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Abstract

We study the dynamics of dark solitons in spatially inhomogeneous media with applications to cigar-shaped
Bose–Einstein condensates trapped in a harmonic magnetic potential and a periodic potential representing an
optical lattice. We distinguish and systematically investigate the cases with the optical lattice period being smaller,
larger, or comparable to the width of the dark soliton. Analytical results, based on perturbation techniques, for the
motion of the dark soliton are obtained and compared to direct numerical simulations. Radiation effects are also
considered. Finally, we demonstrate that a moving optical lattice may capture and drag a dark soliton.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords:Soliton; Matter waves; Optical lattice; Bose–Einstein condensation

1. Introduction

Dark solitons (DSs), the most fundamental nonlinear excitations of the nonlinear Schrödinger (NLS)
equation with a defocusing nonlinearity, have been widely studied in many branches of Physics.
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Importantly, apart from the relevant theoretical work, there exist many experimental results, including
the observation of optical dark solitons, either as temporal pulses propagating in optical fibers[1], or
as spatial structures in bulk media and waveguides[2] (see also[3] for a review), the excitation of a
non-propagating kink in a parametrically driven shallow liquid[4], dark-soliton standing waves in a
discrete mechanical system[5], high-frequency dark solitons in thin magnetic films[6], etc.

Additionally, since the experimental realization of Bose–Einstein condensates (BECs)[7], there has
been a considerable interest in DSs, which have been observed in a series of experiments[8]. As BECs
are confined in magnetic traps, many theoretical studies have been devoted to the dynamics of DSs in
the presence of external potentials[9,10]. In particular, it has been found that in elongated harmonic
traps a DS oscillates with frequencyΩ/

√
2, whereΩ is the axial trap frequency. Thermal[11] and

dynamical[12] instabilities, mainly referring to rectilinear DSs, have been investigated. On the other
hand, generalizations of the rectilinear solitons, such as ring-shaped DSs, have recently been proposed
[13]. Systematic studies of the sound emitted by the DS due to inhomogeneities, as well as soliton–sound
interactions have also been performed[14]. Furthermore, it has been shown that another dissipative effect,
the so-called quantum depletion of DSs[15], reduces the dark soliton lifetime as atoms fill up the dark
soliton notch.

Apart from the above, theoretical and experimental BEC studies have been performed in the case
of a periodic external potential, the so-called optical lattice (OL) trap created by interference patterns
from multiple laser beams[16–21]. The experimental control over the OL has led to the realization of
numerous interesting phenomena including Bloch oscillations[18,22], Landau–Zener tunneling[16] (in
the additional presence of a linear external potential), and classical[23] and quantum[21] superfluid-
insulator transitions. With respect to the above, the dissipative dynamics of the DSs (including detailed
quantitative measurements of the sound emitted by the soliton) in a quasi one-dimensional (1D) BEC
confined through a harmonic trap and an OL, as well as the structure and the mobility properties of DSs
in single and double-periodic OLs have recently been considered in[24,25], respectively. On the other
hand, the stability of DSs in the combined harmonic trapping and OL potential, in both the discrete and
the continuum mean-field model framework, has recently been studied[26].

From the more general point of view of the theory of nonlinear waves and solitons, the aforementioned
studies can be considered as complementary to the ones related to the soliton dynamics in spatially
inhomogeneous, as well as in disordered media, a topic of practical relevance in diverse fields (see,
e.g., [27]). Especially, as far as the bright solitons of the nonlinear Schrödinger (NLS) equation are
concerned, it has been shown that their dynamics is strongly affected by the competition of the length-
scales characterizing the solitons and the spatially inhomogeneous perturbations[28]. In this respect, it
is relevant to note the following: first, the dark soliton dynamics in quasi 1D BECs can also be described
in the framework of an NLS equation, the so-called Gross–Pitaevskii (GP) equation[7]. Second, in the
case where the BEC is confined by a harmonic trap and an OL at the same time, there exist three different
length scales, i.e., one referring to the DS, one to the harmonic trap and one to the OL. It is therefore
expected that different dynamical regimes for the DS are possible, while interesting effects resulting from
a length-scale competition may arise.

