A Hardware Generator of Multi-point
Distributed Random Numbers for Monte
Carlo Simulation

Nicola Bruti-Liberati?, Filippo Martini”, Massimo Piccardi®
and Eckhard Platen®

aSchool of Finance & Economics and Department of Mathematical Sciences
b Faculty of Information Technology,
University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia

Abstract

Monte Carlo simulation of weak approximations of stochastic differential equations
constitutes an intensive computational task. In applications such as finance, for
instance, to achieve “real time” execution, as often required, one needs highly ef-
ficient implementations of the multi-point distributed random number generator
underlying the simulations. In this paper a fast and flexible dedicated hardware so-
lution on a field programmable gate array is presented. A comparative performance
analysis between a software-only and the proposed hardware solution demonstrates
that the hardware solution is bottleneck-free, retains the flexibility of the software
solution and significantly increases the computational efficiency. Moreover, simula-
tions in applications such as economics, insurance, physics, population dynamics,
epidemiology, structural mechanics, chemistry and biotechnology can benefit from
the obtained speedups.

Key words: random number generators, random bit generators, hardware
implementation, field programmable gate arrays (FPGAs), Monte Carlo
simulation, weak Taylor schemes, multi-point distributed random variables.
PACS: 02.50.Ng, 89.65.Gh; MSC2000: 65C10, 65C30.

1 Introduction

In many applied sciences the dynamics of key quantities can be described by
stochastic differential equations (SDEs). In finance, for instance, the evolution
of security prices underlying derivative contracts is described by SDEs. To
price a derivative security it is necessary to estimate the expectation of a

Preprint submitted to Elsevier Science 3 December 2007



function, the payoff, of the solution of the underlying SDE at a given maturity
date. A widespread method and the only feasible one when the underlying
securities follow a high dimensional SDE, is the Monte Carlo method. As
explained in [5], to price an option via Monte Carlo simulation one uses a
weak approximation of the underlying SDE. Here only an approximation of
the probability distribution is needed, while a pathwise strong approximation
is relevant for other problems, such as scenario simulation or filtering.

Another important application of Monte Carlo simulation of weak approxima-
tions of SDEs is the solution of multi-dimensional partial differential equations
(PDEs). In mathematical physics, for instance, multi-dimensional PDEs arise
in many models. A feasible approach to their solution is the Monte Carlo
simulation via their probabilistic representation, see [8].

In a Monte Carlo simulation of a weak Taylor scheme, it is possible to replace
the Gaussian random variables, approximating the increments of Wiener pro-
cesses, with much simpler multi-point distributed random variables that match
certain moments. For instance, in a simplified Euler scheme one can use two-
point distributed random variables that match the first three moments of the
Wiener process increments. For a second order weak Taylor scheme one needs
three-point distributed random variables. Such multi-point distributed ran-
dom variables can be generated based on random bits, i.e. random variables
with only the two possible values 0 and 1, each with probability 0.5.

The main reason for replacing the Gaussian random variables with variables
based on random bits is simulation speed. Typical financial simulations can
take hours or days to run even on powerful servers, thus making “real-time”
evaluation unfeasible. In [1] it was shown that random bit generators (RBGs)
significantly increase the computational efficiency of simplified weak Taylor
schemes. However, in many applications a further speedup is required. There-
fore, in this paper we present a dedicated hardware solution, based on a field
programmable gate array (FPGA), for the efficient generation of random bits
and the associated multi-point distributed random numbers. The choice of an
FPGA as a dedicated hardware solution is mainly due to its flexibility, allow-
ing the user to program different RBGs according to the order of convergence
of the weak Taylor scheme employed. Moreover, the “randomness” of the ran-
dom bits, which is crucial for an effective Monte Carlo simulation, is strictly
related to the order and the coefficients of the underlying polynomial [9]. On
the FPGA, the user is free to program the most suitable polynomial for any
given application.

This paper provides a twofold contribution to the literature, namely in the
areas of Monte Carlo simulation of weak Taylor schemes and random number
generation. In the following, we address the main works related to both areas.
In [1] simplified weak Taylor schemes up to weak order two based on RBGs



are proposed and a study on the efficiency of a related software implementa-
tion is reported. [3] provides a four-point distributed random variable for a
simplified weak Taylor scheme of weak order three. However, such a four-point
distributed random variable cannot be efficiently implemented via RBGs. In-
stead, in this paper we propose a five-point distributed random variable suit-
able for an efficient implementation of a simplified weak Taylor scheme of weak
order three based on RBGs. In finalizing this paper the authors learned that
the idea of using software-based RBGs for the simulation of simplified weak
Taylor schemes and the proposal of a five-point distributed random variable
have been independently suggested in [8]. However, no analysis of the com-
putational efficiency nor implementation design are presented in [8], whereas
they are the objectives of this paper.

