
ar
X

iv
:1

30
3.

45
10

v1
  [

m
at

h.
N

A
] 

 1
9 

M
ar

 2
01

3

Classification of Stochastic Runge–Kutta

Methods for the Weak Approximation of

Stochastic Differential Equations

Kristian Debrabant and Andreas Rößler
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Abstract

In the present paper, a class of stochastic Runge–Kutta methods containing the se-
cond order stochastic Runge–Kutta scheme due to E. Platen for the weak approxi-
mation of Itô stochastic differential equation systems with a multi–dimensional
Wiener process is considered. Order one and order two conditions for the coef-
ficients of explicit stochastic Runge–Kutta methods are solved and the solution
space of the possible coefficients is analyzed. A full classification of the coefficients
for such stochastic Runge–Kutta schemes of order one and two with minimal stage
numbers is calculated. Further, within the considered class of stochastic Runge–
Kutta schemes coefficients for optimal schemes in the sense that additionally some
higher order conditions are fulfilled are presented.
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1 Introduction

Recently, the development of numerical schemes for strong as well as weak
approximation of stochastic differential equations (SDEs) has focused amongst
others on Runge–Kutta type schemes [1,2,5,6,7,8,9,10,11,12,13]. This is due
to the increasing complexity of stochastic Taylor expansions and the desire
to avoid derivatives in higher order approximation schemes. In section 2, a
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class of stochastic Runge–Kutta (SRK) methods due to Rößler [10,11,12] for
the weak approximation of Itô SDE systems with a multi–dimensional Wiener
process is considered. This class contains as a special case the second order
SRK scheme proposed by Platen [5] as well as the class of SRK methods pro-
posed by Tocino and Vigo-Aguiar [13]. Order conditions for coefficients of the
SRK methods have been calculated by applying the multi-colored rooted tree
analysis due to Rößler [10,11,12]. In contrast to earlier work on this topic, the
aim of the present paper is to analyze these order conditions with the objec-
tive to determine a full classification of the coefficients for this class of SRK
methods. A full classification for order one SRK schemes with s = 1 stage
and for order one SRK schemes with deterministic order two for s = 2 stages
as well as for second order SRK schemes with s = 3 stages is calculated in
section 3. Further, some optimal schemes are derived from this classification
in section 4 by taking into account additional higher order conditions. Their
performance is studied by some numerical examples in section 5.

We denote by (Xt)t∈I the solution of the d-dimensional Itô SDE defined by

dXt = a(t, Xt) dt+ b(t, Xt) dWt, Xt0 = x0, (1)

with an m-dimensional Wiener process (Wt)t≥0 and I = [t0, T ]. We assume
that the Borel-measurable coefficients a : I×R

d → R
d and b : I×R

d → R
d×m

satisfy a Lipschitz and a linear growth condition such that the Existence and
Uniqueness Theorem [5] applies. In the following, let bj(t, x) = (bi,j(t, x))1≤i≤d ∈
R

d denote the jth column of the diffusion matrix b(t, x) for j = 1, . . . , m.

Let a discretization Ih = {t0, t1, . . . , tN} with t0 < t1 < . . . < tN = T
of the time interval I = [t0, T ] with step sizes hn = tn+1 − tn for n =
0, 1, . . . , N − 1 be given. Further, define h = max0≤n<N hn as the maximum
step size. Let C l

P (R
d,R) denote the space of all g ∈ C l(Rd,R) fulfilling a poly-

nomial growth condition and let g ∈ Ck,l
P (I × R

d,R) if g(·, x) ∈ Ck(I,R) and
g(t, ·) ∈ C l

P (R
d,R) for all t ∈ I and x ∈ R

d [5].

