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Abstract

An non-autonomous system is proposed to model the seasonal pat-

tern of dengue fever.

We found that an approximate threshold condition for infection

persistence describes all possible behavior of the system.

As far as we know, the kind of analysis here proposed is entirely

new. No precise mathematical theorems are demonstrated but we give

enough numerical evidence to support the conclusions.
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1 Introduction

In a previous paper [1], in which we tried to understand the phenomenon
of dengue overwintering, we discovered an interesting threshold condition
that allows the complete qualitative understanding of the behavior of a non-
autonomous system.

To motivate the reader we briefly describe the phenomenon we studied in
[1].

In subtropical regions dengue fever, a mosquito transmitted disease, shows
a resurgent pattern with yearly epidemics, which starts typically in the
months characterized by heavy rains and heat, peaking some three or four
months after the beginning of the rainy season. In the dry months the num-
ber of cases drop essentially to zero due to the virtual disappearance of the
vector. Since the infection reappears for some years in the same regions, it
is natural to ask how the virus survives the dry season.

In order to model those seasonal patterns of the disease, we proposed a
non-autonomous system, described below.

The model describes the dynamic of dengue in its three components of
transmission, namely, human hosts, mosquitoes and their eggs (the latter
includes the intermediate stages, like larvae and pupae). These populations,
in turn, are divided into susceptible humans, denoted SH , infected humans,
IH , recovered (and immune) humans, RH , total humans, NH = SH+IH+RH ,
susceptible mosquitoes, SM , infected and latent mosquitoes, LM , infected and
infectious mosquitoes, IM , non-infected eggs, SE, and infected eggs, IE.

The model’s dynamics is described by the set of equations.
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dSH

dt
= −abIM

SH

NH

− µHSH + rHNH(1−
NH

kH
)

dIH
dt

= abIM
SH

NH
− (µH + αH + γH)IH

dRH

dt
= γHIH − µHRH

dSM

dt
= pS (cS − dS sin (2πft+ φ))SEθ (cS − dS sin (2πft+ φ))

−µMSM − aSM
IH
NH

dLM

dt
= aSM

IH
NH

− e−µMτIaSM(t− τ I)
IH(t−τ I)
NH (t−τ I)

− µMLM

dIM
dt

= e−µM τIaSM(t− τ I)
IH (t−τI )
NH(t−τ I)

− µMIM+

pI (cI − dI sin (2πft+ φ)) IEθ (cI − dI sin (2πft+ φ))

dSE

dt
= [rMSM + (1− g) rMIM ]

(

1− (SE+IE)
kE

)

−

µESE − pS (cS − dS sin (2πft+ π))SEθ (cE − dE sin (2πft+ π))

dIE
dt

= grMIM
(

1− (SE+IE)
kE

)

− µEIE−

pI (cI − dI sin (2πft+ φ)) IEθ (cI − dI sin (2πft+ φ))
(1)

Let us briefly describe some features of the model.
We begin by describing the first three equations of the model.
Susceptible humans grow at the rate rHNH(1 −

NH

kH
) − µHSH , where rH

is the birth rate, µH is the natural mortality and kH is the human carrying
capacity. Note that we are assuming that close to the carrying capacity
the human population growth is checked by a reduction in the birth rate.
Alternatively the control of the population could be done by assuming an
increase in the mortality rate, but the net result would be qualitatively the
same. Those susceptible humans who acquire the infection do so at the rate
abIM

SH

NH

, where a is the average daily biting rates of mosquitoes and b is
the fraction of infective bites inflicted by infectious mosquitoes IM . Infected
humans, IH may either recover, with rate γ, or die from the disease, with
rate (µH + αH). Recovered humans remain so for the rest of their lives.

The fourth, fifth and sixth equations represent the susceptible, latent and
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infectious mosquitoes sub-populations, respectively. Susceptible mosquitoes
varies in size with a time-dependent rate

pS (cS − dS sin (2πft+ φ))SEθ (cS − dS sin (2πft+ φ))− µMSM .