The scope of this work is to contribute in this direction, systematically studying the dynamics of DSs in
spatially inhomogeneous media, with the inhomogeneity induced by the presence of external potentials,
e.g., the confining harmonic trapping and the periodic OL, both appearing naturally in the BEC context.
Particularly, we aim to identify and analyze the different regimes of the DS dynamics, relevant to the
entire range of scales of the lattice periodicity, as compared to the scales of the DS and the confining
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potential. We consider the following normalized defocusing NLS (or GP) equation:

iut = −1

2
uxx + |u|2u + V (x)u. (1)

which can be used as a mean-field model describing the dynamics of a cigar-shaped BEC with repulsive
interatomic interactions[7,29,30], trapped in the potential:

V (x) = 1

2
Ω2x2 + V0 cos2(kx), (2)

where the two terms represent the magnetic trap (MT) and the OL, respectively. In this context,u(x, t) in
Eq.(1) is the macroscopic wave function of the BEC,tandxare measured, respectively, in units ofω−1

⊥ and
the transverse harmonic-oscillator length,a⊥ = (�/mω⊥)1/2. Accordingly, the parameterΩ ≡ ωx/ω⊥,
whereωx andω⊥ are the confining frequencies in the axial and transverse directions, determines the
strength of the MT. The strength of the OLV0 is measured in units of the recoil energyEr ≡ h2/2mλ2

laser,
whereλlaser is the wavelength of the laser beams producing the optical trap. Finally,k is the wavenumber
of the OL that can be experimentally controlled by varying the angleθ between the counter-propagating
lasers producing the interference pattern of wavelengthλ = 2π/k = λlasersin(θ/2)/2 [31].

In the absence of the external (MT and OL) potentials, i.e., for an homogeneous BEC, the defocusing
NLS equation(1) possesses an exact solution for the DS. Particularly, on a homogeneous background
densityu2

0, the DS has the form[32]:

u(x, t) = u0(cosϕ tanhζ + i sinϕ) exp(−iµt). (3)

Hereµ ≡ u2
0 is the one-dimensional chemical potential, determined by the number of atoms of the

condensate,ϕ is the phase shift (|ϕ| < π/2) across the DS,ζ ≡ u0(cosϕ)[x − u0(sinϕ)t], while the
amplitude and velocity of the DS are given byu0 cosϕ andu0 sinϕ, respectively; the limit caseϕ = 0
corresponds to a quiescent DS,u = u0 tanh(u0x) exp(−iµt). In the presence of the MT and OL potentials,
the background density supporting the DS is nonuniform, and can be well approximated by the so-called
Thomas–Fermi (TF) wave function[7]:

uTF = √
max{0, µ − V (x)}. (4)

Note thatµ may be scaled out, therefore we hereafter setµ ≡ 1.
To distinguish between different physically relevant cases, it is necessary to identify the length scales

involved in the problem. First, the MT strengthΩ in Eq. (2) sets the corresponding length scaleΩ−1,
which we assume to be much larger than the DS widthlDS ≡ (cosϕ)−1 (recall we have setu2

0 = µ ≡ 1),
otherwise (if MT is tight, rather than loose) the DS may not exist[26]. Note that, unless the DS is very
shallow (i.e., cosϕ � 1), which is not a case of interest,lDS is on the order of magnitude of the healing
lengthξ, that, in the framework of Eq.(1) with µ ≡ 1, is ξ = √

2; this actually means thatΩ � 1. On
the other hand, as concerns the OL potential, both its strengthV0 and wavelengthλ may be, generally
speaking, arbitrary, hence the ratio of the DS width toλmay take different values. Therefore, it is relevant
to single out three cases, namely, a long-period OL, withλ � lDS ∼ ξ, a short-period OL, withλ � ξ,
and an intermediate case, withλ ∼ ξ.

First, the long-period OL case will be studied below. In this case the full potential (including the MT and
OL terms) varies slowly on the DS scale and the soliton dynamics can be treated analytically by means of
the adiabatic perturbation theory for DSs[33] (see also Refs.[10,13]for applications of the perturbation
theory in the BEC context). This way, we will demonstrate analytically (and confirm by direct numerical
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simulations) that the DS oscillates on top of the TF cloud with a frequency and amplitude modified by
the presence of the OL. We will also investigate the role of the strengthV0 of the OL potential. For
small values ofV0, the soliton evolves almost adiabatically, as the inhomogeneity-induced radiation of
the DS in the form of sound waves is practically negligible, and its motion can be described analytically;
nevertheless, asV0 takes larger values, the adiabatic perturbation theory fails, since the sound emission
becomes gradually stronger. Thus, due to this recoil effect, the DS becomes shallower and more mobile,
and, as a result, the DS performs oscillations of small-frequency and large amplitude.

