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Abstract

The Kadomtsev-Petviashvili Il (KPII) equation admits aglavariety of multi-soliton solutions which
exhibit both elastic as well as inelastic types of intexatsi This work investigates a general class of
multi-solitons which were not previously studied, and whio not in general conserve the number of
line solitons after interaction. The incoming and outgding solitons for these solutions are explicitly
characterized by analyzing threfunction generating such solutions. A special family\séoliton solu-
tions is also considered in this article. These solutioesharacterized by elastic soliton interactions, in
the sense that amplitude and directions of the individua $iolitons ay — o are the same as those of
the individual line solitons ag— —oo. It is shown that the solution space of these elddtsnliton solu-
tions can be classified inf@N — 1)!! disjoint sectors which are characterized in terms of timpktudes
and directions of th&l line solitons.

1 Introduction

The purpose of this work is to present a characterizationlafge family of real, non-singular, line-soliton
solutions of the KPII equation
(=AU + Uyxxx+ BULK )y + 3uyy = 0 (1.1

whereu = u(x,y,t) and subscriptx, y andt denote partial derivatives. The KP equation is perhaps the
prototypical (2+1)-dimensional integrable evolution ation originally derived([10] as a model for small-
amplitude, long-wavelength, weakly two-dimensional tamji waves in a weakly dispersive medium, and
arises in many different applications including water weaaed plasmas (for a review, see eld. [7]). The
various aspects related to the integrability of the KP dqnahave been studied extensively, and a large
number of exact solutions have been found. These works awetnted in several monographs (see e.g.,
Refs. [1/ 7] 17] and references therein). There are twoaesdf the KP equation depending on the sign of
the dispersion namely, KPI (for positive dispersion) andIKf@r negative dispersion). Here we consider
the KPII equation.

Among the exact solutions of KPII, perhaps one of the most lwawn class of real, non-singular
solutions is the line-soliton solutions. The simplest tigohe one-soliton solution which is a traveling wave
in xy-plane, and is localized along a line. A straightforwardegalization of this solution to a multi-soliton
configuration ofN line solitons was also found in earlier works [20, 5]. In tlengric case, thesé-soliton
solutions form a pattern dfl intersecting straight lines in the-plane apart from small spatial shifts arising
from the pairwise interactions between any two lines. Werrtd these solutions as tleedinary N-soliton
solutions which can be parametrized by garameters namely, amplitude and direction (inxtjplane) of
the N line solitons. However, it has been shown theoretically exygerimentally that it is not possible to
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obtain ordinaryN-soliton solutions forll choices of the soliton parameters (see e.g., Ref. [7]). iBhthe
parameter space of ordinaNsoliton solutions isiot simply theN-fold Cartesian product of the parameter
space of one-soliton solution of the KPII equation. Subsatjwork has revealed that other families of
line soliton solutions exist in addition to the ordina¥ysoliton solutions. The simplest of these solutions
describes the so called “Y-junction” solutions, which déses resonant interaction of two line solitons, and
has been known since 1977 [15] 16]. In this case, the thréersolwith wave-numbers and frequencies
(ka, ), a= 1,23, satisfy the three-wave resonance conditiokg:+ ko = k3 and w; + wp; = w3. More
general resonant solutions have also been obtained in [R4f&l8,[19]. Recently, in Ref.[2], the authors
found a large family of soliton solutions in which an arbifraumberN_ of incoming line solitons interact
resonantly via intermediate line solitons which producé \lee patterns in thexy-plane, and then form an
arbitrary numbeN_, of outgoing line solitons, wherd_ = N, , in general. We refer to these multi-solitons
solutions as théN_, N, )-soliton solutions of KPII. In particular, the cabe = N, = N yields yet another
kind of N-soliton solutions which however differ significantly fraime ordinaryN-soliton solutions in their
interaction patterns. The current work is motivated by ¢hresent studies which indicate that the solitonic
sector of the KPII equation is richer than previously thaieghmany other families of line-soliton solutions
exist in addition to the ordinari-soliton solutions.

In this article we are primarily concerned with the chareeg&ion of the incoming and outgoing line
solitons of a generic multi-soliton configuration of KPIl all as the classification of a particular class
of multi-soliton solutions called thelastic N-soliton solutions. The paper is organized as follows. In
section 2, we discuss the asymptotic behavior of tHanction underlying the multi-soliton solutions of
KPII. In particular, we show that ag— +o, the solutionu(x,y,t) decays exponentially in they-plane
except along certain rays which correspond to the incomigoaitgoing line solitons. We then characterize
these asymptotic structures in terms of the parameterg offilinction. In sectiof3, we study a special class
of solutions called the elastN-soliton solutions. We show that these solutions can beified into (2N —

1)!l inequivalent types determined by th&l Zoliton parameters comprising Bf pairs of amplitudes and
directions associated with the incoming or outgoing linkt@as. Moreover, from a given set of admissible
soliton parameters one can explicitly determine an egemad class of elastibl-soliton solutions such
that any two solutions in the equivalence class exhibit laimnteraction patterns and have the same set
of incoming and outgoing line solitons. In this paper, weyopiesent the results and discuss some of
the important features of the multi-soliton solutions ofIKFhe proofs of these results and more detailed
discussions can be found in Refs.[[3, 4].

We point out that the elastM-soliton solutions of KPIl equation was also recently addesl in Ref[[11]
where an elegant characterization of these solutions wesepted in terms of the Schubert cell decompo-
sition of the Grassmann variety Gf(2N). Here we follow a different approach motivated by the pbgbi
problem of identifying the distinct types of elashsoliton solutions with the the corresponding parameter
space of soliton amplitudes and velocities. Finally, weertbit line soliton solutions with novel web like
spatial structures were also found recently in severar@hel-dimensional integrable equations. Examples
include Refs.[[8, 9] for a coupled KP system, and Refl [12] mgt®milar solutions were found in discrete
integrable systems such as the two-dimensional Todadadtid its fully- and ultra-discrete analogues.