The term µM is the natural mortality rate of mosquitoes. The term pSSE is
the fraction of eggs present at time t, and which survived the development
through the intermediate stages (larvas and pupas). The time-dependent
rate (ci − di sin (2πft+ φ)) θ (ci − di sin (2πft+ φ)) (i = S, I) simulates the
seasonal variation in mosquitoes production from eggs, assumed different for
infected and susceptible eggs, for generality. By varying ci and di , (i = S, I),
we can simulate the duration and severity of the winters (f = 1/365 days−1

and so it fixes one cycle per year). The Heaviside θ-function (a step function
that is equal to zero when the argument is less than zero and one when the
argument is greater or equal to zero) θ (ci − di sin (2πft+ φ)) prevents the
term

(ci − di sin (2πft + φ)) θ (ci − di sin (2πft+ φ)) (i = S, I)
from becoming negative. If ci is smaller than di, then the winter is long

and severe. On the other hand, if ci is greater than di, then the winter is short
and mild. Susceptible mosquitoes who acquire the infection do so at the rate
aSM

IH
NH

, where a is the average daily biting rates of mosquitoes, and became
latent. A fraction of the latent mosquitoes survives the extrinsic incubation
period with probability e−µM τI and become infectious. Therefore, the rate
of mosquitos becoming infectious per unit time is e−µMτIaSM(t−τ I)

IH(t−τ I)
NH

.
The term

pI (cI − dI sin (2πft+ φ)) IEθ (cI − dI sin (2πft+ φ))

represent vertical transmission, that is, the rate by which infected eggs be-
come infectious adults. Infected mosquitoes die at the same rate µM as the
susceptible ones.

The seventh and eighth equations represent the dynamics of susceptible
and infected eggs, respectively.

In the seventh equation, the term

[rMSM + (1− g) rMIM ]

(

1−
(SE + IE)

kE

)

represent the birth rate of susceptible eggs born from susceptible mosquitoes
with rate

rMSM

(

1−
(SE + IE)

kE

)
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and from a fraction (1− g) of infected mosquitoes, with rate

(1− g) rMIM

(

1−
(SE + IE)

kE

)

The term rM
(

1− (SE+IE)
kE

)

represents the density-dependent rate of eggs
birth rate. Once again we choose a density dependence on birth rather than
on death. Alternatively the control of the population could be done by
assuming an increase in the mortality rate µE, but the net result would be
qualitatively the same. Finally, in the last equation the term

grMIM

(

1−
(SE + IE)

kE

)

− µEIE

represents the rate by which infected eggs grow and the term

pI (cI − dI sin (2πft+ φ)) IEθ (cI − dI sin (2πft + φ)) ,

as already mentioned, is the fraction of the hatched infected eggs which
evolves to infectious adults.

2 An approximated threshold condition

In the first part of this section we deduce a threshold condition for epidemic.
The intuition behind the procedures is discussed later on.

In order to deduce the threshold condition for epidemic we replace the
non-autonomous system (1) by a autonomous one, by regarding the time on
the right side of the system (1) as a parameter and then carry out a local
stability analysis. We linearize the second, the fifth, the sixth and eighth
equations of the autonomous system around a small amount of disease iH ,
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lM , iM and iE :

diH
dt

= ab SH

NH

iM − (µH + αH + γH)iH

dlM
dt

= aSM

NH

iH − µM lM

−e−µM τIaNM (t−τI )
NH (t−τ I)

iH(t− τ I)

diM
dt

= e−µMτIaNM (t−τ I)
NH(t−τ I)

iH(t− τ I)− µM iM+

pI (cI − dI sin (Φ)) iEθ (cI − dI sin (Φ))

diE
dt

= grM
(

1− (SE)
kE

)

iM − µEiE−

pI (cI − dI sin (Φ)) iEθ (cI − dI sin (Φ))

(2)

where Φ = 2πft+ φ.
We then examine the stability of the trivial solution of system (2), that

is, iE = 0, lM = 0, iH = 0 and iM = 0, as if the system were autonomous[2].
For this we assume the solutions:

iH = c1 exp (λt)

lM = c2 exp (λt)

iM = c3 exp (λt)

iE = c4 exp (λt)

(3)

drop the Heaviside θ−functions by assuming cI ≥ dI , and replace (3) into
equation (2). The characteristic equation associated to system (2) is then
obtained:
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−(λ+ γH + αH + µH) 0 ab SH(t)
NH (t)

0

aSM

NH
− ae(−µMτ)×

Nm(t−τI )
NH (t−τ I)

e−λτ −(λ + µM) 0 0

ae(−µMτ)Nm(t−τ I)
NH (t−τ I)

e−λτ 0 −(λ+ µM) pI (cI − dI sinΦ)

0 0 grM
(

1− SE

kE

) −λ− µE−

pI (cI − dI sin (Φ))
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= 0

(4)
If all the roots of equation (4) have negative real parts, then the equilib-

rium without disease is stable, that is, the origin is an atractor.. As shown
in [4], the first root that crosses the imaginary axis do so through the real
axis and this happens when

R(t) = a
(γH+αH+µH )

Nm(t−τ I)
NH (t−τI )

a exp(−µM τ)bc
µM

SH (t)
NH (t)

+

pI(cI−dI sinΦ)grM

(

1−
SE

kE

)

µM (µE+pI(cI−dI sinΦ))
> 1

(5)

Note that the first term in equation (5) is exactly the expression proposed
in [3] for the so-called ’basic reproduction number’.