Random number generators (RNGs) can be divided into the two categories of
true and pseudo random number generators. The former are based on “true”
random physical phenomena while the latter are based on deterministic nu-
merical algorithms. The main advantage of true RNGs is that the generated
random numbers are independent and thus impossible to predict. This proves
to be a crucial factor in applications such as encryption. On the other hand,
the non reproducibility of the generated sequence makes it difficult to asses
its statistical properties [9]. Moreover, the generation speed is unlikely to rival
that of the fastest pseudo RNGs. In [6] an FPGA true RNG is proposed based
on the jitter of a clock signal. The generation speed reported of 0.5 Mbit/s is
far less than that achievable by a pseudo RNG. For these reasons, in Monte
Carlo simulations pseudo RNGs are usually preferred to true RNGs.

In a software implementation on a modern personal computer (PC), the gen-
eration of a random number from a pseudo RNG can take as little time as a
few nanoseconds. A dedicated hardware solution can certainly provide faster
generation, but requires careful, bottleneck-free system design to prove really
useful for the overall application. In [10], a hardware design for a pseudo RNG
is presented but based on outdated discrete logic. In [12], an FPGA imple-
mentation of pseudo RNGs is proposed but specifically for cryptographical
applications. In [7], detailed results are presented for FPGA implementations
of various pseudo RNGs which could also be used in Monte Carlo simula-
tions. However, none of the above papers presents system-level integration
or discusses system-level performance. In the current paper, instead, we pro-
pose a fast generator of multi-point distributed random numbers on an FPGA
and describe its system performance in a PC architecture. The proposed ap-
proach has been tested over a wide variety of parameters, including different
multi-point random variables and corresponding weak Taylor schemes, proving
capable of achieving speedups of up to ten times with respect to an optimized
software-only implementation.



2 Weak Taylor Schemes

Although the results presented in this section can be extended to multi-
dimensional SDEs with time dependent coefficients, let us consider, for sim-
plicity, the SDE

dX; = a(X;)dt + b(X,)dW,; (1)
for t € [0, 7], with Xy € R, where W = {W,, t € [0,T]} is a standard Wiener
process. We address here the problem of computing the expected value of a
payoff function g(X7) of the solution of the SDE (1) at a final time 7". Such
expectation is needed, for instance, to obtain the price of a derivative security.

Let us construct a discrete time approximation Y2 = {YV,2, t € [0, T]} of the
solution X = {X;, ¢t € [0,7]} of (1) on an equidistant time discretisation
O=ty<t; <...<ty=T,wheret,={nA, ne{0,...,N}}and A = L.
We say that a discrete time approximation Y2 converges weakly to X at time
T with order v if for each polynomial g there exists a positive constant K,
which does not depend on A, and a Ay > 0 such that

e(A) = |E(9(Xr)) — E(9(Yx))| < KA (2)
for each A € (0,4).

The first method that we consider for the approximation is the well-known
Fuler scheme given by

Y1 = Yo 4 a(Y,)A + b(Y,) AW, (3)

where AW, =W, , —W, = VA &, is the Gaussian increment of the Wiener
process W for n € {0,1,2..., N — 1}, with &, ~ N(0,1) and Yy = Xj. The
Euler method (3) achieves an order of weak convergence 7 = 1.0. As explained
in [4], it is possible to replace the Gaussian random variables AW,, by two-
point distributed random variables AW,?, where

P(AW? = £VA) = ; (4)
yielding the simplified Euler scheme
Vi1 = Yo 4 a(Yp)A + b(Y,) AW?2. (5)

Since the two-point distributed random variables AV/[ZE match the first three
moments of the Gaussian random variables AW,,, the simplified Euler scheme
(5) still achieves an order of weak convergence v = 1.0.