Definition 1.1 A time discrete approximation Y = (Yt)t∈Ih converges weakly

with order p to X as h → 0 at time t ∈ Ih if for each f ∈ C
2(p+1)
P (Rd,R) exist

a constant Cf and a finite δ0 > 0 such that

|E(f(Xt))− E(f(Yt))| ≤ Cf h
p (2)

holds for each h ∈ ]0, δ0[ .
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2 Stochastic Runge–Kutta Methods

We consider stochastic Runge–Kutta methods as proposed in [10,11,12] for the
weak approximation of SDE (1). Therefore, the d-dimensional approximation
process Y of an explicit s-stage SRK method is defined by Yt0 = x0 and

Ytn+1 = Ytn +
s
∑

i=1

αi a(tn + c
(0)
i hn, H

(0)
i ) hn

+
s
∑

i=1

m
∑

k=1

β
(1)
i bk(tn + c

(1)
i hn, H

(k)
i ) Î(k)

+
s
∑

i=1

m
∑

k=1

β
(2)
i bk(tn + c

(1)
i hn, H

(k)
i )

Î(k,k)√
hn

+
s
∑

i=1

m
∑

k,l=1
k 6=l

β
(3)
i bk(tn + c

(2)
i hn, Ĥ

(l)
i ) Î(k)

+
s
∑

i=1

m
∑

k,l=1
k 6=l

β
(4)
i bk(tn + c

(2)
i hn, Ĥ

(l)
i )

Î(k,l)√
hn

(3)

for n = 0, 1, . . . , N − 1 with stage values

H
(0)
i = Ytn +

i−1
∑

j=1

A
(0)
ij a(tn + c

(0)
j hn, H

(0)
j ) hn

+
i−1
∑

j=1

m
∑

r=1

B
(0)
ij br(tn + c

(1)
j hn, H

(r)
j ) Î(r)

H
(k)
i = Ytn +

i−1
∑

j=1

A
(1)
ij a(tn + c

(0)
j hn, H

(0)
j ) hn

+
i−1
∑

j=1

B
(1)
ij bk(tn + c

(1)
j hn, H

(k)
j )

√

hn

Ĥ
(k)
i = Ytn +

i−1
∑

j=1

A
(2)
ij a(tn + c

(0)
j hn, H

(0)
j ) hn

+
i−1
∑

j=1

B
(2)
ij bk(tn + c

(1)
j hn, H

(k)
j )

√

hn

for i = 1, . . . , s and k = 1, . . . , m. Here, α, β(1), . . . , β(4), c(q) ∈ R
s and A(q),

B(q) ∈ R
s×s for 0 ≤ q ≤ 2 with A

(q)
ij = B

(q)
ij = 0 for j ≥ i are the vectors

and matrices of coefficients of the SRK method. We choose c(q) = A(q)e for
0 ≤ q ≤ 2 with a vector e = (1, . . . , 1)T [10]. In the following, the product
of column vectors is defined component-wise. The coefficients of the SRK
method (3) are determined by the following Butcher tableau:
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c(0) A(0) B(0)

c(1) A(1) B(1)

c(2) A(2) B(2)

αT β(1)T β(2)T

β(3)T β(4)T

The random variables of the SRK method are defined by three-point dis-
tributed random variables with P(Î(r) = ±

√
3 hn) = 1

6
and P(Î(r) = 0) = 2

3
.

Further, Î(k,l) = 1
2
(Î(k) Î(l) + V k,l). The V k,l are independent two-point dis-

tributed random variables with P(V k,l = ±hn) = 1
2
for l = 1, . . . , k − 1,

V k,k = −hn and V k,l = −V l,k for l = k + 1, . . . , m and k = 1, . . . , m [5].

By the application of the multi–colored rooted tree analysis [10,12], order
conditions for the coefficients of the SRK method (3) can be easily deter-
mined. As a result of this, the following Theorem 2.1 due to Rößler [12] gives
order conditions for the SRK method (3) up to order two.