The intuition behind the above procedure is the following. System (1) has
’no-mass’, that is, it responds to perturbations instantaneously. Therefore,
we can find the time t at which the stability of the trivial solution of system
(2), that is, iE = 0, iH = 0 and iM = 0 becomes unstable. We have numeri-
cally checked that the time t at which the trivial solution (no-disease) of the
autonomous system becomes unstable (R > 1) corresponds approximately
to the moment at which the epidemic takes off, that is, when the epidemic
in system (1) begins to increase as a result of the introduction of a small
amount of disease at time t = 0.
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3 Qualitative analysis of the system’s behav-

iors

In this section we analyze qualitatively all the possible behaviors of the sys-
tem when a small amount of disease is introduced into a previously uninfected
population and when R(t) is in its minimum value (winter time), that is, we
ser φ = π. We do so by using R(t) as in equation (5) and by numerically
simulating system (2) with parameters values as in table 1.

Table 1

The initial conditions were obtained by using the values of the carrying
capacities (see table 1) and running the system without disease and taking
the lowest values corresponding to the peak of the winter. The values are
SH(0) = 200, 000, SM(0) = 85, 000 and SE(0) = 930, 000. The disease
was introduced through a single infected egg, that is IE(0) = 1 and all the
remaining variables equal to zero.

We analyze two epidemiological scenarios, one in which R(t), in the ab-
sence of infection, is most of the time above one, and another in which R(t)
is most of the time below one. In the first case, if a small amount of infection
is introduced we observe a pattern shown in figure 1. In the second case a
small amount of infection introduced generates a pattern shown in figure 2.

Figure 1
Figure 2

In figure 1 the intensity of transmission is relatively low (a = 3.7 days−1)
and we see a first peak followed by a succession of outbreaks forming a
damped oscillation pattern and the disease disappears. In other words, after
the first outbreak the infection transmission decreases to levels inferior to
that of the previous cycle. As the system oscillates the time interval during
which R(t) > 1, that is, the system is above the threshold for transmission,
is insufficient for keeping transmission, we have the pattern observed.

In figure 2 the intensity of transmission is higher (a = 4.3 days−1) than
that shown in figure 1 and, consequently the time interval during which
R(t) > 1, that is, the system is above the threshold, is larger. In this case
the amplitude of the consecutive outbreaks increases until the fraction of
immune individuals reaches a herd immunity threshold and the disease dies
out in a damped oscillation pattern.
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We have numerically found that there is an increase in the amplitude of
consecutive outbreaks with a = 4.3 days−1, whenever the preceding period
of time R(t) is above the threshold for transmission is greater than a certain
time interval (about 190 days). Indeed, with a = 3.7 days−1, as mentioned
above, there is a first outbreak and the subsequent peaks formed a damped
oscilation and the time interval R(t) is above the threshold for transmission
is greater than 190 days only for the first peak.

When we simulate the system with parameters that make R(t) < 1 for all
times, the disease cannot invade the population and disappears exponentially.

Those are the only three possible qualitative patterns generated by a
small amount of disease introduced into an entirely susceptible population
when R(t) is at its minimum value. Let us concentrate in the first two pat-
terns, which can better be visualized in figures 3 and 4, where the threshold
parameter R(t) is shown as function of time for each of the above cases.

Figure 3
Figure 4

In figure 4 we can note the herd immunity effect acting after the second
peak.

Other interesting results are shown in figures 5 and 6, in which the time
oscillation of the ‘total amount of disease’, d(t), defined as

d(t) =
√

(IH(t))
2 + (LM (t))2 + (IM(t))2 + (IE(t))

2 (6)

is plotted together with R(t), for both cases of low and high intensities of
transmission. It can be noted from the figure, that the points in which R(t)
crosses 1 corresponds, approximately, to maximums and minimums of the
function d(t). Note also that, in both cases the peaks and troughs of d(t)
occur slightly after R(t) crosses 1, decreasing and increasing, respectively, as
if the system has a small ‘inertia’.

