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Abstract

The Kadomtsev-Petviashvili II (KPII) equation admits a large variety of multi-soliton solutions which
exhibit both elastic as well as inelastic types of interactions. This work investigates a general class of
multi-solitons which were not previously studied, and which do not in general conserve the number of
line solitons after interaction. The incoming and outgoingline solitons for these solutions are explicitly
characterized by analyzing theτ-function generating such solutions. A special family ofN-soliton solu-
tions is also considered in this article. These solutions are characterized by elastic soliton interactions, in
the sense that amplitude and directions of the individual line solitons asy→ ∞ are the same as those of
the individual line solitons asy→−∞. It is shown that the solution space of these elasticN-soliton solu-
tions can be classified into(2N−1)!! disjoint sectors which are characterized in terms of the amplitudes
and directions of theN line solitons.

1 Introduction

The purpose of this work is to present a characterization of alarge family of real, non-singular, line-soliton
solutions of the KPII equation

(−4ut +uxxx+6uux)x+3uyy = 0 (1.1)

whereu = u(x,y, t) and subscriptsx, y and t denote partial derivatives. The KP equation is perhaps the
prototypical (2+1)-dimensional integrable evolution equation originally derived [10] as a model for small-
amplitude, long-wavelength, weakly two-dimensional solitary waves in a weakly dispersive medium, and
arises in many different applications including water waves and plasmas (for a review, see e.g. [7]). The
various aspects related to the integrability of the KP equation have been studied extensively, and a large
number of exact solutions have been found. These works are documented in several monographs (see e.g.,
Refs. [1, 7, 17] and references therein). There are two versions of the KP equation depending on the sign of
the dispersion namely, KPI (for positive dispersion) and KPII (for negative dispersion). Here we consider
the KPII equation.

Among the exact solutions of KPII, perhaps one of the most well known class of real, non-singular
solutions is the line-soliton solutions. The simplest typeis the one-soliton solution which is a traveling wave
in xy-plane, and is localized along a line. A straightforward generalization of this solution to a multi-soliton
configuration ofN line solitons was also found in earlier works [20, 5]. In the generic case, theseN-soliton
solutions form a pattern ofN intersecting straight lines in thexy-plane apart from small spatial shifts arising
from the pairwise interactions between any two lines. We refer to these solutions as theordinary N-soliton
solutions which can be parametrized by 2N parameters namely, amplitude and direction (in thexy-plane) of
the N line solitons. However, it has been shown theoretically andexperimentally that it is not possible to
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obtain ordinaryN-soliton solutions forall choices of the soliton parameters (see e.g., Ref. [7]). Thatis, the
parameter space of ordinaryN-soliton solutions isnotsimply theN-fold Cartesian product of the parameter
space of one-soliton solution of the KPII equation. Subsequent work has revealed that other families of
line soliton solutions exist in addition to the ordinaryN-soliton solutions. The simplest of these solutions
describes the so called “Y-junction” solutions, which describes resonant interaction of two line solitons, and
has been known since 1977 [15, 16]. In this case, the three solitons with wave-numbers and frequencies
(ka,ωa), a = 1,2,3, satisfy the three-wave resonance conditions:k1+ k2 = k3 andω1 +ω2 = ω3. More
general resonant solutions have also been obtained in Refs.[14, 18, 19]. Recently, in Ref. [2], the authors
found a large family of soliton solutions in which an arbitrary numberN− of incoming line solitons interact
resonantly via intermediate line solitons which produce web like patterns in thexy-plane, and then form an
arbitrary numberN+ of outgoing line solitons, whereN− 6= N+, in general. We refer to these multi-solitons
solutions as the(N−,N+)-soliton solutions of KPII. In particular, the caseN− = N+ = N yields yet another
kind of N-soliton solutions which however differ significantly fromthe ordinaryN-soliton solutions in their
interaction patterns. The current work is motivated by these recent studies which indicate that the solitonic
sector of the KPII equation is richer than previously thought as many other families of line-soliton solutions
exist in addition to the ordinaryN-soliton solutions.

In this article we are primarily concerned with the characterization of the incoming and outgoing line
solitons of a generic multi-soliton configuration of KPII aswell as the classification of a particular class
of multi-soliton solutions called theelastic N-soliton solutions. The paper is organized as follows. In
section 2, we discuss the asymptotic behavior of theτ-function underlying the multi-soliton solutions of
KPII. In particular, we show that asy → ±∞, the solutionu(x,y, t) decays exponentially in thexy-plane
except along certain rays which correspond to the incoming and outgoing line solitons. We then characterize
these asymptotic structures in terms of the parameters of theτ-function. In section 3, we study a special class
of solutions called the elasticN-soliton solutions. We show that these solutions can be classified into(2N−
1)!! inequivalent types determined by the 2N soliton parameters comprising ofN pairs of amplitudes and
directions associated with the incoming or outgoing line solitons. Moreover, from a given set of admissible
soliton parameters one can explicitly determine an equivalence class of elasticN-soliton solutions such
that any two solutions in the equivalence class exhibit similar interaction patterns and have the same set
of incoming and outgoing line solitons. In this paper, we only present the results and discuss some of
the important features of the multi-soliton solutions of KPII. The proofs of these results and more detailed
discussions can be found in Refs. [3, 4].

We point out that the elasticN-soliton solutions of KPII equation was also recently addressed in Ref. [11]
where an elegant characterization of these solutions were presented in terms of the Schubert cell decompo-
sition of the Grassmann variety Gr(N,2N). Here we follow a different approach motivated by the physical
problem of identifying the distinct types of elasticN-soliton solutions with the the corresponding parameter
space of soliton amplitudes and velocities. Finally, we note that line soliton solutions with novel web like
spatial structures were also found recently in several other 2+1-dimensional integrable equations. Examples
include Refs. [8, 9] for a coupled KP system, and Ref. [12] where similar solutions were found in discrete
integrable systems such as the two-dimensional Toda lattice and its fully- and ultra-discrete analogues.

2 Asymptotic line solitons

In this section we investigate the line solitons of the KPII equation and the asymptotic properties of the
τ-functions generating such solutions. The solutionu(x,y, t) of the KPII equation can be obtained from the
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τ-functionτ(x,y, t) via the relation

u(x,y, t) = 2(logτ(x,y, t))xx .i (2.1)

It is well-known (see, e.g. Refs. [5, 6, 13]) thatτ(x,y, t) can be expressed in the form of a Wronskian

τ(x,y, t) = Wr( f1, . . . , fN) = det











f1 f2 . . . fN
f ′1 f ′2 . . . f ′N
...