Theorem 2.1 Let ai, bij ∈ C2,4
P (I × R

d,R) for 1 ≤ i ≤ d, 1 ≤ j ≤ m. If the
coefficients of the SRK method (3) fulfill the equations

1. αT e = 1 2. β(4)T e = 0 3. β(3)T e = 0

4. (β(1)T e)2 = 1 5. β(2)T e = 0 6. β(1)TB(1)e = 0

7. β(3)TB(2)e = 0

then the SRK method converges with order 1 in the weak sense. In addition,
if ai, bij ∈ C3,6

P (I × R
d,R) for 1 ≤ i ≤ d, 1 ≤ j ≤ m and if the equations

8. αTA(0)e = 1
2

9. αT (B(0)e)2 = 1
2

10. (β(1)T e)(αTB(0)e) = 1
2

11. (β(1)T e)(β(1)TA(1)e) = 1
2

12. β(3)TA(2)e = 0 13. β(2)TB(1)e = 1

14. β(4)TB(2)e = 1 15. (β(1)T e)(β(1)T (B(1)e)2) = 1
2

16. (β(1)T e)(β(3)T (B(2)e)2) = 1
2

17. β(1)T (B(1)(B(1)e)) = 0

18. β(3)T (B(2)(B(1)e)) = 0 19. β(3)T (A(2)(B(0)e)) = 0

20. β(1)T (A(1)(B(0)e)) = 0 21. αT (B(0)(B(1)e)) = 0

22. β(2)TA(1)e = 0 23. β(4)TA(2)e = 0

24. β(1)T ((A(1)e)(B(1)e)) = 0 25. β(3)T ((A(2)e)(B(2)e)) = 0

26. β(4)T (A(2)(B(0)e)) = 0 27. β(2)T (A(1)(B(0)e)) = 0

Published in Mathematics and Computers in Simulation 77 (2008) no. 4, pp. 408–420, doi: 10.1016/j.matcom.2007.04.016

http://dx.doi.org/10.1016/j.matcom.2007.04.016


28. β(2)T (A(1)(B(0)e)2) = 0 29. β(4)T (A(2)(B(0)e)2) = 0

30. β(3)T (B(2)(A(1)e)) = 0 31. β(1)T (B(1)(A(1)e)) = 0

32. β(2)T (B(1)e)2 = 0 33. β(4)T (B(2)e)2 = 0

34. β(4)T (B(2)(B(1)e)) = 0 35. β(2)T (B(1)(B(1)e)) = 0

36. β(1)T (B(1)e)3 = 0 37. β(3)T (B(2)e)3 = 0

38. β(1)T (B(1)(B(1)e)2) = 0 39. β(3)T (B(2)(B(1)e)2) = 0

40. αT ((B(0)e)(B(0)(B(1)e))) = 0

41. β(1)T ((A(1)(B(0)e))(B(1)e)) = 0

42. β(3)T ((A(2)(B(0)e))(B(2)e)) = 0

43. β(1)T (A(1)(B(0)(B(1)e))) = 0

44. β(3)T (A(2)(B(0)(B(1)e))) = 0

45. β(1)T (B(1)(A(1)(B(0)e))) = 0

46. β(3)T (B(2)(A(1)(B(0)e))) = 0

47. β(1)T ((B(1)e)(B(1)(B(1)e))) = 0

48. β(3)T ((B(2)e)(B(2)(B(1)e))) = 0

49. β(1)T (B(1)(B(1)(B(1)e))) = 0

50. β(3)T (B(2)(B(1)(B(1)e))) = 0

are fulfilled then the stochastic Runge–Kutta method (3) converges with order 2
in the weak sense.

In the case of m > 1 one has to solve 50 non-linear equations in order to
calculate coefficients for an order two SRK method (3). However, in the case
of m = 1 these conditions are reduced to 28 equations which have to be
solved [11]. Thus, the analysis of the space of all admissible coefficients is not
an easy task. It turns out that explicit order one SRK methods need at least
s = 1 stage while order two SRK methods need s ≥ 3 stages. This is due to
e.g. conditions 6. and 15., which can not be fulfilled in the case of s ≤ 2 stages
for explicit order two SRK methods. In the following, we distinguish between
the stochastic and the deterministic order of convergence. Let pS = p denote
the order of convergence of the SRK method if it is applied to an SDE and let
pD with pD ≥ pS denote the order of convergence of the SRK method if it is
applied to a deterministic ordinary differential equation (ODE), i.e., SDE (1)
with b ≡ 0. We also write (pD, pS) in the following [11,12].
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3 Parameter Families for SRK Methods

3.1 Coefficients for SRK Methods of Order (1,1)

First, we analyze explicit SRK methods (3) of order pD = pS = 1 with s = 1
stage. Considering the order one conditions 1.–7. in Theorem 2.1, the corre-
sponding coefficients are uniquely determined for c1 ∈ {−1, 1} by

α1 = 1, β
(1)
1 = c1, β

(2)
1 = 0, β

(3)
1 = 0, β

(4)
1 = 0. (4)

The resulting class of SRK schemes coincides with the well-known Euler-
Maruyama scheme.