Figure 5
Figure 6

4 Sensitivity analysis

In this section we describe the sensitivity of the patterns to the amount of
disease introduced at t = 0, and the sensitivity of the patterns to the time
of the year at which the disease is introduced.
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4.1 Sensitivity of the patterns to the amount of disease

introduced

It can be numerically cheked that when the transmission is relatively low,
that is, when R(t) > 1 for periods of time less or equal to around 190 days,
an increase in the amount of the disease introduced at t = 0 changes the
pattern shown in figure 1 by increasing the peaks almost linearly. In figure
1 we introduced at t = 0 one infected egg. When we introduced 5 infected
eggs, the peaks amplitudes are multiplied by 5. Naturally, if a large amount
of disease is introduced then herd immunity can distort the pattern.

In the case when transmission is relatively high, that is, when R(t) is most
of the time above one, an increase in the amount of disease introduced at
t = 0 can distort the pattern due to herd immunity. If the amount of disease
introduced is sufficiently large we can observe just a single peak, that is, the
disease disapear by a substantial decrease in the number of susceptibles.

4.2 Sensitivity of the patterns to the time at which the

disease is introduced

We can vary the time of the year at which the disease is introduced by varying
φ. If the disease is introduced when R(0) < 1, then the disease dies out until
the moment when R (t) crosses one from below. The rest of the development
is identical to the pattern shown in figure 1 or 2, depending on the intensity of
transmission. On the other hand, if the disease is introduced when R(0) > 1,
then the disease imediately increases and the subsequent pattern is as shown
in figure 1 or 2, depending on the intensity of transmission.

5 Final comments

This paper presents a novel, as far as we know, approach to analyze the
response of a non-autonomous system to a perturbation. This is quantified
by an approximate expression for the threshold condition that determines
whether the system will amplify or reduce a small of disease introduced at
time t. We should warn the reader that we have no mathematical proof of the
correctness of the threshold expression here deduced but intuition and the
numerical investigation presented above suggests that it is basically correct.
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A possible application exemplified in this paper is the case of dengue fever,
in which a seasonal variation in the density of vector mosquitoes determines
the intensity of transmission. In another paper we used a similar model
to explain the question of overwintering, that is, how dengue fever survives
through the winter´s dry and cold season.

Finally, we think that the analysis proposed in this paper could be applied
to other vector-borne infections and also to some directly transmitted diseases
that show seasonality in the intensity of transmission.
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Captions for the Figures

Figure 1. Number of infected humans for the case of low intensity of
transmission (a = 3.7 days−1). There is a first outbreak resulting from the
introduction of a small amount of infection in a previously uninfected popu-
lation followed by a pattern of damped oscillation until the disease disappear.
Simulation begins at the peak of the winter.

Figure 2. Number of infected humans for the case of high intensity
of transmission (a = 4.3 days−1). After the first outbreak resulting from
the introduction of a small amount of infection in a previously uninfected
population there are subsequent outbreaks with larger amplitudes until herd
immunity is achieved and the disease gradually disapears. Simulation begins
also at the peak of the winter.

Figure 3. The threshold R(t) in the case of low transmission (a = 3.7
days−1).

Figure 4. The threshold R(t) in the case of high transmission (a = 4.3
days−1).

Figure 5. The threshold R(t) and ‘total amount of disease’ d(t) in the
case of low transmission (a = 3.7 days−1). The peaks and troughs of d(t)
occur slightly after R(t) crosses 1.

Figure 6. The threshold R(t) and ‘total amount of disease’ d(t) in the
case of high transmission (a = 4.3 days−1). Again, the peaks and troughs of
d(t) occur slightly after R(t) crosses 1.
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Table 1
Parameter Meaning Value

a Average Daily biting rate see text
b Susceptibility to Infection 0.1
µH Humans Natural Mortality Rate 4 x 10−5days−1

rH Humans Malthusian Parameter 1 days−1

kH Humans Carrying Capacity 106

αH Dengue Induced Mortality in Humans 10−3days−1

γH Humans Recovery Rate 0.143 days−1

pS Proportion of non-infected eggs that reach adult phase 0.15
cS Climatic factor modulating winters and summers 0.08
dS Climatic factor modulating winters and summers 0.06
f Frequency of the seasonal cycles 2.8 x 10−3days−1

µM Natural mortality rate of mosquitoes 0.263 days−1

τ Extrinsic incubation period of dengue 7 days
αM Dengue induced mortality in mosquitoes negligible
rM Eggs Malthusian parameter 50 days−1

pI Proportion of infected eggs that reach adult phase 0.15
cI Climatic factor modulating winters and summers 0.06
dI Climatic factor modulating winters and summers 0.06
g Proportion of infected eggs laid by infected females see text
kE Eggs Carrying Capacity 106

µE Natural mortality rate of eggs 0.1 days−1
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