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Moisture flow in porous media is the driving force behind early age drying shrinkage.
Fracture in the interfacial transition zone (ITZ), between cement paste and aggregate-
inclusion, is related to restraint caused by, among others, aggregates that obstruct free
deformation of the paste. Environmental Scanning Electron Microscope (ESEM) test
results are used as a base for the developed method for measuring shrinkage deformations
during drying. Modeling of moisture flow in the heterogeneous samples is numerically
performed with Lattice Gas Automata (LGA). Fracture coupling of the LGA and Lattice
Fracture Model (LFM) requires coupling with ESEM tests regarding shrinkage coefficient.

1. INTRODUCTION

Early age microcracks in concrete, prior to any mechanical load, may be the reason
for the serious fractures of reinforced concrete structures in the later phases of their
service life. Cracks could be induced by time-dependent variations in the cement paste
microstructure [12]. That is probably a result of unavoidable, differential volume changes
during drying and development of critical tensile/shear stresses [7], which may exceed the
stress threshold, if the strength criterion is assumed. Especially bond cracks emerge due
to the weakening of the bond zone (or ITZ), Fig. 1, at a rather young age, depending on
curing and drying conditions as well as cement and aggregate properties. In a thickness
range of 10-50 µm, the ITZ is a more porous area around aggregate, than the rest of
bulk cement paste, and hence with the lowest strength and the highest possibility for
cracks to occur [6,8,13]. Although small, compared to the size of concrete composition,
ITZ may take 30-50% of the total volume of cement matrix in concrete. Hence, it is
important to investigate ITZ, especially when it comes to the flow through ITZ and
closely related microcracking [7]. The aim of the numerical part of research is to simulate
drying in a model of porous media of ‘cement paste’ i.e. homogenous sample [9,10] and
heterogeneous sample, with embedded solid obstacles. The heterogeneous samples should
enable observations of the fictitious moisture behaviour in the close vicinity of the obstacles
(defined as ITZ), when their sizes (boundary area), quantity and placement vary.

∗2005 O.H.Ammann ASCE/SEI Research Award and the support of Technical University of Delft are
gratefully acknowledged

1



2 D. Jankovic and D.A. Wolf-Gladrow

Figure 1. Cement paste with an embedded obstacle (glass pearl) in ESEM digital test
(image 1424 x 968 pixels). Microcracking (bond-cracks) in ITZ is visible at the initial
stage at 100% RH before drying test takes place: (left) magnified at 20 µm and (right)
enlarged to 5 µm [11].

2. MOISTURE FLOW BY MEANS OF LATTICE GAS AUTOMATA

Moisture flow (drying), as the most interesting phenomena that eventually may lead
to fracture in cement paste, has been modeled using a 2-D Lattice Gas Automata, LGA.
In particular the simple, one-phase FHP model is developed, often described as an exact
numerical solution for the Navier-Stokes equation [4].

2.1. Theory of Lattice Gas Automata
Originating from Statistical Mechanics and Cellular Automata [15], LGA bridges the

gap between macroscopic and microscopic phenomena. The main Lattice Gas principle
is conservation of mass (expressed in a number of fictitious fluid particles) and linear
momentum. In order to simulate flow, fluid particles propagate and collide on the reg-
ular triangular Bravais lattice following prescribed deterministic and probabilistic rules
[5]. The Navier-Stokes equation for incompressible fluid flow is obtained from LGA by
Chapman-Enskog expansion [15]. The expansion gives the macroscopic behaviour of fluid
by averaging the microscopic (discretized) forms of mass (density) and momentum over
the considered area. The macroscopic equations, obtained through the averaging of the
mentioned equations, have close similarity to the Navier-Stokes equation for incompress-
ible fluid flow (ρ = const). Detailed derivations can be found in the literature on LGA
[4,5,15,3,14].

2.2. FHP, ‘heterogeneous’ domain, initial and boundary conditions
The domain consists of 1024 x 1024 lattice nodes. In order to observe ITZ as inseparable

from aggregate, the domain contains a number of solid, impermeable objects (‘obstacles’).
The drying is simulated by FHP model [4] with various collision rules. Among others,
two sets of collision rules FHP2 (7 cells per node including a particle at rest, 22 collisions)
and FHP5 (12 collisions), given in the literature, proved to be a fairly good equivalent to
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Figure 2. Model 1: simulation of drying in heterogeneous sample with 0.11% of solid
obstacles, after 10 (left) and 2000 LGA time-steps (right) with bounce-back reflection as
a collision/boundary rule. The moisture content is presented in a scale.

