation tasks. H loss

integrates the characteristics of both L1 loss and L2 loss, which

could balance the learning of the two tasks.

However, if no pixel loss is calculated and only using the H

loss to train the model, the segmented image generated by the

model will be significantly worse than that generated by the

model trained with our NH loss function. Moreover, the

experiment results deteriorate as the level of cell overlap

increases. Adding pixel loss can effectively control this trend.

Besides, when training the model without combined loss, the

counting ability decreases as the training time increases.

In NH loss, we use two parameters to adjust the learning

concerns of the model for the counting task and the

segmentation task. In Table 2, As the ratio of the pixel loss

weight 𝑎 to the counting loss weight 𝑏 increases, the quality of

the generated image has been improved. However, the increase

in the counting loss weight has no significant effect on the

change in count results. Therefore, the default value of 𝑎 is 100

and 𝑏 is 0.1. This default value does not represent an optimal

parameter. We can enlarge the value of 𝑏 moderately when the

counting task is more difficult, and we can enlarge the value of

𝑎 moderately when the image segmentation is more

complicated.

Table 2. Comparison of different loss weights in NH loss on

the BBBC05 dataset. 𝒂 is the weight of pixel loss, and 𝒃 is

the weight of counting loss.

Pixel loss

weight (𝑎)

Counting loss

weight (𝑏)
MCE RMSE PSNR SSIM

1 10 1.01 1.3 63.07 0.465

1 1 0.816 1.024 62.58 0.524

10 1 0.966 1.302 65.41 0.569

100 1 0.714 0.929 65.44 0.650

100

(Default)
0.1 (Default) 0.803 1.023 64.33 0.983

Figure 6. Segmentation comparison with (LFMMG) and without (VGG) feature fusion. The image is magnified in the red

box.

Table 3. Comparison of different network structures. Red means the best result.

 Models Overlap levels 0% 15% 30% 45% 60% Avg.

C
o

u
n

ti
n

g

LFMMG + CMTD
MCE 0.27 0.18 0.33 0.29 0.64 0.34

RMSE 0.34 0.25 0.4 0.33 0.7 0.40

VGG + CMTD
MCE 0.48 0.7 0.66 0.84 0.79 0.694

RMSE 0.59 0.96 0.87 1.06 0.86 0.869

LFMMG GAN
MCE 0.43 0.33 0.27 0.63 0.83 0.50

RMSE 0.52 0.43 0.31 0.87 0.92 0.61

Se
gm

en
ta

ti
o

n
 LFMMG + CMTD

PSNR 64.9 66.6 65.1 66.5 66.9 65.9

SSIM 0.98 0.96 0.95 0.96 0.95 0.96

VGG + CMTD
PSNR 62.8 63.1 63.1 63.2 63.4 63.1

SSIM 0.92 0.93 0.93 0.94 0.94 0.937

LFMMG GAN
PSNR 62.96 64.4 63.15 63.39 63.39 63.45

SSIM 0.95 0.95 0.96 0.94 0.96 0.95

Figure 7. The segmentation results of our ELMGAN were on the BBBC04 dataset. White dots are the cells in input images,
and the blue dots are the sells in the segmentation images; From the left to right are the images of cell overlap from 0%,
15%, 30%, 45%, and 60%, respectively.

Figure 8. The detailed segmentation results of our ELMGAN on the BBBC04 dataset

Table 4. Comparison of different loss functions. Red means the best result.

 Models Overlap levels 0% 15% 30% 45% 60% Avg.