When high accuracy is required it is important to be able to construct ap-
proximations with higher orders of weak convergence. As shown in [4], if we



add more terms from the Wagner-Platen expansion to the Euler scheme (3),
then we obtain the order 2.0 weak Taylor scheme

1 1 1
Y1 =Y, + aA + bAW,, + 5b’b {(AWH)2 ~ A} +5 <aa’ + 2a”b2> A2
1
+a'b AT, + (ab’ 4 Qb”b2> (AW, A — AZ,) . (6)
where AZ, represents the double It6 integral

1 [S2

AZ, = /t [ aw,,ds.
For the sake of simplicity, in equation (6) and in the following we suppress the
dependence of the coefficients on the numerical approximation Y,, from the no-
tation, meaning, for instance, we write a for a(Y,,), where n € {0,1,2..., N —
1}. In this case we can replace the Gaussian random variables AW,, and A/\Zn
by expressions involving the three-point distributed random variables AW3,
where

_ 1 _ 2
PAW) = £V3A)= ¢, PAT}=0)= ¢, (7)

to obtain the second order simplified method

—~ 1 —~
Yoot =Y+ a + BATVS + bl {(AW,?)Q - A}
1

1 1 i _
‘3 (aa’ 4 2a”b2) At (a’b +ab + Qb”b2> ATBA. (8)

Since the multi-point distributed random variables appearing in scheme (8)
match the first five moments of those appearing in (6), the method (8) still
achieves an order of weak convergence v = 2.0.

By adding more terms from the Wagner-Platen expansion and approximating
the arising multiple stochastic integrals with Gaussian random variables, we
obtain the following order 3.0 weak scheme given by

1
Y1 =Y, + a + bAW,, + 5le{(AWn)? - A}
1
+L'aAZ, + 5L%N + LY {AW, A — AZ,}
1 070 Or1l 170 2
+6(LLb+LLa+LLa){AWnA}
1 171 170 07l 2
+6(LLa+LLb+LLb){(AWn) ~ A} A

—i—éLOLOa A® 4+ éLlle {(AW,)? = 3A} AW, (9)



where L and L! are differential operators defined by

3 0? o)
L’ = %+2bzax2 and L' _b% (10)

This scheme achieves an order of weak convergence v = 3.0.

To construct a third order simplified method, the required multi-point dis-
tributed random variables need to match, in general, the first seven moments
of the Gaussian ones. In [3] a corresponding four-point distributed random
variable AW;‘ was proposed, where

P(AW! = £1/3 + V6 VA) = o 4\[

P(AW! = +/3 -6 VA) = 12—14\/6' (11)

However, the four-point distributed random variable appearing in (11) cannot
be efficiently implemented by the method based on random bit generation de-
scribed below because the probability values in (11) are not rational numbers.
Instead, we present here a five-point distributed random variable AWS, with

P(AW? = +V6A) = 310 P(AW? = £VA) = —
—~ 1
PAW? =0) = 3. (12)

that still matches the first seven moments and is suitable for a highly efficient
implementation based on RBGs. Therefore, we can present the third order
simplified method

Vi1 =Y, + al + bDAW? + ;le { (AWQ)Q — A} + ;LOaAQ

1 PU e 1 _
“L'a{ AW? + —=AW?2 LA+ L AW —
+5 a{ Wi+ Wn} +35 b{ &
+é (L°L° + LOL'a + L' L) AW} A

1
\/gAW,f} A
o (B Las %+ 190%) {2 - A} A

+éLOL0aA3 + éLlle {(AWS)Q — 3A} AW?, (13)

that involves the multi-point distributed random variables AW5 and A2
and achieves an order of weak convergence v = 3.0, see [3].



For any given weak Taylor scheme it is possible to replace the Gaussian ran-
dom variables by simpler multi-point distributed ones. As explained in [4], if
the multi-point distributed random variables match the first 2y41 moments of
the multiple stochastic integrals in a weak Taylor scheme of order «, then the
resulting simplified Taylor scheme achieves the same order v of weak conver-
gence. For higher order schemes, however, the complexity of multi-point dis-
tributed random variables that match the required 2y + 1 moments increases.
For this reason, we consider here up to third order simplified methods, with
(13) being the only third order scheme implemented.

Furthermore, the multi-point distributed random variables and the corre-
sponding RBGs to be presented can be applied to any weak scheme, including
derivative free and implicit schemes. For instance, the two-point distributed
random variables AW? could be used in the first order simplified predictor-
corrector method with corrector

1 _
Y1 =Y, + §{G(Yn+1) +a}A + AW, (14)
and predictor -
Y1 = Y, 4+ alA + bAW?, (15)

The simplified predictor-corrector scheme (14)-(15) achieves an order of weak
convergence v = 1.0 and shows, in general, better numerical stability proper-
ties than the Euler scheme (5).