...
...

f (N−1)
1 f (N−1)

2 f (N−1)
N











, (2.2)

where f ( j)
n = ∂ j fn/∂x j , and where the functions{ fn}N

n=1 form a set of linearly independent solutions of the
linear system

fy = fxx , ft = fxxx.

A general family of multi-soliton solutions can be constructed in a simple way from Eq. (2.2) by choosing
each functionfn(x,y, t) to be a linear combination of real exponentials. That is,

fn(x,y, t) =
M
∑

m=1
anmeθm , n= 1,2, . . . ,N , (2.3)

where,θm = kmx+ k2
my+ k3

mt + θ0m for m= 1, . . . ,M areM phases with real phase parametersk1, . . . ,kM

and real constantsθ01, . . . ,θ0M , and where the constant coefficientsanm define theN×M coefficient matrix
A := (anm). Note that one can naturally identify eachfn with the nth row and each phaseθm with the
mth column of the coefficient matrixA, and vice versa. Upon substituting Eq. (2.3) into the Wronskian
of Eq. (2.2) and then using the Binet-Cauchy formula to expand the resulting determinant, we obtain the
following explicit form of theτ-function

τ(x,y, t) = ∑
1≤m1<···<mN≤M

A(m1, . . . ,mN) exp[θ(m1, . . . ,mN) ] ∏
1≤s<r≤N

(kmr −kms) , (2.4)

whereA(m1, . . . ,mN) is theN×N minor of A obtained by selecting the columns 1≤ m1 < · · · < mN ≤ M,
andθ(m1, . . . ,mN) := θm1 + . . .+θmN is a phase combination ofN (out ofM) distinct phases. Theτ-function
given above could in general, vanish at points(x,y, t) ∈ R

3 where the solutionu(x,y, t) in Eq. (2.1) would
then have singularities. However, the following restrictions on the phase parameters{kn}

M
n=1 and on the

coefficient matrixA are sufficient to guarantee that the resulting solutionsu(x,y, t) of the KPII equation are
nonsingular.

Condition 2.1 (Positive definiteness)

(a) The phase parameters are distinct. Hence, without loss of generality, they can be ordered as k1 < k2 <
.. . < kM .

(b) The N×M coefficient matrix A satisfiesrank(A) = N, and M> N.

(c) All non-zero N×N minors of A are positive.

From Condition 2.1 it is clear that the coefficient of each exponential term of the sum in Eq. (2.4) is positive
because the phase parametersk1, . . . ,kM are well-ordered and all the minorsA(m1, . . . ,mN) of A are also
nonnegative. As a result,τ(x,y, t) is a nonvanishing, positive function for all(x,y, t) ∈ R

3, and generates a
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nonsingular solution of the KPII equation via Eq. (2.1). IfM < N, τ(x,y, t) = 0 because the set of functions
{ fn}M

n=1 in Eq. (2.2) is linearly dependent; also whenM = N, τ(x,y, t) in Eq. (2.4) contains only one expo-
nential term which leads to the trivial solutionu(x,y, t) = 0 in Eq. (2.1). Therefore, for nontrivial solutions
we must haveM > N when there are more than one exponential term in the sum of Eq.(2.4).

The simplest example is a one-soliton solution obtained by choosingN = 1, M = 2 and f (x,y, t) =
eθ1 +eθ2, with k1 < k2. This choice yields the following traveling-wave solution

u(x,y, t) = 1
2(k2−k1)

2 sech2 1
2(θ2−θ1) = Φ(k ·x+ωt) , (2.5)

wherex = (x,y) and where the wave vectork := (lx, ly) = (k1−k2,k2
1−k2

2) and the frequencyω := k3
1−k3

2
satisfy the nonlinear dispersion relation

−4ω lx+ l4
x +3l2

y = 0. (2.6)

For fixedt, the solutionu(x,y, t) decays exponentially in thexy-plane except along the lineθ1 = θ2 whose
normal has a slopec = ly/lx = k1+ k2. Such solitary wave solutions of the KPII equation are called line
solitons. Apart from a trivial constantθ1,0−θ2,0 in Eq. (2.5) corresponding to an overall translation, a line
soliton of KP is characterized by the phase parametersk1,k2, or by two physical parameters, namely, the
soliton amplitude a:= k2−k1 and thesoliton direction c:= k1+k2.

Whenc = 0 (i.e.,k1 = −k2), the solution in Eq. (2.5) becomesy-independent and reduces to the one-
soliton solution of the Korteweg-de Vries (KdV) equation. However, due to the dependence on the additional
spatial variabley, the multi-soliton solution space of the KPII equation is much richer than that of the KdV.
Indeed we find that Eq. (2.3) with the coefficient matrixA satisfying Condition 2.1 leads to a large class of
multi-soliton configurations which consist ofN− incoming (i.e., asy→−∞) andN+ outgoing (i.e., asy→∞)
line solitons. The amplitudes, directions and the number ofincoming line solitons are in general different
from those of the outgoing line solitons. In order to characterize the incoming and outgoing line solitons
associated with these solutions, it is necessary to examinethe asymptotic behavior of theτ-function in the
xy-plane as|y|→∞, and for finitet. Recall from Eq. (2.4) thatτ(x,y, t) is a linear combination of exponential
phase combinations with positive coefficients. The leadingorder behavior of theτ-function asy→±∞ in
a given asymptotic sector of thexy-plane is governed by that exponential term which is dominant in that
region. The solutionu(x,y, t) generated by theτ-function is exponentially small at all points in the interior
of any dominant region, and is localized only at the boundaries of the dominant regions, where a balance
exists between two or more dominant phase combinations in the τ-function of Eq. (2.4). The asymptotic
properties of thetau-function and the solutionu(x,y, t) can be derived from a systematic analysis of these
dominant exponential phases. These are summarized below.

Proposition 2.2 For finite values of t, and for generic values of phase parameters k1, . . . ,kM, the incoming
and outgoing line solitons of the(N−,N+)-soliton solutions of KPII are characterized as follows.

(i) As y→ ±∞, the dominant phase combinations of theτ-function in adjacent regions of the xy-plane
contain N−1 common phases and differ by only a single phase. The transition between any two such
dominant phase combinationsθ(i,m2, . . . ,mN) andθ( j,m2, . . . ,mN) occurs along the line defined by
Li j : θi = θ j , where a single phaseθi in the dominant phase combination is replaced by a phaseθ j .