3.2 Coefficients for SRK Methods of Order (2,1)

Next, we consider the case of s = 2 stage explicit SRK methods (3). As already
mentioned in Section 2, it is not possible to attain order pS = 2. However, we
can find some SRK methods of order pD = 2 and pS = 1 corresponding
to the following parameter family: From condition 1. of Theorem 2.1 follows
α1 = 1 − α2 and taking into account the order 2 condition 8. we obtain
α2 = 1

2A
(0)
21

for A
(0)
21 6= 0. Further, condition 2. yields β

(4)
1 = −β

(4)
2 , condition

3. results in β
(3)
1 = −β

(3)
2 and condition 5. is fulfilled if β

(2)
1 = −β

(2)
2 while

condition 4. holds for β
(1)
1 = c1 − β

(1)
2 with c1 ∈ {−1, 1}. Finally, considering

condition 6. we need that β
(1)
2 = 0 or B

(1)
21 = 0 and for condition 7. analogously

that β
(3)
2 = 0 or B

(2)
21 = 0 hold. Thus, this class of SRK methods is determined

by

αT =
[

1− 1
2c2

1
2c2

]

, β(1)T =
[

c1 − c4 c4
]

, β(2)T =
[

c5 −c5
]

,

β(3)T =
[

c6 −c6
]

, β(4)T =
[

c7 −c7
]

,

A(0) =

[

0 0
c2 0

]

, A(1) =

[

0 0
c8 0

]

, A(2) =

[

0 0
c9 0

]

,

B(0) =

[

0 0
c3 0

]

, B(1) =

[

0 0
c10 0

]

, B(2) =

[

0 0
c11 0

]

, (5)

for c1 ∈ {−1, 1} and c2, . . . , c11 ∈ R with c2 6= 0, c4 c10 = 0 and c6 c11 = 0.
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3.3 Coefficients for SRK Methods of Order (2,2)

Now, we consider explicit SRK methods (3) of order pD = pS = 2 with
s = 3 stages. Then, the SRK schemes of the class under consideration are
completely characterized by the following families of coefficients which follow
from the order conditions in Theorem 2.1: Due to conditions 13. and 32. we
need B

(1)
21 6= 0 and from conditions 15. and 36. follows β

(1)
3 6= 0. Thus, there

exist no SRK schemes of the considered class attaining order pD = pS = 2
with less than 3 stages. Now, by condition 17. follows that B

(1)
32 = 0 and we

deduce from 6., 15. and 36. that B
(1)
31 = −B

(1)
21 6= 0. Analyzing the weights,

we calculate from conditions 5., 13. and 32. that β
(2)
2 = 1

2B
(1)
21

, β
(2)
3 = − 1

2B
(1)
21

and β
(2)
1 = 0. For c1 ∈ {−1, 1} we obtain from conditions 4., 6. and 15. the

weights β
(1)
1 = c1 − c1

2(B
(1)
21 )2

and β
(1)
2 = β

(1)
3 = c1

4(B
(1)
21 )2

. Now, due to 24. and

11. we need that A
(1)
21 = (B

(1)
21 )

2 and A
(1)
31 = (B

(1)
21 )

2 − A
(1)
32 . Applying now

conditions 3., 7., 16. and 37. we conclude that B
(2)
21 +B

(2)
31 +B

(2)
32 = 0, B

(2)
21 6= 0,

B
(2)
21 6= B

(2)
31 +B

(2)
32 and that β

(3)
1 = − c1

2(B
(2)
21 )2

, β
(3)
2 = c1

4(B
(2)
21 )2

and β
(3)
3 = c1

4(B
(2)
21 )2

.