Moreover, simulations in economics, insurance, physics, population dynamics,
epidemiology, structural mechanics, chemistry and biotechnology for models
specified via SDEs can greatly benefit from the above methods.

3 Multi-point Random Variables and Random Bit Generators

In [1] a highly efficient software implementation of simplified schemes based on
RBGs has been proposed. The two-point distributed random variables Aﬁ\/ﬁ,
which constitute the core of the simplified Euler scheme (5), can be efficiently
obtained with a single bit from the RBG. This is an algorithm that generates
a bit 0 or 1 with probability 0.5. Random bits can be obtained via the so-
called shift register generator. This generator, used in digital communication
2], relies on the theory of primitive polynomials modulo 2. These are special
polynomials of the form

y(x) =1+cx+... +cog2™ '+ 2", (16)

with coefficients ¢; = {0,1}. A primitive polynomial modulo 2 of order n
defines a recurrence relation for obtaining a new bit from the n preceding



ones with maximal period, which is 2" — 1. The recurrence is given by:
Apy1 = C10) + C20—1 + ...+ Cpo1Qp—pt2 + Ap—py1 (Mod 2), (17)

where aj,1 is the new bit obtained from the preceding ones, a;, with i €
{n,...,1} and k > n. Equation (17) can be rewritten as

Qp+1 = 10 D 201 D ... D 10k —n+2 D Ag—n+1, (18)

where @ is the “exclusive or” operator. Thus, RBGs can be efficiently im-
plemented in C via bitwise operations, see [11] and [1]. In [1] a Monte Carlo
simulation of an option pricing problem using the simplified first order scheme
(5) with the RBG (18), provided a speed up of about 28 times when compared
to a first order scheme based on Gaussian random variables.

For a first order simplified scheme (5), each bit obtained from the RBG is
used to generate a value for the two-point distributed random variable by a
simple look-up operation (0 — +VA, 1 — —\/Z) For a second order simpli-
fied scheme (8), one bit is not sufficient to generate a value for the required
three-point distributed random variable, AW,:;’ However, a sequence of three
generated random bits is first used to obtain eight equiprobable values. Then,
with an acceptance-rejection method we discard two of them, use four to gen-
erate the 0 value for the random variable and use one each for values +v/3A
and —/3A. For the third order simplified scheme (13), the random variable
is five-point distributed with the probability distribution (12). In this case, a
sequence of five random bits is used to generate 32 equiprobable combinations.
The acceptance-rejection method discards two of them, uses ten to generate
the 0 value, nine each for values +vA and —vA, and one each for values

++v/6A and —v/6A.

4 System Architecture and FPGA Implementation
4.1  System Architecture

Our ultimate goal is to substantially speed up the above described Monte-
Carlo simulations by moving the random number generation from software
to a dedicated hardware platform. More precisely, we aim to move the whole
generation of multi-point distributed random numbers from the host processor
to a dedicated hardware unit. Since the percentage of time typically taken by
the generation of such numbers can be as high as 60-70% of the total execution
time [1], the above appears to be a promising approach. However, there exist
critical performance challenges at the system level. As the typical generation
time for a software implementation can be as short as a few nanoseconds



per number, the dedicated hardware solution must avoid any system-level
bottlenecks to prove competitive.

Fig. 1. The system architecture.