the experimental results [1]. Collision rules in a model influence the viscosity. Compared
to FHP5, FHP2 rule induces smaller viscosity, due the higher number of collisions. The
wet part of the domain is initialized with a constant mean density (d = 0.85) and thus a
fluid at rest. The boundaries of the domain are vertically defined as a default ‘periodic’
boundary conditions, at the upper and lower boundary. In the horizontal direction, a solid
wall is placed, such that the density is kept at a low value, representing the ‘surface water
pressure’, while the model domain is closed at the right. Particles that hit the wall are
bounced-back into the domain; bounce-back (no-slip) boundary condition at the solid wall
is expressed as r = 0 (r = specular/bounce-back reflection), while r = 1 ratio represents

Figure 3. Moisture distribution for model 1, with the built-in solid clusters (20 x 20 lattice
sites) with (left) bounce-back rule (r = 0) and (right) specular-reflection rule (r = 1).
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Figure 4. Model 2: Illustration of drying in LGA heterogeneous sample, with embedded
six solids and randomly distributed (20 x 20) solid clusters after (left) 500, (middle) 1000
and (right) 2000 LGA time-steps. Applied FHP2 collision rule and bounce-back reflection
(r = 0) among fluid and solid particles. Moisture content is described in a scale.

the specular-reflection. Particles that cross the open boundary leave the domain and never
come back. The loss of particles (moisture) at the open boundary creates a mass density
gradient that drives a flow towards the left-hand side. Boundary conditions have to be
set also for particles hitting the obstacles that are located inside the domain. Two cases
have been studied: a) bounce-back (no-slip) or b) specular-reflection (slip). An increase
in the lattice size reduces the statistical noise of the results, but a complete removal of
noise in LGA cannot be obtained due to the discretized nature of LGA, which is based
on Boolean algebra.

2.3. Discussion of models
Model 1 (small-sized obstacles). The non-homogenous lattice consists of fluid and solid

sites (20 x 20 clusters particles, Fig. 2). Simulation of drying runs for 5000 LGA time-
steps, starting from the initial density of d = 0.85. Bounce-back or specular-reflection,
is applied as a boundary condition and the FHP2 collision rule, with 22 collisions (Figs
2,3). Compared to the drying of homogeneous sample of the same lattice size, collision
rules and LGA time-step of 500 [12], the results in the heterogeneous lattice are noisier
and with less steep moisture gradient. Namely, due to the presence of solids, the moisture
gradient decreases but the speed of drying increases (after 5000 LGA steps, the sample
is almost dry). The reason could be the boundary condition in the model but also in the
real cement paste sample. For example, bounce-back reflection contributes to the noisier
but slower drying results (Fig. 3). The opposite is valid for specular-reflection. A certain
qualitative agreement could be found between the numerical simulations with homoge-
neous and heterogeneous samples, and experimental results of drying cement specimens
in the NMR [1], where drying was speeded up by the introduction of obstacles (aggre-
gates) in cement paste. The choice of the size of LGA time-step is also important for the
simulation of the drying process. In the homogeneous sample, the larger integration time
is recommended and it should be at least 5000 [9], while for heterogeneous sample, the
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Figure 5. Moisture flow diagrams for model 2, with (left) FHP2 rule and specular-
reflection (r = 1), and bounce-back reflection (r = 0) and FHP5 rule (right).

size can be much smaller, such as 500 steps. Model 2 (addition of 6 larger obstacles). The
difference between model 1 and model 2 is the addition of six larger obstacles (160 x 160
lattice sites). They are located at fixed pre-determined positions (Fig. 4), closer to the
drying surface, on the left side. Two boundary conditions are considered: bounce-back
and specular-reflection as well as two collision rules: FHP2 (Figs 4, 5-left) and additional
FHP5 (Fig. 5-right). Drying process can be speeded up by an increase in the number
of collisions (quicker with FHP2 than with FHP5 due to the smaller viscosity of FHP2).
Specular-reflection speeds up the drying (slip vs. no-slip boundary condition) regardless
of the collision rule. In conclusion: the drying is the highest with specular-reflection and
FHP2 rule (the collisions significantly reduce the first drying step) and the slowest with
FHP5 rule and bounce-back reflection (Fig. 5-right). The important difference between
samples with small and large obstacles is the jump in moisture content (Figs 3, 5), visible
in the vicinity of every large obstacle. Around large obstacles, ITZ is created as a sort of a
boundary layer, with a prescribed bounce-back collision rule among fluid and solid parti-
cles (obstacle). The ‘jump’ could be explained physically and mathematically. In drying,
as a physical phenomenon, significant changes in the moisture gradient are expected in
the boundary (bond zone between aggregate/matrix) as it is a highly porous medium
and moisture flow occurs with higher velocity. The density of fluid particles and the ve-
locity should have different values in the matrix (fluid particles) than in a zone between
impermeable solids and fluid. The mathematical explanation comes from the Chapman-
Enskog expansion and the Boltzmann equation. It is known that the Chapman-Enskog
expansion is used to derive the macroscopic laws, when the Boltzmann equation is known.
Although the Boltzmann equation is limited to dilute gases so it must be extended for
higher collisions (BBGKY hierarchy), we can assume for the sake of argument that Boltz-
mann equation applies. In the continuous limit, the Boltzmann equation describes the
behaviour of macroscopic quantities such as the density of fluid particles. It is an integro-
differential equation of function f (r, v, t), which expresses how the number of molecules f
(r, v, t) dr dv in the element (dr dv) of the six dimensional phase space, changes in time
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Figure 6. Model 3. LGA drying simulation in the heterogeneous sample, populated with
0.11% of solids, size (20 x 20) and four obstacles, symmetrically distributed, after (left)
500, (middle) 1000 and (right) 4000 LGA steps. FHP2 rule.