2 Asymptotic line solitons

In this section we investigate the line solitons of the KRjuation and the asymptotic properties of the
1-functions generating such solutions. The solutiéx y,t) of the KPIl equation can be obtained from the



T-functionT(x,y,t) via the relation

u(x,y,t) =2(log t(X,y,t))xx i (2.1)

It is well-known (see, e.g. Refs.|[5,(6,]13]) thix,y,t) can be expressed in the form of a Wronskian

f1 f, ... N
f] ;.. f
T(X,Y,t) = Wr(fq,..., fy) = det : : , (2.2)
f](.N'fl) fz(l\l'fl) fISIN.fl)

wheref{!) = 9] fn/0x), and where the functiongf, }\_, form a set of linearly independent solutions of the
linear system

fy = fXXa ft = fxxx-

A general family of multi-soliton solutions can be constagtin a simple way from Egl(2.2) by choosing
each functionfy(X,y,t) to be a linear combination of real exponentials. That is,

M
fax Y1) = 5 ame™, n=12....N, (2.3)
m=1

where, Oy = knX + K2y + k3t + Bom for m=1,... M areM phases with real phase parameteys .., ky
and real constantSy, ..., Bom, and where the constant coefficieats, define theN x M coefficient matrix
A= (apm). Note that one can naturally identify eadh with the n row and each phas8,, with the
m" column of the coefficient matriA, and vice versa. Upon substituting EfQ. {2.3) into the Wraarsk
of Eq. (2.2) and then using the Binet-Cauchy formula to erlpédue resulting determinant, we obtain the
following explicit form of thet-function

T(X,yt) = > A(my,....my) explB(my,....mn)] [ (km —kmy), (2.4)
I<m<--<my<M 1<s<r<N

whereA(my,...,my) is theN x N minor of A obtained by selecting the columnsmy < --- <my < M,
and@(my,...,my) := Bm, +...+ Om, is @ phase combination &f (out of M) distinct phases. The-function
given above could in general, vanish at poifitsy,t) € R3 where the solutiom(x,y,t) in Eq. (2.1) would
then have singularities. However, the following restaos on the phase paramete{tﬁ}r“{':l and on the
coefficient matrixA are sufficient to guarantee that the resulting solutiaxsy,t) of the KPII equation are
nonsingular.

Condition 2.1 (Positive definiteness)

(8) The phase parameters are distinct. Hence, without lbgeeerality, they can be ordered ask ky <
.. <km.

(b) The Nx M coefficient matrix A satisfigenk(A) = N, and M> N.

(c) All non-zero Nx N minors of A are positive.

From Conditiori Z.11 it is clear that the coefficient of eachangntial term of the sum in Eq. (2.4) is positive

because the phase parameters.. ky are well-ordered and all the minoAmy,...,my) of A are also
nonnegative. As a result(x,y,t) is a nonvanishing, positive function for &k, y,t) € R3, and generates a
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nonsingular solution of the KPII equation via Elg. (2.1)Mf< N, 1(x,y,t) = 0 because the set of functions
{fa}M, in Eq. (2:2) is linearly dependent; also whigh= N, T(x,y,t) in Eq. (2.4) contains only one expo-
nential term which leads to the trivial solutiaiix,y,t) = 0 in Eq. [2.1). Therefore, for nontrivial solutions
we must havéM > N when there are more than one exponential term in the sum dPE).

The simplest example is a one-soliton solution obtained hmosingN = 1. M = 2 and f(x,y,t) =
e% + e, with k; < ko. This choice yields the following traveling-wave solution

u(x,y,t) = 3(ko — k1)?sec 1(6, — 6;) = ®(k -x + wt) , (2.5)

wherex = (x,y) and where the wave vectlr:= (Iy,ly) = (ki — ko, k? — k3) and the frequency := k3 — k3
satisfy the nonlinear dispersion relation

— 4wl + 1 +317 = 0. (2.6)

For fixedt, the solutionu(x,y,t) decays exponentially in therplane except along the lin® = 8, whose
normal has a slope = ly/Ix = k; + ko. Such solitary wave solutions of the KPII equation are chliee
solitons Apart from a trivial constan, o — 6, in Eq. (2.5) corresponding to an overall translation, a line
soliton of KP is characterized by the phase paramdigts, or by two physical parameters, namely, the
soliton amplitude a= k, — k; and thesoliton direction c= k; + ko.

Whenc = 0 (i.e.,k; = —ky), the solution in Eq.[(2]5) becomgsndependent and reduces to the one-
soliton solution of the Korteweg-de Vries (KdV) equationowkver, due to the dependence on the additional
spatial variabley, the multi-soliton solution space of the KPII equation isalmuicher than that of the KdV.
Indeed we find that Eq.(2.3) with the coefficient mathisatisfying Conditio 2J1 leads to a large class of
multi-soliton configurations which consistNf incoming (i.e., ay — —) andN, outgoing (i.e., ag — )
line solitons. The amplitudes, directions and the numben@dming line solitons are in general different
from those of the outgoing line solitons. In order to chagdze the incoming and outgoing line solitons
associated with these solutions, it is necessary to exath@asymptotic behavior of thefunction in the
xy-plane agy| — o, and for finitet. Recall from Eq.[(2}4) that(x,y,t) is a linear combination of exponential
phase combinations with positive coefficients. The leadirtdger behavior of the-function asy — £ in
a given asymptotic sector of thg-plane is governed by that exponential term which is dontimahat
region. The solutionu(x,y,t) generated by the-function is exponentially small at all points in the intari
of any dominant region, and is localized only at the bouregadf the dominant regions, where a balance
exists between two or more dominant phase combinationseim-fanction of Eq. [2.#). The asymptotic
properties of theau-function and the solution(x,y,t) can be derived from a systematic analysis of these
dominant exponential phases. These are summarized below.