Our basic idea for a PC environment is that of implementing the hardware
“accelerator” as a daughter board on the PCI (peripheral component inter-
connect) bus, Revision 2.2 [13]. The daughter board hosts the RNG, not to be
confused with the RBG which is just a part of it. The RNG is implemented
on an FPGA and returns the generated numbers to the simulation software
through the PCI bus. Fig. 1 shows our proposed system architecture for a PC
platform. We can divide the system’s operations in four phases. In phase 1,
the FPGA generates a set of random numbers (in a Tppga average time per
number). In phase 2, the FPGA transfers such a set in a compact, combi-
natorially encoded format to the host memory via burst bus cycles operated
under DMA (direct memory access) for maximum communication efficiency
(in & Teomm average time per number). The combinatorial encoding works as
follows. Any given multi-point distributed random variable has a small finite
set of n possible values, with each value typically represented as a 32-bit float-
ing point datum. We can encode each value by combinatorial encoding with
[log, n] bits, where [a] denotes the smallest integer greater than or equal to
a. Accordingly, the amount of random numbers that we are able to pack and
transfer in a single PCI data phase (32 bits of data over 30 ns) is much larger
than that possible with the native floating point representation (only one
number per data phase). In phase 3, the host processor is ready to serve the
requests for random numbers from the simulation software. At each request,
the host processor decodes one encoded number and returns it to the caller (in
a Tyec average time per number). In phase 4, the host processor uses the ran-
dom numbers (in a Ty average time per number). In this way, the simulation
software sees the system through the same function interface of a conventional
software-only implementation and requires no further modifications. More im-
portantly, we coordinate these phases into a pipeline so that the simulation
software uses the current set of generated random numbers (phase 4) while the
FPGA concurrently produces a new set (phase 1), thus obtaining a significant
speedup. Fig. 2 shows how the various phases occur with respect to time. It
can be seen that if Tppga is less than Ty, then phase 1 is completely hidden
by phase 4 and thus adds no time to the total execution time. With a more
aggressive implementation, also phases 2 and 3 could have been considered
for pipelining with other phases. In particular, phase 2 could be overlapped
with phase 1 by means of a double-buffer implementation on the FPGA. At
its turn, phase 3 could be overlapped with phases 1 and 2 by a double-buffer
implementation in the host memory. Note that phase 3 cannot overlap with
phase 4 as they both require the same resource, the host processor. It can be
shown that such changes could result in hiding 7., completely in the over-
all execution time. On the other hand, Ty.. will instead increase due to the



increased complexity of a multiple-buffer implementation, thus compromising
the speedup. For this reason, we decided to limit pipelining to the two main
phases, 1 and 4.

Fig. 2. The various phases with respect to time.

The complete time models for the simulation are given in the following. First,
we can define T, as the average time spent for generating a multi-point
distributed random number and T, as the average time spent by the rest of
the simulation software in using it. If generation and use are sequential, we
can write:

Texe = Lyse + Tgena (19)

where T, is the average total execution time per number.

In the case of a conventional software implementation the above model holds
and Tgen = Tyeng,, 18 the time taken by the execution of a function that gen-
erates and returns one multi-point distributed random number to the caller.

With our system, instead, the simulation software uses the current set of
random numbers while the FPGA concurrently generates a new set. In this
way, if the generation time on the FPGA, Trpga, is shorter than the use
time, Tyee, the former does not add up to the total execution time. Such a
constraint was largely satisfied in all our experiments. Hence, (19) still holds
with Tyen = Tyeny,, given by:

T,

genyw

= Tcomm + Tdeca if TFPGA < Tuse- (20>

4.2  FPGA Implementation

A fast and flexible implementation of the RNG is the main requirement in
this application. FPGAs enjoy several features such as quasi-ASIC (application
specific integrated circuit) speed and programmer-level flexibility, which makes
them the most suitable option for the hardware platform. Accordingly, we have
chosen to implement our generator on a high-performance FPGA, the Altera
Stratix EP1S10B672C6. Simulation tools for this device are available in the
Altera Quartus II development environment. We have used the Web Edition
Software Version 4.2 of such tools. Moreover, all the circuits for the FPGA
have been developed in VHDL (Very High Speed Integrated Circuit Hardware
Description Language).

10



Fig. 3. A simplified scheme of the random number generator.

Fig. 3 shows a simplified scheme of the RNG. In Fig. 3.(a) the RNG is shown
together with the output FIFO (first in first out) queue (some signals have
been omitted for simplicity). The generation of the encoded random numbers
is synchronous with the main clock signal (CK), with one number generated
per clock cycle over signals RN|[0:2]. Each encoded random number generated
by the RNG is input in the FIFO queue which, in turn, allows for asynchronous
reading from an external master with 32-bit data parallelism. The writing on
the queue is clocked by the BUFF_WR signal, which is synchronous with
CK. However, the queue can suspend the random number generation when
full by raising FIFO_FULL. The generator needs an initial seed of arbitrary
length which can be uploaded asynchronously, in one or more steps, through
the SEED[0:31] and WR signals. Fig. 3.(b) shows details of the generator. The
generation of the random bits is performed by a shift register generator of pro-
grammable length equal to that of the generating polynomial. The “active”
(i.e. non-null) coefficients can also be programmed by the user. The orders
considered for the weak Taylor scheme range from v = 1 to v = 3, although
higher orders can also be straightforwardly implemented. When the selected
order is v = 1, the RNG generates numbers sampled from a two-point dis-
tributed random variable with the probabilities described in (4). Each single
bit generated by the shift register generator represents a valid encoded num-
ber. When the selected order is v = 2, the RNG generates numbers sampled
from a three-point distributed random variable with the probability distribu-
tion (7). In this case, a sequence of three generated random bits, X1:X3, is
used to generate eight equiprobable combinations. As described in Section 3,
the accept/group logic discards two of them, uses four to generate a 0 value for
the random variable and uses one each for values +v/3A and —v/3A. When
the selected order is v = 3, the random variable is five-point distributed with
the probability distribution (12). In this case, a sequence of five random bits,
X1:X5, is used to generate 32 equiprobable combinations. The accept/group
logic discards two of them, uses ten to generate a 0 value, nine each for values
+v/A and —v/A, and one each for values +v/6A and —v/6A. All combinatorial
functions in the accept/group logic are optimised.