(ii) Along the single-phase transition line Li j , the asymptotic behavior of theτ-function as y→ ±∞ is
determined by the balance between the two dominant phase combinations θ(i,m2, . . . ,mN) and
θ( j,m2, . . . ,mN) in Eq. (2.4), and is given by

τ(x,y, t) ∼Ci e
θ (i,m2,...,mN)+Cj e

θ ( j,m2,...,mN) .
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Figure 2.1: Dominant phase combinations in the different regions of thex,y-plane (labeled by the indices in parenthe-
ses) and the asymptotic line solitons (labeled by the indices in square braces) for two different line soliton solutions:
(a) a Miles resonant solution (Y-junction) with(k1,k2,k3) = (− 3

2,−
1
2,

1
2,2) at t = 0; (b) an inelastic(2,2)-soliton with

(k1, . . . ,k4) = (− 3
2,−

1
2,0,1) at t = 0. Here and in all of the following figures, the horizontal andvertical axes are

respectivelyx andy, and the graphs show contour lines of logu(x,y, t) at a fixed value oft.

The coefficients Ci and Cj above depend on the phase parameters ki ,k j ,km2, . . . ,kmN , and on the N×N
minors A(i,m2, . . . ,mN) and A( j,m2, . . . ,mN) of the coefficient matrix A. The asymptotic behavior of
the solution in a neighborhood of a single-phase transitionis then obtained from Eq.(2.1)as

u(x,y, t) ∼ 1
2(ki −k j)

2 sech2
[

1
2(θi −θ j)

]

, (2.7)

which is a traveling wave satisfying the dispersion relation in Eq.(2.6). Equation(2.7)has the same
form as the one-soliton solution in Eq.(2.5), and thus it defines anasymptotic(incoming or outgoing)
line soliton associated with the single-phase transition i→ j. For each asymptotic line soliton, the
soliton amplitude is given by ai j = |ki − k j |, and the soliton direction is given by ci j = ki + k j , which
the direction (slope of the normal vector) of the transitionline Li j .

We can label each asymptotic line soliton associated with the single-phase transitioni → j, by the index pair
[i, j] which uniquely identifies the phase parameterski andk j in the ordered set{k1, . . . ,kM}.

The simplest instance of a transition of dominant phase combinations arises for the one-soliton so-
lution (2.5), which is localized in thexy-plane along the lineθ1 = θ2 defining the boundary of the two
half-planes where each of the two phasesθ1 andθ2 dominates. In the general case, the dominant regions
are more complicated although the solutionu(x,y, t) is still localized along the boundaries of these regions.
For example, Fig. 2.1(a) illustrates a(2,1)-soliton solution mentioned in the introduction as a Y-junction
[15] describing the resonant interaction of two line solitons. This solution corresponds toN = 1, M = 3, and
is generated by theτ-function τ(x,y, t) = eθ1 +eθ2 +eθ3. In this case, thexy-plane is partitioned into three
dominant regions corresponding to each of the dominant phases θ1, θ2 andθ3. Once again, the solution
u(x,y, t) is exponentially small in the interior of each dominant regions, and is localized along the phase
transition boundaries:θ1 = θ2, θ1 = θ3 andθ2 = θ3. Each of the asymptotic line solitons labeled by the in-
dex pairs [1,2], [2,3] and [1,3] are given by Eq. (2.7) and satisfy the one-soliton dispersion relation Eq. (2.6).
While some of the dominant regions have infinite extensions in thexy-plane, others can be bounded, as in
the case of the(2,2)-soliton shown in Fig. 2.1(b). This solution is generated bytheτ-function in Eq. (2.2)
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with f1 = eθ1 − eθ4 and f2 = eθ2 + eθ3 + eθ4, i.e., N = 2, M = 4. In addition to the unbounded dominant
regions corresponding to the phase combinationsθ(1,2), θ(1,4), θ(3,4) andθ(1,3), in this case there is
also a bounded region in thexy-plane whereθ(2,4) is the dominant phase combination. The boundaries of
this region is formed by the incoming asymptotic line solitons [1,4] and [2,3], together with the intermediate
line soliton [1,2]. Note that the outgoing line solitons [1,3] and [2,4] interact resonantly via two Y-junctions,
while the incoming soliton pair interact non-resonantly. Note also that the intermediate segment is a line
soliton in its own right, since the solution is locally givenby Eq. (2.7), with[i, j] = [2,3].

According to Proposition 2.2, an asymptotic line soliton corresponds to a dominant balance between two
phase combinations in theτ-function. But one still needs to identify which particularphase combinations
are indeed dominant in a givenτ-function as|y| → ∞. This requires a closer examination at the structure of
the N×M coefficient matrixA associated with theτ-function. Note that elementary row operations onA
given byA→ A′ = GAwhereG∈ GL(N,R), amounts to an overall rescaling of theτ-function in Eq. (2.4),
i.e., τ(x,y, t) → τ ′(x,y, t) = det(G)τ(x,y, t). Since such rescaling leaves the solutionu(x,y, t) in Eq. (2.1)
invariant, it is possible to choose the coefficient matrixA in reduced row-echelon form (RREF) making use
of Gaussian elimination. Recall that, for anN×M matrix in RREF, the leftmost nonvanishing entry in each
nonzero row is called a pivot, which is normalized to 1, so that the pivot columns are the elements of the
canonical basis ofRN. Throughout the rest of this work we will consider the coefficient matrixA to be in
RREF, and to satisfy Condition 2.1 and the following additional conditions:

Condition 2.3 (Irreducibility) Each column of A contains at least one nonzero element, and each row of A
contains at least one nonzero element in addition to the pivot.

Then a detailed analysis of the coefficient matrixA satisfying Conditions 2.1 and 2.3 leads to an explicit
identification of thosei → j single-phase transitions which actually occurs as|y| → ∞, for any givenτ-
function of Eq. (2.4). As a result, each asymptotic line-soliton [i, j] is also explicitly determined by the
coefficient matrixA. as given below. Specifically, we have the following results.

Proposition 2.4 Each index pair[i, j] labeling an asymptotic line soliton of a(N−,N+)-soliton solution are
uniquely identified with a pair of columns of the associated coefficient matrix A, as prescribed below.

(i) An asymptotic line soliton as y→ ∞ is identified by a unique index pair[en, jn] with en < jn and where
{en}

N
n=1 label the pivot columns of A. Similarly, an asymptotic line soliton as y→ −∞ is identified

with a unique index pair[in,gn] with in < gn and where{gn}
M−N
n=1 label the non-pivot columns of A.

Thus, the(N−,N+)-line soliton solution of KPII generated from theτ-function in Eq.(2.4)has exactly
N+ = N asymptotic line solitons as y→ ∞ and N− = M−N asymptotic line solitons as y→−∞.

(ii) The necessary and sufficient conditions for an index pair [i, j] to identify an asymptotic line soliton
is determined by considering the ranks of two sub-matrices Xi j and Yi j of A. They can be denoted by
their column indices as follows:

Xi j = [1,2, . . . , i −1, j +1, . . . ,M] Yi j = [i +1, . . . j −1] .