C
o

u
n

ti
n

g

NH loss (ours)
MCE 0.27 0.18 0.33 0.29 0.64 0.342

RMSE 0.34 0.25 0.4 0.33 0.7 0.404

L1 loss
MCE 0.507 0.457 0.308 0.54 0.359 0.434

RMSE 0.581 0.528 0.41 0.671 0.46 0.53

L2 loss
MCE 0.505 0.412 0.23 0.315 0.347 0.361

RMSE 0.694 0.477 0.3 0.401 0.461 0.466

H loss
MCE 0.542 0.542 0.348 0.481 0.565 0.495

RMSE 0.573 0.598 0.373 0.491 0.651 0.537

Se
gm

en
ta

ti
o

n

NH loss (ours)
PSNR 64.96 66.55 65.07 66.47 66.9 65.99

SSIM 0.979 0.963 0.949 0.958 0.954 0.961

L1 loss
PSNR 63.02 63.33 63.22 63.54 64.05 63.43

SSIM 0.956 0.926 0.975 0.962 0.955 0.954

L2 loss
PSNR 62.85 64.09 63.14 63.22 63.39 63.33

SSIM 0.859 0.89 0.802 0.782 0.785 0.823

H loss
PSNR 63.2 63.47 63.27 63.47 66.12 63.90

SSIM 0.725 0.218 0.27 0.306 0.592 0.422

4.5 Comparison with FBU and other
Upsampling Methods

To verify the performance of FBU in the decoder of the

model of LFMMG, we try FBU, the nearest interpolation

sampling method, and the bilinear interpolation sampling

method to expand the size of the image, respectively.

Experiments are performed on the BBBC04 and the BBBC05

datasets.

From Table 5, we can see that our FBU is much better than

the other two traditional interpolation sampling methods in the

upsampling performance. From the results of SSIM, using the

FBU method to get the segmented image can restore the edge

structure of cells to the maximum extent. Additionally, as

predicted by mathematical analysis, the FBU method is much

faster in processing a single picture than the traditional

interpolation sampling method because it reduces the amount

of computation. The average speed at which the generator

processes a single picture is calculated by recording the total

time of processing 100 pictures. Furthermore, the unit of the

image processing speed is the average number of milliseconds

per picture. From Table 5, with the same model structure,

simply changing the traditional sampling method to FBU

increases the processing speed by about 30%. The FBU

improves the computing speed of the network, dramatically

enhances the efficiency of the network, and improves the

network experience.

Table 5. Comparison of different upsampling methods on
two datasets. Red means the best result.

Dataset Models PSNR↑ SSIM↑ Speed

B
B

B
C

0
4

 FBU (ours) 65.99 0.960 1.9ms

Nearest 63.278 0.824 2.9ms

Bilinear 63.75 0.831 2.9ms

B
B

B
C

0
5

 FBU (ours) 64.33 0.983 1.9ms

Nearest 75.442 0.83 2.9ms

Bilinear 76.64 0.876 2.9ms

4.6 Comparison with other Methods
We also compare our method with other studies on the

BBBC04 and the BBBC05 datasets. The results are shown in

Table 6. Our method has the best performance on both

segmentation and counting tasks. Our method has the greatest

advantage over other methods in that it can simultaneously

perform the cell count and segment tasks.

In the counting task, our method has a higher accuracy for

predicting cell numbers than classical CNN models, such as

VGG16. Some classical Point-based counting models cannot

directly use these datasets without the coordinate information

of each cell because they cannot generate the ground truth like

density map and bounding box coordinates.

Our model outperforms classical segmentation models, such

as the U-Net, in the segmentation task. U-Net segmentation

results are better than VGG-GAN, which illustrates the

importance of multi-scale feature fusion for image

segmentation. GAN and cGAN may not complete convergence

due to slow training and the epoch limitation.

Table 6. The experimental results of the models on the BBBC04 and the BBBC05. ‘↑’ shows that the larger the indicator, the
better; ‘↓’ shows that the smaller the indicator, the better. ‘/shows that the test was not carried out in the original paper; ‘×’
shows that the model cannot do this task directly; Red means the best result, and Blue means the second-best result.