5 Experimental results and performance analysis

Table 1 shows the main performance results of the proposed implementation
for a polynomial order of 31 and the different weak Taylor scheme orders.
Fy (in MHz) is the maximal clock frequency obtained for the RNG. Trpga,
the time (in ns) for generating one multi-point distributed random number,
is computed as a x 103/F,. The a term accounts for the fact that some of

11



Table 1
Performance results of the proposed implementation, polynomial order 31.

Scheme Order | Fex | Trpga | Tuse | Teomm | Tdee
vy=1 162 | 6.17 | 18.06 2 3.85
v =2 158 8.42 30.44 4 4.4
v=3 116 | 9.12 | 68.60 | 6.4 |6.27

the clock cycles generate a random number that should be rejected; such a
factor is 8/6 for the three-point distributed random variable and 32/30 for the
five-point distributed one. T, the time spent by the application in using a
random number, is measured on the option pricing problem reported in [1].
From Table 1, it is possible to see that the constraint of (20) is always easily
satisfied. Although T, obviously depends on the application, its range will
be similar for comparable Monte Carlo simulations. T, is the average time
for transferring one random number from the FIFO queue to the host memory
over the PCI bus. This time increases proportionally to the size in bits of the
encoded random numbers. Moreover, in some cases the data require extra-
alignment bits to match the 32-bit PCI data size. For instance, this applies to
the case of the 3-bit encoded numbers sampled from a five-point distributed
random variable. In Table 1, T, is computed based on a transfer rate of 66
MB/s. However, there exist several implementations over the PCI bus which
can almost saturate its peak rate of 132 MB/s; hence, even smaller values
for Toomm are achievable. Moreover, the upcoming PCI Express™bus carries
the potential to further decrease T,..,m by at least a factor of 4. Based on
these parameters and thanks to our design choice of combinatorial encoding
for the generated random numbers, we have proved herewith that data com-
munication is not a performance bottleneck in our system. Moreover, we have
implemented highly-optimised C macros to perform the decoding operation on
the host side, thus also limiting Ty, the average time that the host processor
takes to decode one encoded random number and return it to the requesting
application.

Table 2 shows the main performance results for a much higher polynomial
order of 521. Tyse, Teomm, and Tye. are not influenced by the polynomial order.
It can also be seen that the FPGA performance does not suffer from the
increased polynomial length and in some cases even slightly exceeds that of
the polynomial order 31. As the implementation still uses a very small fraction
of the FPGA resources, we cannot see any practical upper bound on the choice
of the polynomial length.

To provide a comparative analysis between software and hardware perfor-
mance, we have implemented both software and hardware versions of the RNG
for a comprehensive variety of parameters. In order for the performance com-
parison to be unbiased, we have implemented all software functions as highly
speed-optimised C macros. The reference PC is a Mobile Pentium 4 2.0 GHz

12



Table 2
Performance results of the proposed implementation, polynomial order 521.

Scheme Order | Fex | Trpga | Tuse | Teomm | Tdee
vy=1 167 | 5.99 | 18.06 2 3.85
=2 157 | 847 | 30.44 4 4.4
v=3 135 | 7.90 |68.60 | 64 |6.27

Fig. 4. The generation time as a function of the polynomial order.

Fig. 5. The generation time as a function of the number of non-null coefficients for
a polynomial order of 31.

Fig. 6. The generation time as a function of the number of points of the random
variable for a polynomial order of 31.