That is, Xi j consists of all consecutive columns to the left of the ith column and all consecutive columns
to the right of the jth column of A, while Yi j consists of all consecutive columns in between the ith and
jth column of A. The rank conditions are then stated as follows.

(a) [i, j] identifies an asymptotic line soliton as y→ ∞ if and only if rank(Xi j ) := r ≤ N− 1 and
rank(Xi j |i) = rank(Xi j | j) = rank(Xi j |i, j) = r +1.
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(b) [i, j] identifies an asymptotic line soliton as y→−∞ if and only if rank(Yi j ) := s≤ N−1 and
rank(Yi j |i) = rank(Yi j | j) = rank(Yi j |i, j) = s+1.

Above,(Z|m,n) denotes the sub-matrix Z of A augmented by the columns m and n of A.

Note that for the asymptotic line soliton[en, jn] as y → ∞ in Proposition 2.4(i),en is a pivot index but
the index jn can be either a pivot or a non-pivot index. Similarly, for theasymptotic line solitons[in,gn]
asy → −∞, the indexgn is an non-pivot index, whilein can be either a pivot or a non-pivot index. The
necessary and sufficient rank conditions in Proposition 2.4(ii) provides a constructive method to identify the
asymptotic line solitons asy→±∞ from a given coefficient matrixA in RREF. We illustrate these statements
by the examples below.

Example 1: Consider theτ-function in Eq. (2.4) withN = 2 andM = 5 generated by the coefficient matrix

A=

(

1 1 0 −1 −2
0 0 1 1 1

)

(2.8)

The pivot columns ofA are labeled by the indices{e1,e2}= {1,3}, and the non-pivot columns by the indices
{g1,g2,g3} = {2,4,5}. Thus, from Proposition 2.4(i) we know that there will beN+ = N = 2 asymptotic
line solitons asy→ ∞, identified by the index pairs[1, j1] and[3, j2] for some j1 > 1 and j2 > 3, and that
there will beN− = M−N = 3 asymptotic line solitons asy→−∞, identified by the index pairs[i1,2], [i2,4]
and [i3,5], for somei1 < 2, i2 < 4 andi3 < 5. We first determine the asymptotic line solitons asy → ∞
using the rank conditions prescribed in Proposition 2.4(ii). For the first pivot column,e1 = 1, we start with
j = 2 and consider the sub-matrixX12=

(

0 −1 −2
1 1 1

)

. Since rank(X12) = 2 which is greater thanN−1= 1, we
conclude that the pair[1,2] cannot identify an asymptotic line soliton asy→ ∞. Incrementingj to j = 3,4,5
and checking the rank of each sub-matrixX1 j we find that the rank conditions in Proposition 2.4(ii) are
satisfied whenj = 4: X14 =

(

−2
1

)

, so rank(X14) = 1 and rank(X14|1) = rank(X14|4) = rank(X14|1,4) = 2.
Thus, the first asymptotic line soliton asy→ ∞ is identified by the index pair[1,4]. For the second pivot,
e2 = 3, proceeding in a similar manner we find thatj = 4 does not satisfy the rank conditions (sinceX34

has rank 2) butj = 5 does:X35 =
(

0 −1 −2
1 1 1

)

, which yields rank(X35) = 1 and rank(X35|3) = rank(X35|5) =
rank(X35|3,5) = 2. Therefore, the asymptotic line solitons asy→ ∞ are given by the index pairs[1,4] and
[3,5].

Next we consider the asymptotics fory → −∞. Starting with the non-pivot columng1 = 2, the only
column to its left isi = 1. Then, we haveY12 = /0, and rank(Y12|1) = rank(Y12|2) = rank(Y12|1,2) = 1.
Consequently, the pair[1,2] identifies an asymptotic line soliton asy → −∞. For g2 = 4 we consider
i = 1,2,3 and find that the rank conditions are satisfied only fori = 2. In this case,Y24=

(

0
1

)

, so rank(Y24) =
1 = N− 1 and rank(Y24|2) = rank(Y24|4) = rank(Y24|2,4) = 2. Hence[2,4] is the unique asymptotic line
soliton asy→−∞ associated to the non-pivot columng2 = 4. In a similar way, we can uniquely identify
the last asymptotic line soliton asy→ −∞ as given by the indices[3,5]. To summarize, there areN+ = 2
outgoing line solitons given by the index pairs[1,4] and[3,5], and there areN− = 3 incoming line solitons
given by the index pairs[1,2], [2,4] and[3,5]. A snapshot of the solution att =−32 is shown in Fig. 2.2.

Example 2: Next, consider theτ-function with N = 3 andM = 6 generated by the coefficient matrix in
RREF

A=





1 1 1 0 0 0
0 0 0 1 0 −1
0 0 0 0 1 2



 .
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Figure 2.2: Line soliton solutions of KPII: (a) the (3,2)-soliton solution generated by the coefficient matrixA in
Eq. (2.8) with(k1, . . . ,k5) = (−1,0, 1

4,
3
4,

5
4) at t = −32; (b) the (3,3)-soliton solution generated by the coefficient

matrixA in Eq. (2) with(k1, . . . ,k6) = (−1,− 1
2,0,

1
2,1,

3
2) at t = 20.

Again, we first determine the asymptotic line solitons asy → ∞. In this case, the pivot columns ofA are
labeled by{e1,e2,e3} = {1,4,5}. So, the asymptotic line solitons asy → ∞ are given by the index pairs
[1, j1], [4, j2] and [5, j3] for some j1, j2, j3. Starting with the first pivot,e1 = 1, we take j = 2,3, . . . and

check the rank of the sub-matrixXi j in each case. Whenj = 2 we haveX12 =
(

1 0 0 0
0 1 0−1
0 0 1 2

)

, so rank(X12) =

3> N−1. Hence, according to Proposition2.4(ii), the index pair[1,2] does not correspond to an asymptotic

line soliton asy→ ∞. We then takej = 3 and consider the sub-matrixX13 =
(

1 0 0
0 0−1
0 1 2

)

. Since rank(X13) = 2

and rank(X13|1) = rank(X13|3) = rank(X13|1,3) = 3, the rank conditions in Proposition2.4(ii) are satisfied.
Therefore the index pair[1,3] corresponds to an asymptotic line soliton asy→ ∞. Moreover, by considering
j = 4,5,6 one can easily check that the rank conditions are no longer satisfied. Thus[1,3] is theunique
asymptotic line soliton associated with the pivot indexe1 = 1 asy→ ∞. Proceeding in a similar way, we find

that for the pivot columne2 = 4, the rank conditions are only satisfied whenj = 5, sinceX45=
(

1 1 1 0
0 0 0−1
0 0 0 2

)

, is

of rank 2, and rank(X45|4) = rank(X45|5) = rank(X45|4,5) = 3. Therefore, the index pair[4,5] corresponds
to an asymptotic line soliton asy→ ∞. Finally, we find that the third asymptotic line soliton asy → ∞ is
given by the index pair[5,6].