Next, we will consider the case of a short-period OL (λ � ξ). In this case, we apply a multi-scale
perturbation theory[34]. It will be shown that, quite naturally, the influence of the OL is averaged out,
i.e., the DS obeys an effective NLS (GP) equation with a potential solely composed by an effective MT
with a modified strength.

Finally, we will consider the intermediate case, when the OL period is of the order of the healing length
(λ ∼ ξ). In this case, we will show that, as long as the initial position of the DS is sufficiently close to
the bottom of a local well of the OL potential, and the OL is relatively weak [V0 = O(1)], the DS emits
radiation at a small rate. Thus, the soliton remains trapped in the well for a long time, but will eventually
escape, and start performing large-amplitude low-frequency oscillations in the condensate.

Using the fact that there are cases where the soliton remains trapped for relatively long times, we also
propose a possibility of “targeted transfer” of the DS by an adiabatically moving OL, which is properly
phase-modulated. This result demonstrates that DSs can be manipulated by time-dependent OLs, which
may find applications in matter-wave devices. The paper is organized as follows. In Section2we examine
the case of a long-period OL, in Section3 we study the short-period one, and the intermediate case is
considered in Section4. In the same section we demonstrate the possibility to capture and drag the DS
by a time-dependent OL. Finally, Section5 contains the conclusions.

2. The long-period optical lattice

We first consider the case when the OL period is much larger than the DS width. Then, assuming that
the strength of the OL potential is small enough, the DS dynamics can be treated perturbatively. To this
end, we seek a DS solution of Eq.(1) on top of a TF cloud. As the MT strength is always taken to be
small, we may define a region (close to the center of the trap) where the trap potential is much smaller
than the chemical potentialµ (recall we have setµ ≡ 1). Thus, approximating the TF wave function
(4) by the expansionu2

TF ≈ max{0,1 − V (x)/2}, we seek for a solution to the GP equation of the form
u = uTF(x)υ(x, t), where the complex fieldυ(x, t) describes the DS. Then, we follow the procedure
described in Ref.[10] (see also Ref.[13]) to derive the following effective perturbed NLS equation from
Eq.(1):

i
∂υ

∂t
+ 1

2

∂2υ

∂x2
− (|υ|2 − 1)υ = P(υ), (5)

where the effective perturbation is

P(υ) ≡
(
1 − |υ|2

)
υV + 1

2

dV

dx

∂υ

∂x
, (6)
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V being the same potential (including the MT and OL terms) as in Eq.(2). In the general case, all the
terms in the perturbation(6) are of the same order of magnitude (smallness).

Next, assuming that the perturbationP is small indeed, we apply the perturbation theory for DSs, as
developed in Ref.[33], to Eq.(5). This way, we start with the unperturbed DS, and seek for a solution to
Eq.(5) of the form:

υ(r, t) = cosϕ(t) tanhζ + i sinϕ(t), (7)

whereζ = cosϕ(t)(x − x0(t)) [cf. Eq.(3)], andϕ(t) andx0(t) are theslowly varyingphase and position of
the DS. Then, it is straightforward to derive the equation of motion for the center of the initially quiescent
(ϕ(0) = 0) DS:

d2x0

dt2
= −dVeff

dx0
, (8)

with the effective potential:

Veff(x) = Ω2

4
x2 + V0

4

[
1 −

(
π2

3
− 2

)
k2

6

]
cos(2kx). (9)

It is readily observed that in the absence of the OL, Eq.(8) recovers the result predicted in Refs.[9,13,10],
i.e., the DS oscillates in the harmonic trap with the frequencyω = Ω/

√
2. The combination of the MT

and OL gives rise to the additional periodic term in the effective potential(9). Here it is relevant to note
that the sign of the coefficient followingV0 in Eq.(9) is always positive as (by assumption)k2 � 1.

For a DS placed near the bottom of the magnetic trap (x0 = 0), Eqs.(8) and (9)show that the effective
oscillation frequency is

ωeff ≈
√

1

2
Ω2 − V0k2, (10)

provided thatk < Ω/
√

2V0. The analytical result(10) was verified against direct numerical simulations
of the GP equation(1). The numerical simulations presented in this work were carried out by integrating
Equation(1) using a pseudo-spectral method[35] with, typically, 29 to 210 mesh points and a time step
of dt = 0.01. Fig. 1 demonstrates that the trajectory of the DS center, as predicted by Eq.(8) (dotted
line) is almost identical to the respective one found from direct integration of Eq.(1) (solid line), while
the motion of the soliton in the absence of the OL is clearly characterized by a larger frequency (dashed
line). Assuming that the strengths of the magnetic trap and OL areΩ = 0.075 andV0 = 0.07, and
k = 0.1, the DS, initially placed atx0(0) = −1.5, performs oscillations in the presence (absence) of the
OL with the frequency 0.046 (0.054), while the corresponding analytical predictions areωeff = 0.04596
(ω = 0.05303). Thus, the numerically found oscillation frequencies are in very good agreement with the
analytically predicted values.