Dataset Models MCE↓ RMSE↓ PSNR↑ SSIM↑

B
B

B
C

0
4

ELMGAN-NH loss (ours) 0.342 0.404 65.99 0.961

ELMGAN-H loss (ours) 0.495 0.537 63.90 0.422

ELMGAN-L1 loss (ours) 0.434 0.53 63.43 0.954

ELMGAN-L2 loss (ours) 0.361 0.466 63.33 0.823

LFMMG-NH loss (ours) 0.501 0.612 63.46 0.955

VGG+CMTD 0.694 0.869 63.14 0.937

U-Net [2] × × 62.312 0.951

cGAN [36] × × 65.53 0.181

GAN [10] × × 65.08 0.046

FPNet [8] / / / /

VGG16 [34] 2.192 2.748 × ×

B B B C
0 5
 ELMGAN-NH loss (ours) 0.803 1.023 64.33 0.983

ELMGAN-H loss (ours) 0.867 1.083 62.82 0.393

ELMGAN-L1 loss (ours) 0.928 1.157 63.09 0.988

ELMGAN-L2 loss (ours) 0.868 1.08 59.44 0.878

LFMMG-NH loss (ours) 0.828 1.038 74.56 0.851

VGG+CMTD 2.35 3.47 65.17 0.8629

U-Net [2] × × 61.0 0.874

cGAN [36] × × 56.6 0.194

GAN [10] × × 56.3 0.034

FPNet [8] 2.4 3.34 / /

VGG16 [34] 2.87 3.55 × ×

We also record the file size and average processing speed of

each image of each method. We use the ‘torch.save’ function to

save the main parameters of the generator models and

compare their file sizes. The unit of file size is the Megabyte. In

addition, we record how fast the generator was processing the

pictures. The image processing speed is statistical from the

time that the image is sent to the generator until the result is

recorded. The average speed is calculated by recording the

total time of processing 100 pictures. And the unit of the image

processing speed is milliseconds per picture.

In Table 7, our ELMGAN is a more lightweight model.

MemR+W shows the sum of the size read from the memory and

the size written into the memory while the network is running.

At run time, our method consumes the least memory. And it

only takes up half the disk space of the U-Net. The

computational speed is extremely fast because of the

simplification of the model. Our ELMGAN processing is ten

times faster than GAN and twice the speed of the classical image

processing models VGG16 and U-Net. The experimental results

verify that our method achieves an excellent network light-

weighting result and successfully improves the processing

efficiency of the model.

Table 7. Comparison of file size and process speed of
models; Red is the best result.

Models
File

Size

Parameter

s
Speed MemR+W

ELMGAN

(ours)
69.2MB 21.04M 1.9ms/p

138.89M

B

cGAN [36] 903MB 252.48M 3.6ms/p 965.66M

GAN [10] 894MB 227.383M
12.6ms/

p
868.91M

U-Net [2] 131MB 32.96M 2.9ms/p 1.11GB

VGG16 [34] 93MB 138M 2.2ms/p
499.09M

B

5 Conclusion

Cell segmentation and counting are important tasks. We

propose a GAN-based efficient lightweight multi-scale-feature-

fusion multi-task model (ELMGAN) for cell segmentation and

counting simultaneously. Point-based counting methods

require datasets with detailed annotations of cell locations.

This may lead to scarce datasets, tedious labelling processes

and complex models. Our method achieves non-Point-based

counting that overcomes the limitation of traditional Point-

based counting methods and can make wider use of existing

datasets. Our NH loss function coordinates the training

attention of the counting and segmentation tasks and helps

ELMGAN better to train the multi-task model. Our CMTD makes

ELMGAN to achieve higher segmentation accuracy and

prediction ability. Experiments show that our method can

generate high-quality segmentation images with excellent

counting accuracy. In addition, the experimental results verify

that our method achieves an excellent network lightweight

result and successfully improves the processing efficiency of

the model.

Cell counting and segmentation have a strong basic

demonstration significance in the whole field of object counting

and segmentation. This non-Point-based counting method

could be extended to the whole field of object counting, just like

its predecessor density map-based counting method.

Additionally, for a wider range of unlabeled datasets, models

based on weakly-supervised or self-supervised learning may

further strengthen the significance of non-Point-based

counting in object counting. In the future, we plan to continue

to expand the application of this counting method in other

object counting tasks.

ACKNOWLEDGMENTS
The paper was partially supported by: Medical Research

Council Confidence in Concept Award, UK (MC_PC_17171);

Royal Society International Exchanges Cost Share Award, UK

(RP202G0230); British Heart Foundation Accelerator Award,

UK (AA/18/3/34220); Hope Foundation for Cancer Research,

UK (RM60G0680); Global Challenges Research Fund (GCRF),

UK (P202PF11); Sino-UK Industrial Fund, UK (RP202G0289);

LIAS Pioneering Partnerships award, UK (P202ED10); Data

Science Enhancement Fund, UK (P202RE237).