Next, we proceed to determine the asymptotic line solitons as y → −∞. The non-pivot columns ofA
are labeled by the indicesg1 = 2 g2 = 3 andg3 = 6. Forg1 = 2, the only possible value ofi < j is i = 1.
In this caseY12 = /0, so rank(Y12) = 0 and rank(Y12|1) = rank(Y12|2) = rank(Y12|1,2) = 1. Thus, the pair
[1,2] identifies an asymptotic line soliton asy → −∞. For g2 = 3 we consideri = 2,1. Wheni = 2, the
rank conditions in Proposition 2.4(ii) are satisfied, leading to the asymptotic line soliton[2,3] asy→−∞.
Similarly, it is easy to verify that forg3 = 6 the index pair[4,6] uniquely identifies the asymptotic line soliton
asy→−∞. Summarizing, there areN+ = 3 asymptotic line solitons asy→ ∞ identified by the index pairs
[1,3], [4,5] and[5,6], and there areN− = 3 asymptotic line solitons asy→−∞ identified by the index pairs
[1,2], [2,3] and[4,6]. A snapshot of this(3,3)-soliton solution att =−20 is shown in Fig. 2.2b.

So far we have discussed the properties of the generic(N−,N+)-soliton solutions of KPII, and have
shown how to characterize the asymptotic line solitons asy→ ±∞ from the correspondingτ-function. In
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the next section, we investigate an important subclass of the (N−,N+)-soliton solutions called theelastic
N-soliton solutions.

3 ElasticN-soliton solutions

We begin this section by introducing the notion of equivalence classes of soliton solutions and theirτ-
functions, both of which will play important roles in this section.

Definition 3.1 (Equivalence class) LetΘ denote the set of all exponential phase combinations whose coef-
ficients are non-zero in theτ-function of Eq.(2.4). Two tau-functions are said to be in the same equivalence
class if they contain the same setΘ (up to an overall exponential phase factor). All(N−,N+)-soliton so-
lutions of KPII generated by an equivalence class ofτ-functions form an equivalence class of solutions.

It is clear from the above definition that theτ-functions in a given equivalence class can be viewed as
positive-definite sums of thesameexponential phase combinations but with different sets of coefficients.
Suchτ-functions are parametrized by the same set of phase parametersk1, . . . ,kM , but the constantsθm0 in
the phaseθm are different. Moreover, the irreducible coefficient matrices associated with theτ-functions
have exactly the same sets of vanishing and non-vanishing minors, but the magnitudes of the non-vanishing
minors are different for different matrices. Then, an important consequence of Proposition 2.2 is that for all
(N−,N+)-soliton solutions in the same equivalence class, the corresponding asymptotic line solitons arise
from thesame i→ j single-phase transition, and are therefore labeled by the same index pair[i, j]. Propo-
sition 2.4 then implies that the coefficient matrices associated with theτ-functions in the same equivalence
class have identical sets of pivot and non-pivot indices which identify respectively, the asymptotic line soli-
tons asy→ ∞ and asy→−∞. Thus, solutions in the same equivalence class can differ only in the position of
each asymptotic line solitons and in the location of each interaction vertex. As a result, any(N−,N+)-soliton
solution of KPII can be transformed into any other solution in the same equivalence class by spatio-temporal
translations of the individual asymptotic line solitons.

The KPII equation (1.1) is invariant under the symmetry(x,y, t) → (−x,−y,−t). Thus, if u(x,y, t)
is an (M −N,N)-soliton solution of KPII, thenu(−x,−y,−t) is also an(N−,N+)-soliton solution whose
incoming and outgoing line solitons are reversed so thatN− = N andN+ = M −N. In general,u(x,y, t)
andu(−x,−y,−t) belong to two different equivalence classes of solutions, and so do their generatingτ-
functions. However, the functionτ(−x,−y,−t) generating the solutionu(−x,−y,−t) is not by itself a
τ-function according to Eq. (2.4). Using Eq. (2.4),τ(−x,−y,−t) can be expressed asτ(−x,−y,−t) =
e−θ1,...,M τ ′(x,y, t) , where the function

τ ′(x,y, t) = ∑
1≤m1<···<mN≤M

A(m1, . . . ,mN) exp[θ(l1, . . . , lM−N)] ∏
1≤s<r≤N

(kmr −kms)

is a positive definite sum of exponential phase combinationslabeled by the set of indices{l1, . . . , lM−N},
which is the complement of{m1, . . . ,mN} in {1,2, . . . ,M}. Moreover, sinceτ ′(x,y, t) only differs from
τ(−x,−y,−t) by an overall exponential phase factor, it should be clear from Eq. (2.1) that they both generate
the same solutionu(−x,−y,−t). The correspondence between equivalence classes of solutions and theirτ-
functions related via the symmetry(x,y, t) → (−x,−y,−t) leads to the following notion ofduality.
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Definition 3.2 (Duality) Two equivalence classes ofτ-functions are said to be dual if they are parametrized
by the same set of phase parameters{k1,k2, . . . ,kM}, but correspond to complementary sets of exponential
phase combinationsΘ andΘ′. That is,

θ(m1, . . . ,mN) ∈ Θ ⇔ θ(l1, . . . , lM−N) ∈ Θ′ ,

where the sets{m1, . . . ,mN} and{l1, . . . , lM−N} form a disjoint partition of the integers{1,2, . . . ,M}. Sim-
ilarly, two equivalence classes of(N−,N+)-soliton solutions are dual if they are generated by dual equiva-
lence classes ofτ-functions.

In particular, if a given(M−N,N)-soliton solutionu(x,y, t) belongs to a certain equivalence class, then the
corresponding(N,M−N)-soliton solutionu(−x,−y,−t) belongs to the dual equivalence class.

An interesting subclass of(N−,N+)-soliton solutions are the elasticN-soliton solutions of KPII as men-
tioned in section 1. These can be defined as follows.

Definition 3.3 A (N−,N+)-soliton solution is called elastic if it belongs to an equivalence class which is its
own dual.

Clearly, in this case we haveN+ = N− = N andM = 2N. Moreover, the amplitudes and directions of the
N incoming line solitons coincide with those of theN outgoing line solitons. Thus, an elasticN-soliton
solution is generated by a “self-dual”τ-function which is a positive definite sum over a setΘ of exponential
phase combinations such that the following condition holds:

θ(m1, . . . ,mN) ∈ Θ ⇔ θ(l1, . . . , lN) ∈ Θ , ∀{m1, . . . ,mN}⊔{l1, . . . , lN}= {1,2, . . . ,2N} .