Proposition 2.2 For finite values of t, and for generic values of phase paransét, . .., kv, the incoming
and outgoing line solitons of the\N_, N )-soliton solutions of KPII are characterized as follows.

() As y— £, the dominant phase combinations of théunction in adjacent regions of the xy-plane
contain N— 1 common phases and differ by only a single phase. The transigtween any two such
dominant phase combinatiogi,my,...,my) and 6(j,my, ..., my) occurs along the line defined by
Lij : 6 = 6;, where a single phas@ in the dominant phase combination is replaced by a pltase

(i) Along the single-phase transition ling;l.the asymptotic behavior of thefunction as y— +o is
determined by the balance between the two dominant phaseirations 8(i,mp,...,my) and

6(j,mg,...,my) in Eq.(2.4), and is given by
T(x,y,t) ~Ci ef(ime,...my) +C; eflime...my)
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Figure 2.1: Dominant phase combinations in the differegioms of thex, y-plane (labeled by the indices in parenthe-
ses) and the asymptotic line solitons (labeled by the irgdicesquare braces) for two different line soliton solutions
(a) a Miles resonant solution (Y-junction) witky, ko, ks) = (—3, -3, 3,2) att = 0; (b) an inelasti¢2, 2)-soliton with
(K, ...,kq) = (—%,—%,O, 1) att = 0. Here and in all of the following figures, the horizontal arettical axes are
respectively andy, and the graphs show contour lines of igg, y,t) at a fixed value of.

The coefficients &nd G above depend on the phase parametgs K, . . ., Km,, and on the N« N
minors Ai,mp,...,my) and A(j,mp,...,my) of the coefficient matrix A. The asymptotic behavior of
the solution in a neighborhood of a single-phase transit®othen obtained from EqZ2.1) as

u(x,y,t) ~ 5(k —kj)?secf [3(6 — 6j)], (2.7)

which is a traveling wave satisfying the dispersion relatio Eq.(2.6). Equation(Z.7) has the same
form as the one-soliton solution in E@.5), and thus it defines amsymptotig(incoming or outgoing)
line soliton associated with the single-phase transitien ij. For each asymptotic line soliton, the
soliton amplitude is given byija= |k; — K;|, and the soliton direction is given by; &= ki + k;, which
the direction (slope of the normal vector) of the transitio Lj;.

We can label each asymptotic line soliton associated wélsiigle-phase transition— j, by the index pair
li, j] which uniquely identifies the phase parameter@ndk; in the ordered sefky, ..., ku}.

The simplest instance of a transition of dominant phase auatibns arises for the one-soliton so-
lution (Z.8), which is localized in th&y-plane along the liné; = 6, defining the boundary of the two
half-planes where each of the two phadgsind 6, dominates. In the general case, the dominant regions
are more complicated although the solutigm, y,t) is still localized along the boundaries of these regions.
For example, Fig. 2]1(a) illustrates(2, 1)-soliton solution mentioned in the introduction as a Y-jioc
[15] describing the resonant interaction of two line seigoThis solution correspondsikb=1, M = 3, and
is generated by the-function (x,y,t) = €% + €% 4 €%. In this case, thay-plane is partitioned into three
dominant regions corresponding to each of the dominantgsttis 6, and 8;. Once again, the solution
u(x,y,t) is exponentially small in the interior of each dominant oew, and is localized along the phase
transition boundariesh; = 6,, 6; = 65 and 8, = 6;. Each of the asymptotic line solitons labeled by the in-
dex pairs [1,2], [2,3] and [1,3] are given by EQ. (2.7) andsfathe one-soliton dispersion relation EQq. (2.6).
While some of the dominant regions have infinite extensionthé xy-plane, others can be bounded, as in
the case of th¢2,2)-soliton shown in Fig_2]1(b). This solution is generatedtmyt-function in Eq. [(2.2)
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with f; = e —e% and f, = e®%2 + €% + €% j.e., N =2 M = 4. In addition to the unbounded dominant
regions corresponding to the phase combinatié(is 2), 6(1,4), 6(3,4) and6(1,3), in this case there is
also a bounded region in thxg-plane whered (2,4) is the dominant phase combination. The boundaries of
this region is formed by the incoming asymptotic line salgdl,4] and [2,3], together with the intermediate
line soliton [1,2]. Note that the outgoing line solitons3Jland [2,4] interact resonantly via two Y-junctions,
while the incoming soliton pair interact non-resonantlyoté&lalso that the intermediate segment is a line
soliton in its own right, since the solution is locally givey Eq. [2.7), with[i, j] = [2,3].

According to Proposition 212, an asymptotic line solitonresponds to a dominant balance between two
phase combinations in thefunction. But one still needs to identify which particulginase combinations
are indeed dominant in a givamfunction asly| — . This requires a closer examination at the structure of
the N x M coefficient matrixA associated with the-function. Note that elementary row operations/An
given byA — A’ = GAwhereG € GL(N,R), amounts to an overall rescaling of théunction in Eq. [2.4),
e, T(x,y,t) = T (x,y,t) = det(G) 1(x,y,t). Since such rescaling leaves the solutigr, y,t) in Eq. (2.1)
invariant, it is possible to choose the coefficient ma#ix reduced row-echelon form (RREF) making use
of Gaussian elimination. Recall that, for Binx M matrix in RREF, the leftmost nonvanishing entry in each
nonzero row is called a pivot, which is normalized to 1, sd tha pivot columns are the elements of the
canonical basis dRN. Throughout the rest of this work we will consider the coddint matrix A to be in
RREF, and to satisfy Conditidn 2.1 and the following additibconditions:

Condition 2.3 (Irreducibility) Each column of A contains at least one nemzelement, and each row of A
contains at least one nonzero element in addition to thetpivo

Then a detailed analysis of the coefficient matisatisfying Conditions 2]1 arid 2.3 leads to an explicit
identification of those — | single-phase transitions which actually occursyas— o, for any givent-
function of Eq. [2.#). As a result, each asymptotic lingteal [i, j] is also explicitly determined by the
coefficient matrixA. as given below. Specifically, we have the following results

Proposition 2.4 Each index paifi, j] labeling an asymptotic line soliton of(&_, N, )-soliton solution are
uniquely identified with a pair of columns of the associateefficient matrix A, as prescribed below.