REFERENCES
[1] He, S., Minn, K. T., Solnica-Krezel, L., Anastasio, M. A. and Li,
H. Deeply-supervised density regression for automatic cell

counting in microscopy images. Medical Image Analysis, 68
(2021/02/01/ 2021), 101892.
[2] Ronneberger, O., Fischer, P. and Brox, T. U-Net:
Convolutional Networks for Biomedical Image Segmentation.
arXiv e-prints (2015), arXiv:1505.04597.
[3] Shelhamer, E., Long, J. and Darrell, T. Fully Convolutional
Networks for Semantic Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39, 4 (2017), 640-
651.
[4] Yu, F. and Koltun, V. J. C. Multi-Scale Context Aggregation by
Dilated Convolutions, abs/1511.07122 (2016).
[5] Xie, W., Noble, J. A. and Zisserman, A. Microscopy cell
counting and detection with fully convolutional regression
networks. Computer Methods in Biomechanics and Biomedical
Engineering: Imaging & Visualization, 6, 3 (2018/05/04 2018),
283-292.
[6] Graham, S., Vu, Q. D., Raza, S. E. A., Azam, A., Tsang, Y. W.,
Kwak, J. T. and Rajpoot, N. Hover-Net: Simultaneous
segmentation and classification of nuclei in multi-tissue
histology images. Medical Image Analysis, 58 (2019/12/01/
2019), 101563.
[7] Cireşan, D. C., Giusti, A., Gambardella, L. M. and
Schmidhuber, J. Mitosis Detection in Breast Cancer Histology
Images with Deep Neural Networks. Springer Berlin Heidelberg,
City, 2013.
[8] Hernández, C. X., Sultan, M. M. and Pande, V. S. Using Deep
Learning for Segmentation and Counting within Microscopy
Data. arXiv e-prints (2018), arXiv:1802.10548.
[9] Liu, F. and Yang, L. A Novel Cell Detection Method Using Deep
Convolutional Neural Network and Maximum-Weight
Independent Set. Springer International Publishing, City, 2017.
[10] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. and Bengio, Y. Generative
Adversarial Networks. arXiv e-prints (2014), arXiv:1406.2661.
[11] Isola, P., Zhu, J.-Y., Zhou, T. and Efros, A. A. Image-to-Image
Translation with Conditional Adversarial Networks. arXiv e-
prints (2016), arXiv:1611.07004.
[12] Wang, C., Anisuzzaman, D. M., Williamson, V., Dhar, M. K.,
Rostami, B., Niezgoda, J., Gopalakrishnan, S. and Yu, Z. Fully
automatic wound segmentation with deep convolutional
neural networks. Sci Rep, 10, 1 (2020), 21897-21897.
[13] Zhang, J., Liu, M., Wang, L., Chen, S., Yuan, P., Li, J., Shen, S.
G.-F., Tang, Z., Chen, K.-C., Xia, J. J. and Shen, D. Context-guided
fully convolutional networks for joint craniomaxillofacial bone
segmentation and landmark digitization. Medical image
analysis, 60 (2020), 101621-101621.
[14] Gerard, S. E., Herrmann, J., Kaczka, D. W., Musch, G.,
Fernandez-Bustamante, A. and Reinhardt, J. M. Multi-resolution
convolutional neural networks for fully automated
segmentation of acutely injured lungs in multiple species.
Medical image analysis, 60 (2020), 101592-101592.
[15] Schmitz, R., Madesta, F., Nielsen, M., Krause, J., Steurer, S.,
Werner, R. and Rösch, T. Multi-scale fully convolutional neural
networks for histopathology image segmentation: From
nuclear aberrations to the global tissue architecture. Medical
Image Analysis, 70 (2021/05/01/ 2021), 101996.
[16] Vigueras-Guillén, J. P., Sari, B., Goes, S. F., Lemij, H. G., van
Rooij, J., Vermeer, K. A. and van Vliet, L. J. Fully convolutional
architecture vs sliding-window CNN for corneal endothelium
cell segmentation. BMC Biomed Eng, 1 (2019), 4-4.