We outline below the main properties of the elasticN-soliton solutions. Additional details regarding these
solutions can be found in Refs. [4, 11].

Proposition 3.4 The elastic N-soliton solutions of KPII are characterized as follows.

(i) Each elastic N-soliton solution u(x,y, t) and the dual solution u(−x,−y,−t) belong to the same equiv-
alence class.

(ii) Theτ-function corresponding an elastic N-soliton solution hasM = 2N distinct phase parameters and
an N×2N, irreducible, rank N coefficient matrix A whose N×N minors satisfy the duality conditions:

A(m1, . . . ,mN) = 0 ⇔ A(l1, . . . , lN) = 0, (3.1)

where the indices{m1, . . . ,mN} and{l1, . . . , lN} form a disjoint partition of integers{1,2, . . . ,2N}.

(iii) Each elastic N-soliton solution exactly N asymptoticline solitons as y→±∞ identified by the same
index pairs[en,gn] with en < gn, n = 1, . . . ,N. The indices e1,e2, . . . ,eN and g1,g2, . . . ,gN label re-
spectively, the pivot and non-pivot columns of the coefficient matrix A. Hence, they form a disjoint
partition of integers{1,2, . . . ,2N}.

(iv) The amplitude and direction of the nth asymptotic line soliton[en,gn] are the same as y→±∞, and
are given in terms of the phase parameters as an = kgn −ken and cn = kgn +ken.
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The setSN := {(an,cn)|an > 0}N
n=1 ⊂ R

2N of all admissible N-tuples of amplitude-direction pair associ-
ated with elasticN-soliton solution will be called thesoliton parameter space. An element{an,cn}

N
n=1 ∈ SN

of soliton parameters is admissible, if it yields a set of 2N distinctphase parametersKN := {k±n }
N
n=1 where

k±n = (cn±an)/2 andk−n < k+n . By sorting the elements ofKN in increasing orderk1 < .. . < k2N, one obtains
the ordered setK = {k1,k2, . . . ,k2N} of phase parameters associated with theτ-function. The positions of
the phase parametersk±n of thenth line soliton can be labeled uniquely within the ordered setK by an ordered
pair of indices[in, jn] such thatin < jn. That is,k−n = kin, k+n = k jn. Since[in, jn] also identify two distinct
columns of the coefficient matrixA, it follows that in = gn which labels a pivot column, andjn = gn which
labels a non-pivot column ofA, for elasticN-soliton solutions. We refer to this identification betweenthe
setsKN andK asphase pairingwhich defines a mapSN → S, whereS is the set of all possible choices of
N distinct integer pairs{[in, jn]}N

n=1 from {1,2, . . . ,2N}. This map identifies each set of soliton parameters
{(an,cn)}

N
n=1 ∈ SN to a set{[en,gn]}

N
n=1 ∈ S of (pivot, non-pivot) index pairs. Note however that distinct

elements ofSN can in fact lead to thesame pairingif the elements of the corresponding setsKN are ordered
in exactly identical fashion. Thus, phase pairing induces apartition of the soliton parameter spaceSN into
several disjoint sectors. Each sector is distinguished by asingle element{[en,gn]}

N
n=1 ∈ Sof distinct integer

pairs which labels theN asymptotic line solitons corresponding to any set{(an,cn)}
N
n=1 of soliton param-

eters chosen from that sector inSN. Therefore, the total number of such disjoint sectors is given by the
number of elements of the setSnamely,|S|= (2N−1)!!. Furthermore, given any set of soliton parameters
{(an,cn)}

N
n=1 from one of these sectors inSN, it is possible to construct a coefficient matrixA in RREF

satisfying Conditions 2.1 and 2.3 and whose pivot and non-pivot columns are labeled by the corresponding
set of index pairs{[en,gn]}

N
n=1 ∈ S obtained via phase pairing. The matrixA is constructed by using the

rank conditions of Proposition 2.4(ii) and the duality condition Eq. (3.1) in Proposition 3.4(ii). However, it
is not unique but is determined up to some free parameters. Therefore, the matrixA obtained in this way
together with the setK of phase parameters, produce an equivalence class ofτ-functions from (2.4). The
directions and amplitudes of the asymptotic line solitons in the corresponding equivalence class of elastic
N-soliton solutions coincide with the set of soliton parameters{(an,cn)}

N
n=1 ∈SN that was originally chosen.

We illustrate these facts in the following example where we explicitly construct an elastic 3-soliton solution
only from its soliton parameters.

Example: We start with the set{(a1,c1),(a2,c2),(a3,c3)} = {(5/2,−5/2),(5/2,−1/2),(7/4,5/4)} ∈ S3.
From this we construct the set ofunorderedphase parametersK3 := {k±n = (cn±an)/2}3

n=1 whose elements
arek+1 = 0, k−1 = −5/2, k+2 = 1, k−2 = −3/2, k+3 = 3/2, k−3 = −1/4. Note that the elements ofK3 are all
distinct. Sorting these elements ofK3 in increasing order, we obtain the ordered set of phase parameters
K = {−5/2,−3/2,−1/4,0,1,3/2}. Comparing the elements of the setsK3 andK, we obtain the following
phase pairing:k−1 = k1, k+1 = k4, k−2 = k2, k+2 = k6, k−3 = k3, k+3 = k5. Hence, the asymptotic line solitons
are labeled by the index pairs[1,4], [2,6] and[3,5], where{e1,e2,e3} = {1,2,3} are the pivot indices and
{g1,g2,g3} = {4,6,5} are the non-pivot indices of the corresponding coefficient matrix A. Note also that
the pivot indices are sorted but the non-pivot indices are unsorted. Next, we outline the construction of
the coefficient matrixA in RREF satisfying Conditions 2.1 and 2.3, and whose pivot and non-pivot column
indices are specified above. The construction proceeds in several steps.

Step 1.We start with a 3×6 matrix in RREF with pivot and non-pivot columns labeled respectively, by the
indices{1,2,3} and{4,6,5}:

A=





1 0 0 u1 v1 w1

0 1 0 −u2 −v2 −w2

0 0 1 u3 v3 w3



 ,
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where{ul ,vl ,wl}
3
l=1 are nonnegative numbers. The negative signs in the second row arise due to Condi-

tion 2.1(c) which demands that if any given 3×3 minor ofA is non-zero, then it must be positive.