Fig. 7. The generation time as a function of the number of points of the random
variable for a polynomial order of 521.

and the C compiler used is the Microsoft Visual Studio 6.0 with -O2 opti-
mizations. In the following, the three dimensions of the polynomial order,
number of non-null coefficients, and number of points of the random variable
are discussed.

5.1  Polynomial order

A polynomial order n, for a primitive polynomial modulo 2, guarantees a
period of 2™ — 1 for the generated random sequence. It is known that the
accuracy of a simulation based on a pseudo-random sequence is compromised
when the sequence length is substantial compared with the period of the RNG.
In the light of this, high order polynomials should be preferred. However, in a
software implementation one faces an increase in generation time when using
high order polynomials, since they cannot be mapped onto a single primitive-
type operand. Instead, the hardware implementation does not suffer from any
predefined operand size. Fig. 4 shows the generation time, Tge,, for the software
and hardware implementations as a function of the polynomial order. For the
software implementation, 7T, remains approximately stable up to 63 and
then starts to grow with the polynomial order. Yet, the time for the hardware
implementation always remains constant. In our tests, even larger polynomial
sizes did not introduce any further delay in the FPGA operations.

13



5.2 Number of non-null coefficients

The “randomness” of the random bits, which is crucial for an effective Monte
Carlo simulation, is strictly related not only to the order of the generating
polynomial but also to the choice of its (non-null) coefficients [9]. However,
in a software implementation a programmer is tempted to use the polynomial
with the smallest number of coefficients, as each introduces an additional com-
putational load. Fig. 5 shows that the software implementation suffers from a
proportional delay. Again, the time instead remains constant for our hardware
implementation as Trpga remains less than Ty in all cases of interest.

5.8 Multi-point random variables

When high accuracy is required, higher orders of the weak Taylor schemes will
eventually increase the computational efficiency, even though both the scheme
and the multi-point distributed random variables are more complex. In any
case, speeding up the computation of the random variables has a dramatic
impact on the simulation time. Fig. 6 shows the generation time, T}y, for the
software and hardware implementations as a function of the number of points
in the multi-point distributed random variable, which refers to AW?, AW}
and AW? defined in (4),(7) and (12), for a polynomial order of 31. Once
again, the software time grows steadily, up to 80 ns per value for a five-point
distributed random variable. The hardware time, instead, increases negligibly.
Actually, the increase in T, is due only to the larger size of the encoded
random numbers. The size of the encoded random numbers grows as [log, n|,
where n is the number of points representing the possible values of the multi-
point distributed variable, and this has an impact on the transfer time, T,omm,
and the decoding time, Ty, see Tables 1 and 2. Fig. 7 shows that the trend
is similar for a polynomial order of 521.

5.4  Speedup

Table 3 reports the speedups achieved with the proposed hardware solutions
with respect to the optimised software implementation, when considering the
multi-point distributed random variables AW2, AW3 and AW? and polyno-
mial orders of 31 and 521. Sgen = Tiengyy /Tgenyy, i the speedup between the
generation in hardware and that in software. As explained in (20), Tyen,y
does not account for the generation time on the FPGA device, but it con-
sists, rather, of communication and decoding times. The units responsible
for such times are mainly the PCI bus and the host processor. While Sgey

is the main performance figure in our system, it is important to report also

14



Table 3

The generation speedup between hardware and software.

Sgen(31) | Skpea(31) | Sgen(521) | Srpca(521)
AW? | 1.44 1.36 2.33 2.27
AW3 | 6.84 6.83 9.94 9.86
AWS | 588 8.18 8.01 12.84
Table 4
The application speedup between hardware and software.
Scheme Order | Sexe(31) | Sexe(521)
y=1 1.11 1.32
y=2 2.26 2.93
v=3 1.76 2.09

SrPGA = Tgengy /Trpca, which is the speedup between the generation on the
FPGA alone and that in software. This speedup is important to express the
relative performance of the FPGA device and the host processor in the gener-
ation of multi-point distributed random variables in view of a possible transfer
of the whole simulation to FPGAs. Table 3 shows that such a speedup is as
high as 12.84 and could possibly increase by using FPGA development tools
providing further optimizations.

Table 4 reports the application speedup of the proposed hardware solutions
with respect to the optimised software implementation Sexe = Texeqy /Lexenyy
when an option pricing problem reported in [1] is considered. Table 4 shows
that the overall application strongly benefits from the hardware acceleration,
up to almost three times in some cases. This is due to the large percentage of
the total execution time typically spent on the random number generation by
the software. Moreover, the speedup increases with the order of the polynomial
and also with the number of its non-null coefficients, which is not shown in
the table. Therefore, these speedups become more significant in the case of
high accuracy simulations.