Here, it should be noted that the soliton trajectories are shown inFig. 1up tot = 500, which, according
to values of the physical parameters used in relevant experiments with DSs in BECs[8], corresponds to
≈100 ms. Although such a long-time description is quite relevant from the point of view of the theory
of nonlinear waves, in the context of BECs important dissipative effects, such as the interaction of the
configuration with the thermal cloud[11] or/and the quantum depletion of the DS[15], may significantly
reduce the soliton lifetime.
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Fig. 1. Motion of the center of a dark soliton, initially placed atx0(0) = −1.5, in the presence (solid line and dotted lines) or
absence (dashed line) of the optical lattice. The analytical prediction (dotted line) is in very good agreement with the numerical
result (solid line), while the oscillation frequency of the dark soliton in the absence of the optical lattice is clearly larger (dashed
line). The parameters areΩ = 0.075, V0 = 0.07 andk = 0.1.

We have also considered the case where the initial position of the DS center is not close to the bottom
of the potential well. In this case, the oscillation frequency of the dark soliton center can be found, either
integrating the underlying GP equation(1), or the quasi-particle equation of motion(8). We have found
that the agreement between both results (for the oscillations of the DS center) is again quite good. As an
example, inFig. 2(a) we show the motion of the DS center, initially placed atx0(0) = −10π + 20, with
OL parametersV0 = 0.05 andk = 0.05 (the MT strength isΩ = 0.005). The trajectory found by the
integration of the GP equation (solid line) almost coincides with the one found from the solution of the
quasi-particle’s equation(8) (dotted line). Also, the DS remains almost undistorted up to large times, see
the snapshot fort = 1000 inFig. 2(b); this result is somewhat expected, due to the fact that in this case
we deal with weak traps and OL strengths, so the deformation of the soliton due to the sound emission
demonstrated in[24] is a negligible effect.

As long as the OL strengthV0 remains small enough, i.e., forV0 < 0.1, the DS evolves almost adia-
batically, as the radiation (sound in the form of linear waves) emitted by the soliton due to the system’s
inhomogeneity is practically negligible. In this case, the adiabatic perturbation theory outlined above de-
scribes the soliton motion quite accurately. However, for larger values ofV0, the inhomogeneity induced
by the OL becomes stronger and the sound emission becomes important. In such a case, the DS becomes
shallower and gains velocity due to the recoil effect; this, in turn, makes the amplitude and frequency
of the oscillations, respectively, larger and smaller than those predicted by the perturbation theory. This
situation is demonstrated inFig. 3, where the evolution of the DS is shown, with the same initial position
and MT potential as inFig. 2, but for a significantly stronger OL, withV0 = 0.5. As seen inFig. 3(a),
where a detail of the TF configuration with the soliton is shown att = 25, the emission of radiation starts
immediately and is apparent even at the initial stages of the evolution. As follows fromFig. 3(b), although
there is good initial agreement (for the motion of the soliton center) between the analytical prediction
based on the perturbation theory (dashed line) and numerical solution of the GP equation (solid line), as
time advances the soliton oscillations are characterized by a larger amplitude and a smaller frequency.
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Fig. 2. (a) Motion of the center of a dark soliton, initially placed atx0(0) = −10π + 20, in the presence of the magnetic trap
with Ω = 0.005 and optical lattice withV0 = 0.05 andk = 0.05. The almost identical solid and dotted lines correspond to the
solution of the GP equation(1) and the quasi-particle equation of motion(9), respectively. (b) Snapshot of the density|u(x)|2
(solid line) att = 1000. The dotted line shows the full (MT and OL) external potential.

This case cannot be described analytically, as the adiabatic perturbation theory does not apply at large
values of the OL strength. Note that, att = 1000, the soliton is still oscillating in the potential well of
the OL where it was initially placed. For even larger times (not shown here), it is natural to expect that it
will escape from the well and will further increase (decrease) the amplitude (frequency) of the oscillation
(see also a discussion in the next sections, as well as[14,24] for a detailed description of the effect of
radiation).