Step 2. In order to obtain further information aboutA, we apply the rank conditions in Proposition 2.4(ii)
to the sub-matricesXi j andYi j associated with each line soliton[i, j]. For example, starting with the line

soliton [1,4] asy→−∞ and by considering the sub-matrixY14 =
(0 0

1 0
0 1

)

, we find that rank(Y14) = 2. Then,

rank(Y14|4) must be 3, which means that the minorA(2,3,4) = u1 6= 0. Now supposev1 = 0, then the non-
negativity of the minors in Condition 2.1(c) implies thatA(2,4,5) =−u1v3 ≥ 0 andA(3,4,5) =−u1v2 ≥ 0,
whose only solution isv2 = v3 = 0 sinceu1 6= 0. But then the 5th column ofA contains no nonzero elements,
violating the irreducibility ofA in Condition 2.3. Thus,v1 6= 0, and similar arguments lead tow1 6= 0. Then
from A(l ,α ,β ) ≥ 0 wherel ∈ {2,3} andα ,β ∈ {4,5,6}, we can deduce that iful = 0, thenvl = wl = 0
for l = 2,3. Consequently, the only nonzero element in each of the 2nd and 3rd row of A would be the pivot
entry, and again this would violate Condition 2.3. Hence, wemust also haveu2 6= 0 andu3 6= 0. As our goal
is to obtain only one representative matrixA associated to the equivalence class ofτ-function, we simplify
subsequent calculations by choosing a particular normalization such that nonzero elementsu1 = v1 =w1= 1.
Then we have

A=





1 0 0 1 1 1
0 1 0 −u2 −v2 −w2

0 0 1 u3 v3 w3



 .

Step 3. Next, we consider the line soliton[3,5] asy→ ∞ and the associated sub-matrixX35 =
(1 0 1

0 1−w2
0 0 w3

)

.

From the condition rank(X35) ≤ N−1= 2, we have det(X35) = A(1,2,6) = 0, which implies thatw3 = 0.
Moreover, since the minorA(1,2,6) = 0, it follows from the duality condition Eq. (3.1) thatA(3,4,5) =
u2 − v2 = 0. Hencev2 = u2 6= 0. Applying the duality condition again to the minor consisting of the
pivot columns, we obtainA(1,2,3) = 1 6= 0 ⇒ A(4,5,6) 6= 0. In particular, this means that the 5th and

6th columns ofA are linearly independent, and that the sub-matrixX14 =
( 1 1
−v2 −w2
v3 w3

)

associated with the

[1,4] line soliton asy → ∞, has rank 2. Then it follows from the rank conditions in Proposition 2.4(ii)
that rank(X14|1) = 3 ⇒ A(1,5,6) = v3w2 6= 0. Thus, we havev3 6= 0 andw2 6= 0. Finally, imposing the
non-negativity condition on the remaining minors, we obtain the following form of the coefficient matrixA

A=





1 0 0 1 1 1
0 1 0 −u2 −u2 −w2

0 0 1 u3 v3 0



 .

where the remaining free parameters satisfy 0< w2 < u2 and 0< v3 < u3. Thus, starting only from
the soliton parameters, we have constructed a 4-parameter family of coefficient matrices corresponding
to an equivalence class of elastic 3-soliton solutions whose asymptotic line solitons are labeled by the
index pairs[1,4], [2,5], [3,6]. An elastic 3-soliton solution generated by the above coefficient matrixA
with (u2,w2,u3,v3) = (1,2/3,2/3,3/5) and K = {−5/2,−3/2,−1/4,0,1,3/2} (as above), is shown in
Fig. 3.1(c).

By further investigating the combinatorial properties of the coefficient matrixA, it is possible to obtain
additional information regarding the classification scheme for the elasticN-soliton configuration space.
These results are presented below.

Proposition 3.5 Each elastic N-soliton configuration is described by a set{[en,gn]}
N
n=1 of distinct integer

pairs with en < gn, n= 1, . . . ,N. The indices en label the pivot columns and the indices gn label the non-pivot
columns of the irreducible coefficient matrix A in RREF. In addition, the following results hold:
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(i) Without any loss of generality, the pivot indices can be ordered as1= e1 < e2 < .. . < eN < 2N. Each
pivot index en n= 1, . . . ,N satisfies the inequality n≤ en ≤ 2n−1. Moreover, the number of possible

ways of choosing the pivots are given by the Catalan number CN =
(2N)!

N!(N+1)!
.

(ii) For a fixed ordered set{e1, . . . ,eN} of pivots, the number of possible choices of a (unordered) set

{g1, . . . ,gN} of non-pivot indices such that en < gn, ∀n= 1, . . . ,N, is given by
N

∏
n=1

(2n−en).

(iii) The total number of ways of choosing N distinct pairs inthe set S is given by(2N−1)!! .

Note that the requirement that the set of integer pairs{[en,gn]}
N
n=1 be distinct was already stated (without

proof) in Ref. [11], and some of the above-listed consequences were also obtained there.

We illustrate the results in Proposition 3.5 by presenting the classification scheme for the elastic 3-
soliton solution space. This is achieved by enumerating allpossible arrangements of the pivot positions in
the irreducible coefficient matrixA in RREF. In this case,N = 3 andA is a 3×6 matrix with 3 pivots whose
possible (column) positions are determined by Proposition3.5(i) as follows:e1 = 1, 2≤ e2 ≤ 3, 3≤ e3 ≤ 5.
Thus, the total number of pivot configurations is given byC3 = 6!/(3!4!) = 5. Thus, this classification
scheme gives rise to 5 subclasses of elastic 3-soliton solutions. The number of inequivalent types of solutions
in each subclass is determined by all possible{[en,gn]}

3
n=1 pairings for a given choice of the pivot positions

{e1,e2,e3}. These are obtained from Proposition 3.5(ii), and are itemized below.

(i) Pivot positions: {e1,e2,e3} = {1,2,3}. Total number of distinct pairings =
3

∏
n=1

(2n− en) = 3! = 6.

List of inequivalent elastic 3-soliton solutions:

{[1,4], [2,5], [3,6]} , {[1,5], [2,4], [3,6]} , {[1,6], [2,4], [3,5]} ,

{[1,4], [2,6], [3,5]} , {[1,5], [2,6], [3,5]} , {[1,6], [2,5], [3,4]} .

(ii) Pivot positions: {e1,e2,e3} = {1,2,4}. Total number of distinct pairings = 4. List of inequivalent
elastic 3-soliton solutions:

{[1,3], [2,5], [4,6]} , {[1,3], [2,6], [4,5]} , {[1,5], [2,3], [4,6]} , {[1,6], [2,3], [4,5]} .