From Table 4, it appears that the application speedup for a weak Taylor
scheme of order v = 2 is greater than that for order v = 3. However, such
a result is not general since the measured times and speedups can depend
significantly on the compiler used. To verify that, we measured T, also with
another compiler, the Mingw port of GCC. Here we obtained 14, 47 and 57 ns
per random number for a weak Taylor scheme of order 1, 2, and 3, respectively.
Such times, when compared to those obtained by the Microsoft compiler and
reported in tables 1 and 2, seem to be in better proportion with the complexity
of the operations in (5), (8) and (13). With such times, the application speedup
for the weak Taylor scheme of order v = 2 is equivalent to that of order v = 3.

15



6 Conclusion

In this paper we have presented a dedicated hardware solution on an FPGA
for the generation of multi-point distributed random variables for use in a
PC environment. The proposed solution uses a high-performance FPGA for
fast and flexible generation of the random bits and the associated multi-point
distributed random numbers. Moreover, the random numbers are transferred
to the host processor in an encoded format with PCI burst cycles for maxi-
mum communication efficiency. Thanks to this bottleneck-free system design,
the proposed solution achieves relevant speedups in generating the random
numbers for the application when compared to an optimised software-only
solution, ranging from 1.4 up to about 10 times. As the typical percentage
of time employed by random number generation in Monte Carlo simulations
is relevant, this speedup, in turn, provides a significant improvement on the
efficiency of the overall Monte Carlo simulation. In this paper, we reported a
case of a finance application where the speedup on the total simulation time
reaches 2.93. Moreover, when high accuracy in the solution is required, thus
involving higher order schemes and larger polynomial orders, the speedup on
the total simulation time proves even greater. It is important to note that other
applications such as in economics, insurance, physics, population dynamics,
epidemiology, structural mechanics, chemistry and biotechnology, with models
specified via SDEs and solved by Monte Carlo simulations, can benefit greatly
from the proposed solution.

Acknowledgement

The authors wish to express their thanks to Hardy Hulley for valuable com-
ments and suggestions in preparing this paper.

References

[1] N. Bruti-Liberati and E. Platen. On the efficiency of simplified weak Taylor
schemes for Monte Carlo simulation in finance. In Computational Science -
ICCS 2004, ser. Lecture Notes in Comput. Sci. Springer, Vol. 3039, pp. 771—
778, 2004.

[2] S. W. Golomb. Digital Communications with Space Applications. Prentice-Hall,
Englewood Cliffs, N.J., 1964.

[3] N. Hofmann. Beitrige zur schwachen Approximation stochastischer
Differentialgleichungen. PhD thesis, Dissertation A, Humboldt Universitat
Berlin, 1994.

16



[4]

[5]

P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential
Equations. Vol. 23 of Appl. Math., Springer, 1999. Third corrected printing.

P. E. Kloeden, E. Platen, and H. Schurz, Numerical Solution of SDE’s Through
Computer Experiments. Ser. Universitext, Springer, 2003. Third corrected
printing.

P. Kohlbrenner and K. Gaj. An embedded true random number generator for
FPGAs. In Proc. of the 2004 ACM/SIGDA Twelfth International Symposium
on Field Programmable Gate Arrays (FPGA 2004), pages 71-78, 2004.

P. Martin. An analysis of random number generators for a hardware
implementation of genetic programming using FPGAs and Handel-C. Technical
Report CSM-358, Department of Computer Science, University of Essex, 2002.

G. N. Milstein and M. V. Tretyakov. Stochastic Numerics for Mathematical
Physics. Springer, 2004.

H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods.
SIAM, Philadelphia, PA, 1992.

[10] A. P. Paplinski and N. Batacharjee. Hardware implementation of the Lehmer

random number generator. In IEE Proc. Comput. Digit. Tech., Vol. 146, pages
93-95, 1996.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C++. Cambridge University Press, 2nd edition, 2002.

[12] K. H. Tsoi, K. H. Leung, and P. H. W. Leong. Compact FPGA-based true

and pseudo random number generators. In Proc. of the 11th Annual IEEFE
Symposium on Field-Programmable Custom Computing Machines (FCCMO03),
pages 1-13, 2003.

[13] PCI Local Bus Specification Revision 2.2. PCI-SIG, 2000.

17