Fig. 3. (a) A detail of the atomic density of the condensate cloud (solid line), incorporating a dark soliton, att = 25 (10 ms), for
the same initial configuration as inFig. 2, but with the optical lattice strengthV0 = 0.5; the emission of radiation is apparent.
The dotted line shows the full (MT and OL) external potential. (b) Motion of the DS center, with the solid and dotted lines
corresponding to the solution of the GP equation(1) and the equation of motion(8), respectively. It is seen that the emission of
radiation causes the soliton to perform larger-amplitude, low-frequency oscillations.
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3. The short-period optical lattice

We now proceed to the case when the OL period is much smaller than the width of the dark soliton
(i.e.,λ � ξ, ork � 1). In this case,k−1 can be naturally considered as a perturbation parameter. The MT
strengthΩ is assumed to be on the order ofk−2 (which corresponds to the most interesting situation),
while the OL strengthV0 isO(1), i.e., it is not small.

As the length scales of the MT and OL potentials are very different, the wave functionu(x, t) is sought
for as a sum of slowly and rapidly varying parts,U(x, t) andw(x, t), respectively:

u(x, t) = exp
[
−i
(
V0

2

)
t

]
[U(x, t) + w(x, t)]. (11)

Note that the multiplier exp[−i(V0/2)t] in Eq. (11) is introduced so as to produce a term (V0/2)u in the
GP equation(1), which is cancelled out by the corresponding “dc part” of the OL potential term. In order
to derive an effective equation for the slowly varying partU of the wave function, we apply the asymptotic
procedure described in Ref.[34]. In particular, we represent the rapidly varying part of the wave function
as a Fourier series:

w(x, t) =
∞∑
n=1

[An cos(2nkx) + Bn sin(2nkx)], (12)

where the functionsAn andBn are assumed to be slowly varying. Upon substituting Eqs.(11) and (12)
into Eq. (1) and equating coefficients in front of the harmonics, we arrive at a system of coupled equations
for An andBn. To solve these equations, we assume asymptotic expansions in powers ofk−1:

An =
∞∑
j=1

ajn

(2k)2n
, Bn =

∞∑
j=1

bjn

(2k)2n+1
. (13)

Eventually, in the leading-order approximation, we derive an evolution equation for the slowly varying
componentU:

ipUt + 1

2
qUxx − r|U|2U = − 1

32
δ2U + 1

2
Ω2x2U, (14)

whereδ ≡ V0/k, and

p = 1 + 1

64

δ2

k2
, q = 1 − 3

128

δ2

k2
, r = 1 − 9

128

δ2

k2
. (15)

Finally, upon rescaling the spatial variable and the wave function, withX = (p/q)1/2x and U =
(p/r)1/2 exp[i(δ2/32p)t]Φ, Eq.(14) is cast in the form:

iΦt + 1

2
ΦXX − |Φ|2Φ = 1

2

(
q

p2

)
Ω2X2Φ. (16)

Thus, the averaged dynamics of the DS in the presence of the rapidly varying OL potential is described by
therenormalizedGP equation(16). This suggests that the DS behaves as a “renormalized quasi-particle”,
which oscillates in the MT as per Eq.(8), but with an effective potentialVeff(x0) (recall thatx0 is the
DS central coordinate) now given byVeff = (1/4)qp−2Ω2x2

0. According to this analysis, the frequency of
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Fig. 4. (a) Motion of the center of the dark soliton, initially placed atx0(0) = −3, in the presence of the magnetic trap with the
strengthΩ = 0.075 and the optical lattice withV0 = 0.5 andk = 4. The oscillation frequency is very close to the analytically
predicted value (cf. Eq.(17)), Ωeff ≈ 0.053. (b) The profile of the dark soliton att = 5 (2 ms; solid line), and the corresponding
external potential including the magnetic trap and optical lattice (dotted line).

oscillationΩeff is given by

Ωeff ≈ Ω√
2

(
1 − 7

256

δ2

k2

)
. (17)

It is important to note that the above result concerning the renormalization of the DS characteristics
bears resemblance to the renormalization of the atomic mass of the condensate, i.e., to the existence of an
effective mass induced by the OL potential, which has been reported in[36] (see also a relevant discussion
in [24]).