(iii) Pivot positions: {e1,e2,e3} = {1,2,5}. Total number of distinct pairings = 2. List of inequivalent
elastic 3-soliton solutions:{[1,3], [2,4], [5,6]} , {[1,4], [2,3], [5,6]}.

(iv) Pivot positions: {e1,e2,e3} = {1,3,4}. Total number of distinct pairings = 2. List of inequivalent
elastic 3-soliton solutions:{[1,2], [3,5], [4,6]} , {[1,2], [3,6], [4,5]}.

(v) Pivot positions:{e1,e2,e3} = {1,3,5}. Total number of distinct pairings = 1. Elastic 3-soliton solu-
tion: {[1,2], [3,4], [5,6]}.

Thus, the total number of inequivalent 3-soliton solutionsis 6+4+2+2+1= 15= 5!! as given by Propo-
sition 3.5(iii). Fig. 3.1 shows a sample from the fifteen inequivalent cases. Fig. 3.1(a) shows the previously
knownordinary 3-soliton solution (cf. section 1), while the remaining solutions are new, and they exhibit
resonant interactions.
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(a) [1,2], [3,4], [5,6] (b) [1,3], [2,5], [4,6] (c) [1,4], [2,6], [3,5] (d) [1,5], [2,4], [3,6]

Figure 3.1: Examples of elastic 3-soliton solutions.

4 Conclusion

In this article, a family of multi-soliton solutions of the KPII equation have been studied. These solutions are
generated byτ-functions which are expressed as positive definite linear combinations of exponential phases
that are linear in the variablesx,y, t. It is remarkable that such a simple form of theτ-function generates
multi-soliton configurations which exhibit a rich variety of time dependent spatial structures including res-
onant interactions and web patterns. The asymptotic analysis of thetau-function in thexy-plane reveals that
the solution decays exponentially except along certain directions which are characterized by the transition
between two dominant exponential phase combinations whichhave allbut onephases in common. All such
(”non-decaying”) directions for any given solution can be explicitly identified by analyzing theN×M ma-
trix coefficientA associated with theτ-function. In particular, asy→ ∞ there areN directions which can be
identified with the pivot columns ofA; while asy→−∞, there areM−N directions which can be identified
with the non-pivot columns ofA.

WhenM = 2N, the general line soliton solutions contain the special subclass of the elasticN-soliton
solutions. Each elasticN-soliton solution has a set ofN directions in thexy-plane asy→ ∞, and an identical
set ofN directions asy → −∞ along which the solution does not decay. Moreover, for any given N, the
solution space of elasticN-solitons can be decomposed into(2N− 1)!! distinct regions, each region cor-
responding to inequivalent types of solutions. It is interesting to note that the previously known ordinary
N-solitons form only one of these types. Thus, the space of elastic N-soliton solutions of KPII appears to be
much richer than previously thought.

It is significant that solutions exhibiting similar features of soliton resonance and web structure have
also been obtained in several other (2+1)-dimensional integrable systems, besides KPII. These solutions
were also derived by direct algebraic methods similar to theapproach taken here. Therefore, it is reasonable
to expect that the results developed in this work for KPII will also be useful to characterize soliton solutions
in a variety of other (2+1)-dimensional integrable systems.

Acknowledgments

We thank Yuji Kodama, Mark Ablowitz and Dmitry Pelinovsky for many valuable discussions. This work
was partially supported by the National Science Foundationunder grant numbers DMS-0307181 and DMS-
0101476.

14



References

1. M J Ablowitz and P A Clarkson,Solitons, nonlinear evolution equations and inverse scattering (Cambridge Uni-
versity Press, Cambridge, 1991)

2. G Biondini and Y Kodama, “On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy
the Toda lattice hierarchy”,J. Phys. A36, 10519–10536 (2003)

3. G. Biondini and S. Chakravarty, “Soliton solutions of theKadomtsev-Petviashvili II equation”,J. Math. Phys.47,
033514 (2006)

4. G. Biondini, S. Chakravarty and Y. Kodama, “On the elasticN-soliton solutions of the Kadomtsev-Petviashvili II
equation”, in preparation

5. N C Freeman and J J C Nimmo, “Soliton-solutions of the Korteweg-deVries and Kadomtsev-Petviashvili equa-
tions: the Wronskian technique”Phys. Lett.95A, 1–3 (1983)

6. R Hirota,The Direct Method in Soliton Theory(Cambridge University Press, Cambridge, 2004)

7. E Infeld and G Rowlands,Nonlinear waves, solitons and chaos(Cambridge University Press, Cambridge, 2000)

8. S Isojima, R Willox and J Satsuma, “On various solution of the coupled KP equation”,J. Phys. A35, 6893–6909
(2002)

9. S Isojima, R Willox and J Satsuma, “Spider-web solution ofthe coupled KP equation”,J. Phys. A36, 9533–9552
(2003)

10. B B Kadomtsev and V I Petviashvili, “On the stability of solitary waves in weakly dispersing media”Sov. Phys.
Doklady 15, 539–541 (1970)

11. Y Kodama, “Young diagrams andN-soliton solutions of the KP equation”,J. Phys. A37, 11169–11190 (2004)

12. K-i Maruno and G Biondini, “Resonance and web structure in discrete soliton systems: the two-dimensional Toda
lattice and its fully- and ultra-discrete analogues”,J. Phys. A37, 11819–11839 (2004)

13. V B Matveev and M A Salle,Darboux Transformations and Solitons(Springer-Verlag, Berlin 1991)

14. E Medina, “AnN Soliton Resonance for the KP Equation: Interaction with Change of Form and Velocity”,Lett.
Math. Phys.62, 91–99 (2002)

15. J W Miles, “Diffraction of solitary waves”,J. Fluid Mech.79, 171–179 (1977)

16. A. C. Newell and L. Redekopp, “Breakdown of Zakharov-Shabat theory and soliton creation”,Phys. Rev. Lett.
38, 377–380 (1977)

17. S P Novikov, S V Manakov, L P Pitaevskii and V E Zakharov,Theory of Solitons. The Inverse Scattering Trans-
form (Plenum, New York, 1984)

18. K Ohkuma and M Wadati, “The Kadomtsev-Petviashvili equation: the trace method and the soliton resonances”,
J. Phys. Soc. Japan52, 749–760 (1983)

19. O Pashaev and M Francisco, “Degenerate Four Virtual Soliton Resonance for KP-II”, Preprint
arXiv:hep-th/0410031

20. J Satsuma, “N-soliton solution of the two-dimensional Korteweg-de Vries equation”,J. Phys. Soc. Japan40,
286–290 (1976)

15

http://arxiv.org/abs/hep-th/0410031

	Introduction
	Asymptotic line solitons
	Elastic N-soliton solutions
	Conclusion