(i) An asymptotic line soliton as-+  is identified by a unique index pde,, jn] with &, < j, and where
{en]»ﬁ:1 label the pivot columns of A. Similarly, an asymptotic lindten as y— —o is identified
with a unique index paifin, gn] With in < gn and where{g, }¥ " label the non-pivot columns of A.

Thus, thgN_, N, )-line soliton solution of KPII generated from thiefunction in Eq.(2.4) has exactly
N, = N asymptotic line solitons as-y « and N. =M — N asymptotic line solitons as-y —c.

(i) The necessary and sufficient conditions for an index faj] to identify an asymptotic line soliton
is determined by considering the ranks of two sub-matrigeand Y; of A. They can be denoted by
their column indices as follows:

Xj=[12,...,i-1j+1,.. . M] Yj=[+1...j-1].

That s, X consists of all consecutive columns to the left of thedlumn and all consecutive columns
to the right of the ' column of A, while Y consists of all consecutive columns in between thenid
j" column of A. The rank conditions are then stated as follows.

(a) [i, j] identifies an asymptotic line soliton as-y « if and only if rank(X;j) :==r <N—-1 and
rank(Xij|i) = rank(Xj|j) = rank(Xijli, j) =r +1.
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(b) [i, j] identifies an asymptotic line soliton asy —co if and only if rank(Y;j) :=s<N-1 and
rank(Yj;[i) = rank(Yjj|j) = rank(Y; i, j) = s+ 1.

Above,(Z|m,n) denotes the sub-matrix Z of A augmented by the columns m &ané.n o

Note that for the asymptotic line solitoe,, j,] asy — o in Proposition_2.4(i),e, is a pivot index but
the indexj, can be either a pivot or a non-pivot index. Similarly, for #gymptotic line solitonsi,, gn]
asy — —oo, the indexg, is an non-pivot index, whilé, can be either a pivot or a non-pivot index. The
necessary and sufficient rank conditions in Propositiofiipptovides a constructive method to identify the
asymptotic line solitons as— 4o from a given coefficient matriA in RREF. We illustrate these statements
by the examples below.

Example 1 Consider tha-function in Eq. [[2.#) witiN = 2 andM = 5 generated by the coefficient matrix
110-1 -2

A= (O 01 1 1) (2.8)
The pivot columns oA are labeled by the indicd®;, e, } = {1, 3}, and the non-pivot columns by the indices
{01,92,93} = {2,4,5}. Thus, from Proposition 2.4(i) we know that there will Ne = N = 2 asymptotic
line solitons ag/ — oo, identified by the index paird, j;] and |3, j] for somej; > 1 andj, > 3, and that
there will beN_ = M — N = 3 asymptotic line solitons gs— —oo, identified by the index pair$, 2], [i2, 4]
and iz, 5], for somei; < 2, i, < 4 andiz < 5. We first determine the asymptotic line solitonsyas c
using the rank conditions prescribed in Proposition 2.4For the first pivot columne; = 1, we start with
j = 2 and consider the sub-mattis, = (9! ~2) . Since rankX;») = 2 which is greater thaN — 1= 1, we
conclude that the pajf., 2] cannot identify an asymptotic line solitonyas» «. Incrementingj to j = 3,4,5
and checking the rank of each sub-matdy we find that the rank conditions in Propositibn]2.4(ii) are
satisfied wherj = 4: X4 = (7?), s0 ranKXi4) = 1 and rankXy4|1) = rank(Xy4|4) = rank(X14/1,4) = 2.
Thus, the first asymptotic line soliton gs— o is identified by the index paifl,4]. For the second pivot,
& = 3, proceeding in a similar manner we find thjat 4 does not satisfy the rank conditions (sintg
has rank 2) buj =5 does:Xss = (§ ' %), which yields rankXss) = 1 and rankXss|3) = rank(Xss|5) =
rank(Xss|3,5) = 2. Therefore, the asymptotic line solitonsyas; « are given by the index pairf,4] and
[3,5].

Next we consider the asymptotics fpr— —oo. Starting with the non-pivot columg; = 2, the only
column to its left isi = 1. Then, we havéi, = 0, and rankYi2|1) = rank(Yi2|2) = rank(Y12|1,2) = 1.
Consequently, the pait, 2] identifies an asymptotic line soliton §s— —c. For g, = 4 we consider
i = 1,2,3 and find that the rank conditions are satisfied onlyi fer2. In this caseY,s = (9), so rankYzs) =
1= N -1 and rankY>4|2) = rank(Yz4|4) = rank(Y24|2,4) = 2. Hence[2,4] is the unique asymptotic line
soliton asy — —co associated to the non-pivot colungp = 4. In a similar way, we can uniquely identify
the last asymptotic line soliton 3s— — as given by the indicef8,5|. To summarize, there af¢, = 2

outgoing line solitons given by the index pajis4] and[3,5], and there ar&l_ = 3 incoming line solitons
given by the index pairfl, 2], [2,4] and[3,5]. A snapshot of the solution &= —32 is shown in Fid. 2]2.