Further, we can now determine the remaining weights as β
(4)
1 = 0, β

(4)
2 = 1

2B
(2)
21

and β
(4)
3 = − 1

2B
(2)
21

from conditions 2., 14. and 33., and we have α1 = 1−α2−α3

due to condition 1. Then, we can consider condition 18. which needs B
(2)
32 = 0

and we thus get with the previous considerations that finally B
(2)
21 = −B

(2)
31

has to be fulfilled. Now, we obtain from conditions 12. and 23. that A
(2)
21 = 0

and that A
(2)
32 = −A

(2)
31 has to be fulfilled. Continuing in this manner, we have

to distinguish the following cases:

(A) For α3 = 0, the parameter family is given by α1 = α2 =
1
2
and B

(0)
21 = c1,

which follows from conditions 1., 9. and 10. Further, we calculate from
condition 8. that A

(0)
21 = 1, from 20. that A

(1)
32 = 0 and from condition 19.

that A
(2)
32 = 0.

(B) For α3 6= 0, condition 21. yields now that B
(0)
32 = 0 and we have to consider

the following cases:
(a) For B

(0)
21 = 0 it follows from conditions 9. and 10. that B

(0)
31 = c1 and

α3 =
1
2
. Thus, by condition 1. it follows immediately that α1 =

1
2
−α2.

(i) If A
(0)
21 = 0 then condition 8. implies that in this case A

(0)
32 =

1− A
(0)
31 has to be fulfilled.

(ii) If A
(0)
21 6= 0 then condition 8. yields that α1 =

1
2
− 1−A

(0)
31 −A

(0)
32

2A
(0)
21

and

α2 =
1−A

(0)
31 −A

(0)
32

2A
(0)
21

.

(b) For B
(0)
21 6= 0, we calculate from condition 20. that A

(1)
32 = 0 and from

condition 19. that A
(2)
32 = 0 which implies that also A

(2)
31 = 0 due to
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A
(2)
32 = −A

(2)
31 . Now, with κ = α2 α3(2α2 + 2α3 − 1) and conditions 9.

and 10. we have to consider the following cases:
(i) In the case of κ ≥ 0, α2 6= −α3, α2 6= 0 and α2 6= ±√

κ it follows

that B
(0)
21 = c1(α2∓

√
κ)

2α2(α2+α3)
and B

(0)
31 = c1(α3±

√
κ)

2α3(α2+α3)
.

(ii) If α2 = 0 and α3 = 1
2
then we can conclude that B

(0)
31 = c1 has

to hold.
(iii) For α2 = −α3 and α2 6= −1

2
it follows that B

(0)
21 = c1(

1
2
+ 1

4α2
)

and B
(0)
31 = c1(

1
2
− 1

4α2
) has to be fulfilled.

Due to condition 8. it follows that A
(0)
31 =

1−2α2 A
(0)
21

2α3
− A

(0)
32 .

Finally, one can easily check that all remaining conditions of Theorem 2.1,
which have not been mentioned explicitly in our analysis, are fulfilled by each
parameter family and thus do not contribute any further restrictions for the
coefficients.

Summarizing our results, we have the following classification for the SRK
schemes of order pD = pS = 2 for the considered class with s = 3 stages: For
c1 ∈ {−1, 1} and c2, c3, c4, c5 ∈ R with c3 6= 0 and c4 6= 0 it holds

β(1)T =
[

c1 − c1
2c23

c1
4c23

c1
4c23

]

, β(2)T =
[

0 1
2c3

− 1
2c3

]

, (6)

β(3)T =
[

− c1
2c24

c1
4c24

c1
4c24

]

, β(4)T =
[

0 1
2c4

− 1
2c4

]

, (7)

A(1) =







0 0 0
c23 0 0

c23 − c2 c2 0





 , B(1) =







0 0 0
c3 0 0
−c3 0 0





 , (8)

A(2) =







0 0 0
0 0 0
c5 −c5 0






, B(2) =







0 0 0
c4 0 0
−c4 0 0






. (9)

Now, the following cases are possible:

In the case (A), we get with c2 = c5 = 0 in (8)–(9) that

αT =
[

1
2

1
2

0
]

, A(0) =







0 0 0
1 0 0
0 0 0





 , B(0) =







0 0 0
c1 0 0
0 0 0





 , (10)

with A
(0)
31 = A

(0)
32 = B

(0)
31 = B

(0)
32 = 0 because these coefficients are not relevant

for the scheme due to α3 = 0.