Direct numerical integration of the GP equation has confirmed the above findings. In particular, assum-
ing the MT strengthΩ = 0.075 and the OL strengthV0 = 0.5 and wavenumberk = 4, we have found
that the DS initially placed atx0(0) = −3 performs oscillations with a frequency approximately equal to
0.053, corresponding to the valueΩ/

√
2, the higher-order correction in Eq.(17) being ofO(10−5). The

soliton, indeed, does not “feel” the presence of the short-scale OL potential, as is clearly seen from the
motion of the center of the soliton inFig. 4.

4. Intermediate optical lattice period

The particle-like description of the DS adopted in the previously considered cases may also be helpful
when the period of the OL potential is of the same order of magnitude as the DS width, i.e.,λ ∼ ξ or
k = O(1). In such a case, one may expect that if a stationary DS is initially placed in a well of the OL
potential, it will remain trapped there for long times. This has been confirmed by direct simulations (see
below), which have shown that the trapping time may be on order oft ≈ 750 (300 ms). On the other hand,
if the dark soliton is placed near a potential maximum rather than minimum, it stays there up tot ≈ 50
(20 ms) only, and then moves away. This “quasi-trapping” of the DS around the minimum of the potential
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Fig. 5. Left panel: motion of the center of a dark soliton, initially placed atx0(0) = −1.5 in the presence of the magnetic trap
with Ω = 0.025 and optical lattice withV0 = 0.07 andk = 1. It is seen that up tot ≈ 770 the soliton remains trapped in the
well of the optical lattice potential which is the closest to the condensate’s center; then, after emitting radiation, the dark soliton
gets shallower and escapes, oscillating in a wider area of the condensate. The density of the dark soliton (solid line) and the full
potential (dashed line) are also shown att = 5 (right panel).

energy is also expected to occur for small deviations of the initial soliton’s position from the bottom
of the potential well, but the trapping time will be shorter. In any case, the soliton eventually escapes
from the quasi-trapped state, and moves on top of the TF state (which, in the case under consideration,
is highly inhomogeneous). The escape is accounted for by radiative effects that in some cases lead to the
destruction of the DS (relevant results concerning the stability of the DS in BECs confined in OLs have
recently been reported in[26]).

In order to systematically investigate this regime, we have first performed numerical integration of
the GP equation, with an initial conditionu(x,0) = tanh(x − 1.5). This corresponds to a dark soliton
initially placed near the bottom of the OL-potential well closest to the center of the condensate (the
bottom of this well is located atx = −π/2). The MT and OL parameters were taken to beΩ = 0.025,
V0 = 0.07 andk = 1. The result is displayed inFig. 5, where the motion of the soliton center and a
snapshot of the soliton density at an initial stage of its evolution (att = 5) are shown. It is seen that up
to t ≈ 80 the DS remains almost completely stationary. Then, after emitting a small amount of radiation,
it becomes shallower, thus gaining velocity and starting to oscillate inside the well of the OL potential.
These small-amplitude oscillations last up tot ≈ 770; after that, the soliton has gained the kinetic energy
necessary to escape from the well and move to a neighboring one. There, it is again trapped due to a
reabsorptionof the radiation waves: this effect[14] causes the soliton to become deeper, which results
in loss of its kinetic energy, and a subsequent stabilization of its motion. The soliton oscillates in that
well from t = 825 up tot = 980. Eventually, further emission of radiation results again in the increase
of the soliton’s kinetic energy and the amplitude of oscillations increases. Note that att = 2000 the
soliton position isx ≈ −3.5, i.e., quite close to its initial location, while its amplitude is cosϕ ≈ 0.95;
thus, at that time, the soliton intensity defined as cos2 ϕ [33], takes 90% of its initial value (recall that
cos2 ϕ(0) = 1).

For larger times (t > 1500), the oscillation frequency of the soliton seems to saturate at a value approx-
imately equal to 0.021, which is quite close toΩeff ≈ 0.018. The latter is the prediction of Eq.(17), which
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Fig. 6. Left panel: motion of the center of the dark soliton, initially placed atx0(0) = −π/2, in the presence of the magnetic
trap withΩ = 0.005 and optical lattice withV0 = 0.5 andk = 1. The soliton remains almost immobile up tot ≈ 250, and then
it starts to oscillate inside the OL well and finally escapes with some acceleration, as shown in the inset, to reach the rim of
the TF cloud. Right panel: a detail of the condensate density, incorporating the dark soliton, is shown att = 500; considerable
distortion of the condensate and soliton is apparent.

is, of course, relevant to the case considered above in Section3. However, in the case under consideration,
although the initial amplitude (depth) and width of the dark soliton were approximately equal to 1, at
large times its amplitude has decreased (due to the emission of radiation), rendering its width larger. Thus,
at large times we deal with a DS whose width is larger than the OL period, suggesting that the results
obtained in the previous section may be relevant.