Example 2 Next, consider tha-function withN = 3 andM = 6 generated by the coefficient matrix in
RREF

11100 O
A=|0 0 0 1 0 -1
0 00O01 2
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Figure 2.2: Line soliton solutions of KPII: (a) the (3,2)lisan solution generated by the coefficient matAxin
Eq. (Z8) with (ky,...,ks) = (—=1,0,%,3,2) att = —32; (b) the (3,3)-soliton solution generated by the coefiti

matrix Ain Eq. (2) with(ks,...,ks) = (—1,—3,0,3,1, 3) att = 20.

Again, we first determine the asymptotic line solitonsyas . In this case, the pivot columns éfare
labeled by{e;,e;,e3} = {1,4,5}. So, the asymptotic line solitons gs— « are given by the index pairs
[1, j1], [4, J2] and[5, j3] for somejs, j2, j3. Starting with the first pivote; = 1, we takej = 2,3,... and
check the rank of the sub-matrk; in each case. Whep= 2 we haveXi, = (é ((1: §f21) , SO rankXip) =
3> N-—1. Hence, according to Proposition?.4(ii), the index phi2] does not correspond to an asymptotic
line soliton asy — «. We then takg = 3 and consider the sub-matik¢; = (é §—§L> . Since rankX;3) = 2

and rankX;3|1) = rank(X;3|3) = rank(X;3|1,3) = 3, the rank conditions in Propositlon?.4(ii) are satisfied.
Therefore the index pajf., 3] corresponds to an asymptotic line solitoryas «. Moreover, by considering

j =4,5,6 one can easily check that the rank conditions are no loregesfied. Thug1,3] is the unique
asymptotic line soliton associated with the pivot inégx= 1 asy — «. Proceeding in a similar way, we find

. " - _ _ 111 0\ .
that for the pivot columm, = 4, the rank conditions are only satisfied whea 5, sinceXys = (8 8 872}) , IS

of rank 2, and rankss|4) = rank(Xss/5) = rank(Xss/4,5) = 3. Therefore, the index pai4, 5] corresponds
to an asymptotic line soliton as— . Finally, we find that the third asymptotic line soliton ys+ oo is
given by the index paif5, 6].

Next, we proceed to determine the asymptotic line solit@g & —«. The non-pivot columns of
are labeled by the indicag = 2 g, = 3 andgs = 6. Forg; = 2, the only possible value of< jisi = 1.
In this caseY;2 = 0, so rankYi2) = 0 and rankYi2|1) = rank(Y12|2) = rank(Yi2|1,2) = 1. Thus, the pair
[1,2] identifies an asymptotic line soliton §s— —. Forg, = 3 we consideii = 2,1. Wheni = 2, the
rank conditions in Propositidn 2.4(ii) are satisfied, leadio the asymptotic line solitof2, 3] asy — —oo.
Similarly, itis easy to verify that fogs = 6 the index paif4, 6] uniquely identifies the asymptotic line soliton
asy — —oo. Summarizing, there afd, = 3 asymptotic line solitons as— o identified by the index pairs
[1,3], [4,5] and[5, 6], and there ar&l_ = 3 asymptotic line solitons gs— —oo identified by the index pairs
[1,2], [2,3] and[4,6]. A snapshot of thig3, 3)-soliton solution at = —20 is shown in Fig. 2]2b.

So far we have discussed the properties of the geridticN, )-soliton solutions of KPIl, and have
shown how to characterize the asymptotic line solitong as+o from the corresponding-function. In



the next section, we investigate an important subclasseofith, N, )-soliton solutions called thelastic
N-soliton solutions.

3 Elastic N-soliton solutions

We begin this section by introducing the notion of equivatertlasses of soliton solutions and their
functions, both of which will play important roles in thiscien.

Definition 3.1 (Equivalence class) L& denote the set of all exponential phase combinations wiaefe ¢
ficients are non-zero in the-function of Eq(2.4). Two tau-functions are said to be in the same equivalence
class if they contain the same $@t(up to an overall exponential phase factor). AN_, N, )-soliton so-
lutions of KPII generated by an equivalence classdtinctions form an equivalence class of solutions.

It is clear from the above definition that threfunctions in a given equivalence class can be viewed as
positive-definite sums of theameexponential phase combinations but with different setsoeffecients.
Suchrt-functions are parametrized by the same set of phase pamarket . ., ky, but the constant8g in

the phased,, are different. Moreover, the irreducible coefficient mads associated with thefunctions
have exactly the same sets of vanishing and non-vanishingrejibut the magnitudes of the non-vanishing
minors are different for different matrices. Then, an imant consequence of Proposition]2.2 is that for all
(N_,N,)-soliton solutions in the same equivalence class, the gporeding asymptotic line solitons arise
from thesame i— | single-phase transition, and are therefore labeled byaimeesndex paifi, j|]. Propo-
sition[2.4 then implies that the coefficient matrices assedi with ther-functions in the same equivalence
class have identical sets of pivot and non-pivot indicectvidentify respectively, the asymptotic line soli-
tons ag/ — o and ag/ — —o. Thus, solutions in the same equivalence class can diffgriothe position of
each asymptotic line solitons and in the location of eactramttion vertex. As a result, aid_, N, )-soliton
solution of KPII can be transformed into any other solutiothe same equivalence class by spatio-temporal
translations of the individual asymptotic line solitons.