For the case (Ba.i) we get with c6, c7 ∈ R the coefficients

αT =
[

1
2
− c6 c6

1
2

]

, A(0) =







0 0 0
0 0 0
c7 1− c7 0






, B(0) =







0 0 0
0 0 0
c1 0 0






. (11)
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Considering the case (Ba.ii) we obtain for c6, c7, c8 ∈ R with c6 6= 0 that

αT =
[

1
2
− 1−c7−c8

2c6
1−c7−c8

2c6
1
2

]

, A(0) =







0 0 0
c6 0 0
c7 c8 0





 , B(0) =







0 0 0
0 0 0
c1 0 0





 . (12)

Next, we have the case (Bb.i) with c2 = c5 = 0 in (8)–(9), c6, c7, c8, c9 ∈ R and
with c6 6= 0 and c6 6= −c7 6= 0. Then, it holds with κ = c6c7(2c6+2c7− 1) and
λ = 1−2c6c8

2c7
for c6 6= ±√

κ and κ ≥ 0 that

αT =
[

1− c6 − c7 c6 c7
]

, A(0) =







0 0 0
c8 0 0

λ− c9 c9 0





 , B(0) =









0 0 0
c1
2

c6∓
√
κ

c6(c6+c7)
0 0

c1
2

c7±
√
κ

c7(c6+c7)
0 0









.

(13)

The case (Bb.ii) yields for c6, c7, c8 ∈ R with c8 6= 0 and c2 = c5 = 0 in (8)–(9)
the coefficients

αT =
[

1
2

0 1
2

]

, A(0) =







0 0 0
c6 0 0

1− c7 c7 0





 , B(0) =







0 0 0
c8 0 0
c1 0 0





 . (14)

Finally, we have the case (Bb.iii) for c6, c7, c8 ∈ R with c6 /∈ {−1
2
, 0} and

c2 = c5 = 0 in (8)–(9) which leads to

αT =
[

1 c6 −c6
]

, A(0) =







0 0 0
c7 0 0

1−2c6c7
−2c6

− c8 c8 0






, B(0) =







0 0 0
c1
2
(1 + 1

2c6
) 0 0

c1
2
(1− 1

2c6
) 0 0






.

(15)

3.4 Coefficients for SRK Methods of Order (3,2)

If we consider the classification of the coefficients for explicit SRK methods,
we can see from Section 3.3 that in some of the resulting cases there are still
degrees of freedom in choosing the coefficients for α and A(0). Therefore, we
analyze now the classification for explicit SRK methods (3) with s = 3 stages
of order pD = 3 and pS = 2. Thus, we additionally have to take into account
the well known deterministic order 3 conditions [3,4]

αT (A(0)e)2 =
1

3
, (16)

αT (A(0)(A(0)e)) =
1

6
. (17)
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Clearly, these conditions can not be fulfilled in case (A) where α3 = 0 as well

as in case (Ba.i) due to A
(0)
21 = 0 and in case (Bb.ii) due to the restrictions for

α and A(0). However, in the case of parameter family (Ba.ii) we obtain from
(16) and (17) an SRK method of order (3,2) if in (12) it holds

c7 =
1

2
c6 ±

1

6

√

9c26 − 36c6 + 24− 1

3c6
, c8 =

1

3c6
. (18)

For the parameter families in case (Bb.i) and (Bb.iii) we have to distinguish
the following three possibilities due to condition 8. of Theorem 2.1 and due to
(16):

a) α2 =
3
4
, A

(0)
21 = 2

3
, A

(0)
31 = −A

(0)
32 .

b) α3 =
3
4
− α2, A

(0)
21 = 2

3
, A

(0)
31 = 2

3
−A

(0)
32 .

c) α2 = 1
6

2−3(A
(0)
31 +A

(0)
32 )

A
(0)
21 (A

(0)
21 −A

(0)
31 −A

(0)
32 )

, α3 = 1
6

3A
(0)
21 −2

(A
(0)
31 +A

(0)
32 )(A

(0)
21 −A

(0)
31 −A

(0)
32 )

if A
(0)
31 + A

(0)
32 6=

A
(0)
21 6= 0 and A

(0)
31 + A

(0)
32 6= 0.