(t). This function gives the average number of particles in the differential area dr, having
a velocity between v and dv. The quantity Ni [4] takes the role of the Boltzmann density
function f, where the velocities are discrete in six directions (ci) instead of a continuous
variable v. The density of particle (ρ) is defined as an integral of f over the velocity v,
such that density variations i.e. jumps (Figs 5, 7), present deviations in velocity. Hence,
it should be expected to see a jump in density at the interfaces between solid obstacles
and the surrounding fluid zone. The larger is the obstacle and subsequently ITZ area
around it, the larger the jump. Model 3 (addition of 4 larger obstacles). The inclusion of
four obstacles (Fig. 6) instead of six large obstacles, closer to the middle of the sample,
contributes to rapid drying (Fig. 7), similarly as in homogeneous sample. Hence in drying
simulation with heterogeneous LGA, it is not only the number of large obstacles and size
of ITZ, but also their distance from the drying surface, that plays a role.

3. CONCLUDING REMARKS

Modeling of moisture flow (drying) by means of Lattice Gas Automata in 2-D is a suc-
cessful numerical solution for Navier-Stokes in porous media, compared to Finite Element
or Finite Difference Method and the complex experimental drying techniques. Several
issues are influential in drying simulations with LGA heterogeneous models: number of
the nodes in the lattice domain, the size (boundary) of the obstacles, and their placement
to the drying surface, as well as boundary conditions and collision rules, and LGA drying
time-step. The moisture gradient is influenced by the choice of the boundary conditions
among fluid and solid particles (either bounce-back or specular-reflection), especially in
the case where larger obstacles are present, as well as by the number of collisions i.e.
specified collision rule. In model 1, with small randomly distributed solid particles, the
moisture gradient (Fig. 3, left vs. right) does not depend significantly on the boundary
rules, as it is the case with larger obstacles, which have larger boundary areas i.e. interface
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Figure 7. Moisture distribution in 5000 drying LGA time-steps with FHP2 rule, for model
3: (left) with bounce-back rule (r = 0) and (right) with specular reflection (r = 1).

zone (ITZ). The reason could be the ratio of the obstacle and ITZ size, to the size of the
lattice. Area around obstacles can be again ‘smooth’ or ‘rough’, which can be simulated
by the boundary conditions. From the experiments on drying, it is known that flow oc-
curs through capillaries (up to 10 µm) and voids (10 nm and less). The roughness of the
capillary walls may influence fluid flow, while the influence of void walls is negligible. If
the capillary walls are smooth (simulation with a specular-reflection boundary), flow is
expected to increase. On the contrary, flow is slower in rough capillaries, which is very
similar to the simulation with bounce-back reflection. The speed of drying could be also
controlled by the choice of collision rules. When the number of collisions is reduced by
applying the FHP5 rule, instead of the FHP2 rule (compare Figs 5-left and 5-right), the
speed of drying reduces. Speculations could be made regarding large moisture gradients
in the vicinity of large aggregates, which could induce cracks on the sample surface. Crack
could emerge by the positioning of larger number of aggregates closer to the surface, on
a smaller distance from a surface. Cracks may also develop when aggregates are closely
placed to each other, due to development of high moisture gradients on small distances.
Although this appears to be confirmed in the literature [7], more experimental analyses
are needed as well as extended coupling of a shrinkage and fracture model, with newly
found drying shrinkage coefficient at low relative humidity values.
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