The KPIl equation[(1]1) is invariant under the symmetxyy,t) — (—x,—y,—t). Thus, if u(x,y,t)
is an (M — N,N)-soliton solution of KPII, theru(—x, —y, —t) is also an(N_, N, )-soliton solution whose
incoming and outgoing line solitons are reversed so that= N andN,. = M — N. In general,u(x,y,t)
andu(—x,—y,—t) belong to two different equivalence classes of solutioms] o do their generating-
functions. However, the functiom(—x,—y,—t) generating the solution(—x, —y,—t) is not by itself a
1-function according to Eq[(2.4). Using E@. (R.4),—x,—Y,—t) can be expressed ag—x,—Yy,—t) =
e %M 1/(x,y,t), where the function

T(x,y,t) = ) A(my,...,my) expB(l1,...,Iu_n)] |_| (Km, — kmy)
1<s<r<N

1<mp<--<my<M

is a positive definite sum of exponential phase combinatiabsled by the set of indiced,...,Iy-n},
which is the complement ofmy,...,my} in {1,2,... ,M}. Moreover, sincer’(x,y,t) only differs from
7(—X, —y, —t) by an overall exponential phase factor, it should be cleanfEq. (2.1) that they both generate
the same solution(—x, —y, —t). The correspondence between equivalence classes obsslatnd their -
functions related via the symmetty,y,t) — (—x, —y, —t) leads to the following notion aduality.



Definition 3.2 (Duality) Two equivalence classesmfunctions are said to be dual if they are parametrized
by the same set of phase parametges ko, ..., kv }, but correspond to complementary sets of exponential
phase combination® and®@'. That is,

Q(ml,...,mN)EO <~ 9(|1,...,|M_N)€O/,

where the set$my,....,my} and{l4,...,Im_n} form a disjoint partition of the integer§l,2,...,M}. Sim-
ilarly, two equivalence classes @f_,N. )-soliton solutions are dual if they are generated by dualieau
lence classes af-functions.

In particular, if a givenM — N, N)-soliton solutionu(x,y,t) belongs to a certain equivalence class, then the
correspondindN, M — N)-soliton solutionu(—x, —y, —t) belongs to the dual equivalence class.

An interesting subclass 0N_, N, )-soliton solutions are the elastit-soliton solutions of KPIl as men-
tioned in sectiof]1. These can be defined as follows.

Definition 3.3 A (N_, N, )-soliton solution is called elastic if it belongs to an ecalence class which is its
own dual.

Clearly, in this case we hawd, = N_ = N andM = 2N. Moreover, the amplitudes and directions of the
N incoming line solitons coincide with those of tie outgoing line solitons. Thus, an elastiesoliton
solution is generated by a “self-duat*function which is a positive definite sum over a €f exponential
phase combinations such that the following condition holds

0(my,....,my) €0 < B(l1,...,In) €O, V{my,....mU{l1,....In}={1,2,...,2N}.

We outline below the main properties of the ela$lisoliton solutions. Additional details regarding these
solutions can be found in Ref§] [4,111].

Proposition 3.4 The elastic N-soliton solutions of KPIl are characterizezifallows.

(i) Each elastic N-soliton solution(y,y,t) and the dual solution (4-x, —y, —t) belong to the same equiv-
alence class.

(i) Thet-function corresponding an elastic N-soliton solution Mas- 2N distinct phase parameters and
an Nx 2N, irreducible, rank N coefficient matrix A whose<N\N minors satisfy the duality conditions:

A(ml,...,mN):O = A(ll,...,lN):O, (3.2)
where the indicegmy, ..., my} and{ly,...,IN} form a disjoint partition of integerg1,2,...,2N}.

(i) Each elastic N-soliton solution exactly N asymptdtite solitons as y—+ 4 identified by the same
index pairs|ey,gn] With &, < gp,n=1,...,N. The indices gey,...,ex and g,0,...,0gn label re-
spectively, the pivot and non-pivot columns of the coeffiaieatrix A. Hence, they form a disjoint
partition of integers{1,2,...,2N}.

(iv) The amplitude and direction of thé"rasymptotic line solitorie,, g,] are the same as y» 4o, and
are given in terms of the phase parameters @as-&g, — ke, and G, = kg, + Ko, .
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The setSy := {(an,cn)|an > 0N, c R?N of all admissible Ntuples of amplitude-direction pair associ-
ated with elastidN-soliton solution will be called theoliton parameter spacén element{an,cn}ﬁz1 eEXN
of soliton parameters is admissible, if it yields a set Nf @stinctphase parametersy ;= {kﬁt}r'}':l where
ki = (cn+an)/2 andk; < ki. By sorting the elements ¢fy in increasing ordek; < ... < kpy, One obtains
the ordered se = {ky, ko, ... ,kon } Of phase parameters associated withHanction. The positions of
the phase parametecs of then™ line soliton can be labeled uniquely within the ordered<by an ordered
pair of indices]in, jn] such that, < j,. That is,k, = ki,, ki = k;,. Sincelin, jn] also identify two distinct
columns of the coefficient matri4, it follows thati,, = g, which labels a pivot column, anfg = g, which
labels a non-pivot column ok, for elasticN-soliton solutions. We refer to this identification betwdba
setsKy andK asphase pairingwhich defines a mafgy — S, whereSis the set of all possible choices of
N distinct integer pairg[in, jn] }N_; from {1,2,...,2N}. This map identifies each set of soliton parameters
{(an,cn)}N_; € Sy to a set{[en,gn]}N_; € Sof (pivot, non-pivot) index pairs. Note however that distin
elements oy can in fact lead to theame pairingf the elements of the corresponding sktgare ordered
in exactly identical fashion. Thus, phase pairing inducesudition of the soliton parameter spaSe into
several disjoint sectors. Each sector is distinguished $iggle elemenfen, gn]}\_; € Sof distinct integer
pairs which labels th&l asymptotic line solitons corresponding to any S(eah,cn)}r'}':l of soliton param-
eters chosen from that sector &a. Therefore, the total number of such disjoint sectors i®mily the
number of elements of the s8hamely,|S = (2N — 1)!!. Furthermore, given any set of soliton parameters
{(an,cn)}N_, from one of these sectors By, it is possible to construct a coefficient matAxin RREF
satisfying Condition§s 2]1 arid 2.3 and whose pivot and neatmiolumns are labeled by the corresponding
set of index pairg[en, O] r'\l‘:l € S obtained via phase pairing. The matixis constructed by using the
rank conditions of Propositidn 2.4(ii) and the duality citimth Eq. (3.1) in Propositioh_314(ii). However, it
is not unigue but is determined up to some free parametersrefidre, the matriXA obtained in this way
together with the sek of phase parameters, produce an equivalence clasgwfctions from [(2.4). The
directions and amplitudes of the asymptotic line solitanghie corresponding equivalence class of elastic
N-soliton solutions coincide with the set of soliton paragnef (an,cn) th_; € Sy that was originally chosen.
We illustrate these facts in the following example where wgdieitly construct an elastic 3-soliton solution
only from its soliton parameters.