If we consider now the case of the parameter family (Bb.i) then the conditions
(16) and (17) are fulfilled for a) if

c6 =
3

4
, c7 =

1

4c9
, c8 =

2

3
, (19)

with c7 /∈ {−3
4
, 0, 1

2
}∪ ] − 1

4
, 0[ in (13). Further, the conditions (16) and (17)

are also fulfilled in the case (Bb.i) combined with b) if

c6 =
3

4
− 1

4c9
, c7 =

1

4c9
, c8 =

2

3
, (20)

with c9 6= 0 and for c6 ∈ ]0, 1
4
[∪ ]1

4
, 3
4
[ in (13). Finally, the considered parameter

family (Bb.i) fulfills the conditions (16) and (17) also for the case c) if

c6 =
1

6

2− 3λ

c8(c8 − λ)
, c7 =

1

6

3c8 − 2

λ(c8 − λ)
, c9 =

λ(c8 − λ)

(3c8 − 2)c8
(21)

in (13) for λ ∈ R with λ /∈ {0, 2
3
, c8,

2
3
− c8}, (λ−1)c8 6= λ2− 2

3
, c8 /∈ {0, 2

3
} and

with λ < 2
3
if c8 = 1; 3c8−2

3(c8−1)
≤ λ < 2

3
if 2

3
< c8 < 1 holds; 2

3
< λ or λ ≤ 3c8−2

3(c8−1)

if 0 < c8 < 2
3
holds and with λ < 2

3
or λ ≥ 3c8−2

3(c8−1)
if c8 < 0 or c8 > 1 holds.

Note that λ = 1−2c6c8
2c7

is thus automatically fulfilled in (13).

Finally, we consider the case of parameter family (Bb.iii) which fulfills the
additional order three conditions (16) and (17) in case a) for c6 = 3

4
and

c7 =
2
3
as well as in case c) with c6 =

1
4c7− 4

3

if c7 /∈ {−1
6
, 0, 1

3
} in (15). For case

b) there exists no solution.
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4 Optimal SRK Schemes

In the present section, coefficients for the SRK method (3) of different orders
of convergence are presented. Due to some degrees of freedom in choosing the
coefficients, we consider additional conditions in order to specify the free pa-
rameters of the SRK scheme. Clearly, these additional conditions need not ne-
cessarily be fulfilled for the desired order of convergence. However, coefficients
fulfilling also higher order conditions yield SRK schemes with the objective to
obtain smaller error constants and we call them optimal SRK schemes in the
following.

4.1 Coefficients for Optimal SRK Schemes of Order (2,1)

For SRK methods of order pD = 2 and pS = 1, we need 2 stages for the
drift part, however only one stage is needed for the diffusion. Therefore, we
consider only the case of c4 = . . . = c11 = 0 in (5). Next, we want to specify
c2 and c3. Therefore, we consider additional order conditions which need not
necessarily be fulfilled for order (2, 1) schemes. Taking into account condition
9. yields c2 = c23. From condition 10. it follows that c2 = c1 c3. Further, one can
consider the deterministic order 3 conditions (16) and (17) [3,4], whereas only
(16) can be fulfilled which yields c2 =

2
3
. However, one can only combine two

of the mentioned additional conditions. Condition 9. together with 10. yields

c2 = 1 and c3 = c1, condition 9. together with (16) yields c3 = ±
√

2
3
while

condition 10. together with (16) results in c3 = c1
2
3
. One can easily verify that

all the order 2 conditions 8.–50. are fulfilled with the exception of conditions
11. and 13.–16. and condition 9. or 10. if (16) is fulfilled in combination with
only one of them. Therefore, we consider the additional condition (16) which
is fulfilled for c1 = 1 and c2 = c3 =

2
3
. This leads to the SRK scheme RDI1WM

presented in Table 1, which is an improved Euler-Maruyama scheme with two
evaluations of the drift and one of the diffusion coefficients for each step. Thus,
it may be superior to the widely used Euler-Maruyama scheme, especially in
practical applications where small noise is inherent to the system.