We have also examined the case when the initial position of the DS was at a bottom of a well of the OL
potential, while the MT potential was weaker, in order to further clarify the interaction of the DS with
the OL. Such a case is shown inFig. 6, in which we have set the initial position of the DS atx0 = −π/2,
the MT strengthΩ = 0.005, and an OL withV0 = 0.5 andk = 1.

It is observed that the soliton remains immobile up tot ≈ 250, and then it starts to oscillate in the well
with increasing amplitude, see the inset inFig. 6(left). Then, att ≈ 380 the soliton gains enough kinetic
energy to escape from the well. Careful consideration demonstrates that the soliton escapes from the trap
with some acceleration [this may be seen in the inset ofFig. 6(left)], thus continuously losing its energy
[37] (see also discussion in Ref.[14]). This energy loss renders the soliton shallower. As an example,
we note that att = 500 the soliton’s amplitude (depth) is approximately 0.77, as seen inFig. 6 (right),
while, at the same time, the condensate itself is clearly distorted. The dark soliton continues its path to
the rim of the TF cloud, where it gets reflected (this occurs att ≈ 1000). Later, att ≈ 1100, the soliton
amplitude falls to approximately 0.5, i.e., it becomes comparable to the strength of the OL, hence it can
no longer be distinguished from the TF background. In fact, the DS has essentially completed its decay
by that time.

In general, we have found that the emission of radiation is relatively strong (thus resulting in smaller
soliton-trapping times) as long as the strengthV0 of the OL potential and/or the deviation of the initial
soliton’s position from the bottom of a lattice potential well are relatively large. We have also found that
the increase of the wavenumberkplays an important role in the manifestation of the radiation effects. As
an example, inFig. 7, we show the configuration att = 5, together with the motion of the DS initially
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Fig. 7. (a and b) The density of the dark soliton att = 5 (solid line), initially placed atx0(0) = −3; the potential is shown by
the dashed line. The strengths of the magnetic trap and optical lattice potentials areΩ = 0.075 andV0 = 0.25, respectively.
The wavenumber of the optical lattice is (a)k = 0.5 and (b)k = 0.25. (c) Motion of the center of the dark soliton for the
above-mentioned configurations (a) (solid line) and (b) (dotted line).

placed atx0(0) = −3, for two different cases, namely,k = 0.5 andk = 0.25 (the MT and OL strengths
areΩ = 0.075 andV0 = 0.25). In the former case, the soliton is placed at the bottom of the well closest
to the condensate’s center. As a result, the behavior is quite similar to that observed inFig. 5: initially,
the soliton stays trapped in the well, but att ≈ 175 it escapes through the radiation–emission mechanism
described above. Subsequently, it oscillates inside the next well (up tot ≈ 270), then it escapes again and
oscillates in a wider region inside the condensate. In the second case (withk twice as small), the DS is
not placed at the bottom of the well, therefore it starts to oscillate immediately. The oscillations last up
to t ≈ 280, and then the soliton gains sufficient kinetic energy to escape, thus switching to oscillations
with a larger amplitude. These results show that, for increasingk, the transient trapping of the DS in the
potential well ends earlier (despite the DS being initially located at the potential minimum).

The fact that we have identified cases when the soliton remains trapped for long times in a well of the
optical lattice suggests the following possibility: consider a slowlymovingOL potential which initially
traps a DS. The slow motion of the OL can be induced by varying the phase difference∆ between the
two laser beams that form the lattice, the velocity of the motion beingc = (π/k)d∆/dt [31]. Then, a
natural question is whether this steadily moving OL candrag the initially trapped DS and bring it to
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Fig. 8. Targeted transfer of a dark soliton from its initial position,ηi = −3π/2, to the final one,ηf = π/2. The strength of the
magnetic trap isΩ = 0.025, the optical lattice parameters areV0 = 0.07 andk = 1, and the transfer law is taken witht0 = 100
andT = 60 [see Eqs.(18) and (19)]. The soliton delivered by the OL to the pre-selected destination stays there, performing
small oscillations, during the time interval 200< t < 400; later, it escapes because of the radiation loss.

another (pre-specified) position[38]. Apparently, this issue is important for applications, since it would
demonstrate a possibility ofdriving the dark solitons (and other coherent structures, more generally)
in the BEC by means of OL potentials. Note that it has been recently shown that an attractive steadily
moving localized impurity may drag a stationary DS[10], but here we aim to consider the more general
problem of thetargeted transferof a dark soliton by an OL.