Example We start with the sef(a;,c1), (a2,¢2), (as,¢3)} = {(5/2,-5/2),(5/2,—-1/2),(7/4,5/4)} € Ss.
From this we construct the setofiorderedphase parametek§ := {k* = (c,+a,)/2}3_, whose elements
arekj =0,k; = —5/2,kj =1k, = —3/2,kj =3/2,k; = —1/4. Note that the elements & are all
distinct. Sorting these elements € in increasing order, we obtain the ordered set of phase Edeam
K={-5/2,-3/2,—1/4,0,1,3/2}. Comparing the elements of the sktsandK, we obtain the following
phase pairing:k; = ki, ki = ka, k; = ko, kJ = ks, k3 = k3, k3 = ks. Hence, the asymptotic line solitons
are labeled by the index paif%,4], [2,6] and[3,5], where{e;, e, e3} = {1,2,3} are the pivot indices and
{01,92,03} = {4,6,5} are the non-pivot indices of the corresponding coefficieatrim A. Note also that
the pivot indices are sorted but the non-pivot indices amoried. Next, we outline the construction of
the coefficient matrixA in RREF satisfying Conditioris 2.1 ahd P.3, and whose pivdtram-pivot column
indices are specified above. The construction proceedvanaesteps.

Step 1. We start with a 3« 6 matrix in RREF with pivot and non-pivot columns labeledoedively, by the
indices{1,2,3} and{4,6,5}:

0 Uz V1 W1

0 —u —Vv2 —wWo |,

1 us V3 W3
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where{u|,v|,w|}|3:l are nonnegative numbers. The negative signs in the secandrise due to Condi-
tion[2.1(c) which demands that if any giverx® minor of A is non-zero, then it must be positive.

Step 2. In order to obtain further information aboAt we apply the rank conditions in Proposition12.4(ii)
to the sub-matriceX; andY;j associated with each line solitdn j]. For example, starting with the line

soliton [1,4] asy — — and by considering the sub-mati¥, = (g ((l%) , we find that rankv14) = 2. Then,

rank(Y14/4) must be 3, which means that the mirf(2, 3,4) = u; # 0. Now suppose&; = 0, then the non-
negativity of the minors in Conditidn 2.1(c) implies the2,4,5) = —ujvz > 0 andA(3,4,5) = —uiv, > 0,
whose only solution is; = v3 = 0 sinceu; # 0. But then the 8 column ofA contains no nonzero elements,
violating the irreducibility ofA in Condition[2.8. Thusy; # 0, and similar arguments leadwa # 0. Then
from A(l,a,B) > 0 wherel € {2,3} anda,f € {4,5,6}, we can deduce that iff =0, thenvy =w; =0
for | = 2,3. Consequently, the only nonzero element in each of thard 39 row of A would be the pivot
entry, and again this would violate Condition12.3. Hence musst also have, # 0 anduz # 0. As our goal

is to obtain only one representative matiassociated to the equivalence clasg-dfinction, we simplify
subsequent calculations by choosing a particular norat#iz such that nonzero elemenis=v; =w; = 1.

Then we have
1 00 1 1 1

A=|0 1 O —U —Vo —Wo
0 01 u v ws

10 1
Step 3. Next, we consider the line solitd3,5] asy — o« and the associated sub-matiys = (8 (1)sz) :
W3

From the condition raniss) < N — 1= 2, we have dé€iXss) = A(1,2,6) = 0, which implies thatvs = 0.
Moreover, since the minoA(1,2,6) = 0, it follows from the duality condition Eq[(3.1) that3,4,5) =
u, —vo = 0. Hencev, = u, # 0. Applying the duality condition again to the minor conisigt of the
pivot columns, we obtaif\(1,2,3) = 1 # 0 = A(4,5,6) # 0. In particular, this means that th& &nd

6" columns ofA are linearly independent, and that the sub-maXtix = (—sz Wllz) associated with the

[1,4] line soliton asy — o, has rank 2. Then it follows from the rank conditions in Praifon [2.4(ii)
that rankXj4|1) = 3= A(1,5,6) = vaws # 0. Thus, we haves # 0 andw, # 0. Finally, imposing the
non-negativity condition on the remaining minors, we abthie following form of the coefficient matrig

1 00 1 1 1
A=[(0 1 0 —w —Uu —w
0 0 1 Us V3 0

where the remaining free parameters satisf @, < u; and 0< v3 < uz. Thus, starting only from
the soliton parameters, we have constructed a 4-paranaetelyfof coefficient matrices corresponding
to an equivalence class of elastic 3-soliton solutions whasymptotic line solitons are labeled by the
index pairs[1,4],[2,5],[3,6]. An elastic 3-soliton solution generated by the above amefft matrix A
with (uz,wp,us,v3) = (1,2/3,2/3,3/5) andK = {-5/2,—-3/2,—1/4,0,1,3/2} (as above), is shown in
Fig.[3.1(c).