[17] Hinton, G. E. and Salakhutdinov, R. R. Reducing the
Dimensionality of Data with Neural Networks. Science, 313,
5786 (2006/07/28 2006), 504-507.
[18] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning
for Image Recognition. arXiv e-prints (2015),
arXiv:1512.03385.
[19] Xu, Y., Zhou, Z., Li, X., Zhang, N., Zhang, M. and Wei, P. FFU-
Net: Feature Fusion U-Net for Lesion Segmentation of Diabetic
Retinopathy. Biomed Res Int, 2021 (2021), 6644071-6644071.
[20] Smith, A. G., Petersen, J., Selvan, R. and Rasmussen, C. R.
Segmentation of roots in soil with U-Net. Plant Methods, 16, 1
(2020/02/08 2020), 13.
[21] Long, F. Microscopy cell nuclei segmentation with
enhanced U-Net. BMC Bioinformatics, 21, 1 (2020), 8-8.
[22] Gauthier, J. Conditional generative adversarial nets for
convolutional face generation. City, 2015.
[23] Tian, Z., He, T., Shen, C. and Yan, Y. Decoders Matter for
Semantic Segmentation: Data-Dependent Decoding Enables
Flexible Feature Aggregation. arXiv e-prints (2019),
arXiv:1903.02120.
[24] Tofighi, M., Guo, T., Vanamala, J. K. P. and Monga, V. Prior
Information Guided Regularized Deep Learning for Cell
Nucleus Detection. IEEE Transactions on Medical Imaging, 38, 9
(2019), 2047-2058.
[25] Xie, Y., Xing, F., Shi, X., Kong, X., Su, H. and Yang, L. Efficient
and robust cell detection: A structured regression approach.
Medical Image Analysis, 44 (2018/02/01/ 2018), 245-254.
[26] Zheng, Y., Chen, Z., Zuo, Y., Guan, X., Wang, Z. and Mu, X.
Manifold-Regularized Regression Network: A Novel End-to-
End Method for Cell Counting and Localization. In Proceedings
of the Proceedings of the 2020 the 4th International Conference
on Innovation in Artificial Intelligence (Xiamen, China, 2020).
Association for Computing Machinery, [insert City of
Publication],[insert 2020 of Publication].
[27] Hussain, E., Mahanta, L. B., Das, C. R., Choudhury, M. and
Chowdhury, M. A shape context fully convolutional neural
network for segmentation and classification of cervical nuclei
in Pap smear images. Artificial Intelligence in Medicine, 107
(2020/07/01/ 2020), 101897.
[28] Naylor, P., Laé, M., Reyal, F. and Walter, T. Segmentation of
Nuclei in Histopathology Images by Deep Regression of the
Distance Map. IEEE Transactions on Medical Imaging, 38, 2
(2019), 448-459.
[29] Emami, H., Aliabadi, M. M., Dong, M. and Chinnam, R. B.
SPA-GAN: Spatial Attention GAN for Image-to-Image
Translation. IEEE Transactions on Multimedia, 23 (2021), 391-
401.
[30] Andreini, P., Bonechi, S., Bianchini, M., Mecocci, A. and
Scarselli, F. Image generation by GAN and style transfer for agar
plate image segmentation. Computer Methods and Programs in
Biomedicine, 184 (2020/02/01/ 2020), 105268.
[31] Li, C. and Wand, M. Precomputed Real-Time Texture
Synthesis with Markovian Generative Adversarial Networks.
Springer International Publishing, City, 2016.
[32] Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S. and Alahi, A.
Social GAN: Socially Acceptable Trajectories with Generative
Adversarial Networks. arXiv e-prints (2018),
arXiv:1803.10892.

[33] Zhou, Y. and Berg, T. L. Learning Temporal Transformations
from Time-Lapse Videos. Springer International Publishing,
City, 2016.
[34] Simonyan, K. and Zisserman, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. arXiv e-prints
(2014), arXiv:1409.1556.
[35] Wang, Q., Gao, J., Lin, W. and Yuan, Y. J. a. e.-p. Learning from
Synthetic Data for Crowd Counting in the Wild. City, 2019.
[36] Mirza, M. and Osindero, S. Conditional Generative
Adversarial Nets. arXiv e-prints (2014), arXiv:1411.1784.
[37] Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift.
arXiv e-prints (2015), arXiv:1502.03167.
[38] Ljosa, V., Sokolnicki, K. L. and Carpenter, A. E. Annotated
high-throughput microscopy image sets for validation. Nat
Methods, 9, 7 (2012), 637-637.
[39] Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H.
and Yli-Harja, O. Computational Framework for Simulating
Fluorescence Microscope Images With Cell Populations. IEEE
Transactions on Medical Imaging, 26, 7 (2007), 1010-1016.
[40] Lehmussola, A., Ruusuvuori, P., Selinummi, J., Rajala, T. and
Yli-Harja, O. Synthetic Images of High-Throughput Microscopy
for Validation of Image Analysis Methods. Proceedings of the
IEEE, 96, 8 (2008), 1348-1360.