Generally speaking, robust targeted transfer of solitons (in continua or lattices) may be implemented
in dissipative systems by means of an external time-dependent force[39]. In the present case, as we aim
to transfer the DS by a moving OL, we consider an OL potential of the following form:

VOL(x, t) = V0 cos2[k(x − y(t))], (18)

where the time-varying positiony(t), which will play the role of the “driver”, is taken as

y(t) = ηi + 1

2
(ηf − ηi )

[
1 + tanh

(
t − t0

T

)]
. (19)

In Eq.(19), ηi andηf are the initial and final positions of the DS, whileT andt0 are constants controlling,
respectively, the duration and the beginning of the transfer. Note that the maximum of the transfer velocity
vmax ≡ | max(dy/dt)| = |ηi − ηf|/2T , should be sufficiently small to ensure adiabaticity.

Simulations of the GP equation(1) with the OL potential as in Eq.(18) demonstrate the possibility
of the DS transfer. As shown inFig. 8, the soliton, initially placed atηi = −3π/2, is safely delivered to
the new location,ηf = π/2 (the parameters were chosen to beΩ = 0.025, V0 = 0.07,k = 1 – the same
as inFig. 5 – andt0 = 100, T = 60). We stress that, although the DS oscillates in the OL well, where
it was initially captured, it remains in the trapped state, and is dragged by the moving OL very robustly.
When the OL ceases to move, the DS performs small-amplitude oscillations in the well located at the
final destination,x = ηi . The soliton remains well-trapped there for a considerable time (approximately
in the interval 200< t < 400). However, similar to what was shown in detail above, the radiative loss
eventually leads to escape of the DS. This is seen inFig. 8for t > 400.
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It should be stressed here that the example shown inFig. 8corresponds to a typical situation of what
we have observed in targeted transfer numerical experiments. Direct simulations have shown that the
proposed process is very robust forvmax < 0.08. Thus, we use Eq.(19)as a smooth interpolant between
initial and final positions with a smoothly varying speed. Other particular forms of the dragging yield
results very similar to those obtained with Eq.(19).

5. Conclusions

In this work, we have investigated the dark soliton (DS) dynamics in spatially inhomogeneous media.
The analysis was based on a one-dimensional nonlinear Schrödinger equation incorporating external
(spatially varying) potentials, which was treated both analytically and numerically. The considered form
of the inhomogeneity suggests that the analysis and the results are relevant to cigar-shaped repulsive
BECs confined in a harmonic magnetic trap (MT) together with an optical lattice (OL). Emphasis was
placed on the long-time description of the DS dynamics, which is a quite relevant issue from the point of
view of the theory of nonlinear waves and solitons; nevertheless, from the point of view of the physical
situation encountered in relevant BEC experiments, dissipative mechanisms (thermal instabilities and
quantum depletion of DSs) may reduce the soliton lifetime.

We have separately investigated the cases where the OL period was long or short, as compared to the
healing length, which sets the spatial width of the DS. Both cases were treated analytically, the former
by means of the adiabatic perturbation theory for DSs, and the latter by means of a multiple-scales
perturbation technique. It has been found that, for both descriptions, the soliton performs oscillations in
the condensate, whose frequencies and amplitudes were estimated analytically and calculated numerically
with good agreement. Radiation effects, which become important in the case of strong OLs, were also
investigated. It was found that, by shedding sound waves (small amplitude radiation waves), the soliton
becomes more mobile, which results in the increase of the amplitude and decrease of the frequency of
the oscillations.

We have also examined the case where the OL period and the width of the dark soliton are comparable.
We have found that if the DS is initially placed quite close to the bottom of a well of the OL potential, it
remains there for a rather long time; eventually, however, it escapes due to the radiation-loss mechanism,
and then performs large-amplitude oscillations in the condensate. Furthermore, if the MT is weak enough,
the soliton eventually decays. Based on the fact that the soliton may remain stationary for a relatively
long time, we have proposed an experimentally realizable scheme to capture and drag the soliton by a
slowly moving OL, bringing it to a pre-selected final destination. This transfer mechanism is robust, as
long as the OL speed is small enough to ensure adiabaticity. Thus, time-dependent OLs may be used to
manipulate the DS motion in the condensate. Work is in progress to demonstrate that a similar technique
may also be used to control the motion of nonlinear excitations also in higher-dimensional BECs.
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