By further investigating the combinatorial properties lod toefficient matriXd, it is possible to obtain
additional information regarding the classification sckefor the elastidN-soliton configuration space.
These results are presented below.

Proposition 3.5 Each elastic N-soliton configuration is described by a{det,gn]}N_, of distinct integer
pairs with < gn,n=1,...,N. The indicesglabel the pivot columns and the indicgglgbel the non-pivot
columns of the irreducible coefficient matrix A in RREF. ldliéidn, the following results hold:

12



(i) Without any loss of generality, the pivot indices can ldeced asl =e; < & < ... < ey < 2N. Each
pivot index gn=1,...,N satisfies the inequality # e, < 2n— 1. Moreover, the number of possible

|
ways of choosing the pivots are given by the Catalan numiet ([F EIZ\INJZ'l)I ,

(i) For a fixed ordered sefey,...,en} of pivots, the number of possible choices of a (unorderet) se

N
{01,...,9n} Of non-pivot indices such tha e g, Vn=1,...,N, is given by|_| (2n—e).
n=1

(iii) The total number of ways of choosing N distinct pairghie set S is given b{2N — 1)!!.

Note that the requirement that the set of integer pdés gn] }1_,; be distinct was already stated (without
proof) in Ref. [11], and some of the above-listed consegegneere also obtained there.

We illustrate the results in Propositibn B.5 by presenting ¢lassification scheme for the elastic 3-
soliton solution space. This is achieved by enumeratingagkible arrangements of the pivot positions in
the irreducible coefficient matri&in RREF. In this casd\ = 3 andAis a 3x 6 matrix with 3 pivots whose
possible (column) positions are determined by Proposgi8ii) as follows:e; =1,2<e, <3,3<e3<5.
Thus, the total number of pivot configurations is given@y= 6!/(3!4!) = 5. Thus, this classification
scheme givesrise to 5 subclasses of elastic 3-solitonieetutThe number of inequivalent types of solutions
in each subclass is determined by all possitég, gy] ﬁzl pairings for a given choice of the pivot positions
{e1,e2,e3}. These are obtained from Proposition|3.5(ii), and are itechbelow.

3
(i) Pivot positions: {e1,e,e3} = {1,2,3}. Total number of distinct pairings ﬂ (2n—e,) =3 =6.
n=1

List of inequivalent elastic 3-soliton solutions:

(i) Pivot positions: {e1,e,e3} = {1,2,4}. Total number of distinct pairings = 4. List of inequivalent
elastic 3-soliton solutions:

{[1.3, 2,5, [4.6]}, {[L3,[26], [43]}, {[19],[23], [46]}, {[16], (23], [45]}.

(i) Pivot positions: {e;,e,e3} = {1,2,5}. Total number of distinct pairings = 2. List of inequivalent
elastic 3-soliton solutions{[1,3], [2,4], [5,6]}, {[1,4], [2,3], [5,6]}.

(iv) Pivot positions: {e;,e,e3} = {1,3,4}. Total number of distinct pairings = 2. List of inequivalent
elastic 3-soliton solutions:{[1,2], [3,5], [4,6]}, {[1,2], [3,6], [4,5]}.

(v) Pivot positions: {e1,ey,e3} = {1,3,5}. Total number of distinct pairings = 1. Elastic 3-solitoriuso
tion: {[1,2], [3,4], [5,6]}.

Thus, the total number of inequivalent 3-soliton solutie8+ 4+ 2+ 2+ 1= 15= 5!l as given by Propo-
sition[3.5(iii). Fig.[3.1 shows a sample from the fifteen ineglent cases. Fi@. 3.1(a) shows the previously
known ordinary 3-soliton solution (cf. sectionl 1), while the remainingwgans are new, and they exhibit
resonant interactions.
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() [1.2],[3,4], [5,6] (b) [1,3], [2,5], [4.6] (c) [1.4], [&], [3.5] (d) [1,5], [2,4], [3,6]

Figure 3.1: Examples of elastic 3-soliton solutions.

4 Conclusion

In this article, a family of multi-soliton solutions of thel{l equation have been studied. These solutions are
generated by-functions which are expressed as positive definite lineartinations of exponential phases
that are linear in the variablesy,t. It is remarkable that such a simple form of thdunction generates
multi-soliton configurations which exhibit a rich variety ttme dependent spatial structures including res-
onant interactions and web patterns. The asymptotic asafthetau-function in thexy-plane reveals that
the solution decays exponentially except along certaiections which are characterized by the transition
between two dominant exponential phase combinations wiagk allbut onephases in common. All such
("non-decaying”) directions for any given solution can bgleitly identified by analyzing thé\ x M ma-

trix coefficientA associated with the-function. In particular, ag — o there areN directions which can be
identified with the pivot columns d&; while asy — —o, there aréM — N directions which can be identified
with the non-pivot columns oA.

WhenM = 2N, the general line soliton solutions contain the speciatkds of the elastitN-soliton
solutions. Each elastid-soliton solution has a set df directions in thexy-plane agy — «, and an identical
set of N directions agy — — along which the solution does not decay. Moreover, for amgrgN, the
solution space of elastid-solitons can be decomposed in@N — 1)!! distinct regions, each region cor-
responding to inequivalent types of solutions. It is inséirg to note that the previously known ordinary
N-solitons form only one of these types. Thus, the space sfield-soliton solutions of KPII appears to be
much richer than previously thought.

It is significant that solutions exhibiting similar feataref soliton resonance and web structure have
also been obtained in several other (2+1)-dimensionafjiatde systems, besides KPIl. These solutions
were also derived by direct algebraic methods similar tafsy@oach taken here. Therefore, it is reasonable
to expect that the results developed in this work for KPIl aliso be useful to characterize soliton solutions
in a variety of other (2+1)-dimensional integrable systems
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