4.2 Coefficients for Optimal SRK Schemes of Order (2,2) and (3,2)

If we consider the order three tree (σj1, σj2 , {τ, σj4}j3) (see [10,12] for details)
in the case of j1 = j2 = j3 = j4, then we obtain the corresponding order
condition

β(2)T ((A(1)e)(B(1)e))(β(1)T e)2 =
2

3
. (22)
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Table 1
Coefficients of the optimal SRK scheme RDI1WM with pD = 2 and pS = 1.
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√
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4
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√
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4 −

√
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4

Table 2
Coefficients of the optimal SRK scheme RDI2WM with pD = 2 and pS = 2.

For the coefficient families (10)-(15), this order condition is fulfilled if c3 =

±
√

2
3
. For the tree (σj1, {σj2 , σj2, σj3 , σj3}j1) (see [10,12]) we calculate in the

case of j1 6= j2 and j2 = j3 the following order three condition

(β(1)T e)(β(3)T (B(2)e)4) = 1 (23)

which is fulfilled if c4 = ±
√
2. Due to some symmetry in the SRK schemes,

we obtain always the same SRK schemes regardless what sign we choose for

c3, c4 and c1. In the following, we choose c3 =
√

2
3
, c4 =

√
2 and c1 = 1.

Then, the parameter family (10) definitely provides the optimal SRK scheme
RDI2WM of order pD = pS = 2 presented in Table 2.

Next, we calculate SRK schemes of order pD = 3 and pS = 2 for the fa-
mily (13) in the case (21). Again, we try to specify the remaining coefficients
in the deterministic part of the scheme by additionally considering the order
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Table 3
Coefficients of the optimal SRK scheme RDI3WM with pD = 3 and pS = 2.

four conditions [3,4]

αT (A(0)(A(0)e)2) =
1

12
, (24)

αT ((A(0)e)(A(0)(A(0)e))) =
1

8
. (25)

These conditions are fulfilled if λ = 3
4
and c8 =

1
2
. As a result of this, we obtain

the coefficients of the SRK scheme RDI3WM presented in Table 3.

However, if we claim for the family (13) in the case of (21) that the order
four conditions (24) and

αT (A(0)e)3 =
1

4
(26)

are fulfilled instead of (25), then we get the coefficients λ = 1 and c8 =
1
2
. As a

result of this, we obtain the coefficients of the SRK scheme RDI4WM presented
in Table 4. Here, the deterministic part of scheme RDI4WM coincides with
the well known Simpson scheme for ODEs [4].

5 Numerical example

In the following, some of the SRK schemes presented in Section 4 are applied
to test equations in order to analyze their order of convergence in comparison
to some well known schemes. Therefore, the functional u = E(f(Xt)) is ap-
proximated by a Monte Carlo simulation based on the optimal SRK schemes
RDI1WM of order 1 and RDI3WM and RDI4WM of order 2. The optimal
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Table 4
Coefficients of the optimal SRK scheme RDI4WM with pD = 3 and pS = 2.

SRK schemes are compared to the second order SRK scheme PL1WM due
to Platen [5], the Euler–Maruyama scheme EM of order 1 and the extrapo-
lated Euler-Maruyama scheme EXEM [5] also attaining order 2. The SRK
scheme PL1WM is contained in the class of SRK schemes (3) with coeffi-
cients c1 = c3 = c4 = 1 in (10) due to case (A). The extrapolated Euler-

Maruyama approximation is given by 2E(f(Z
h/2
t )) − E(f(Zh

t )) based on the

Euler-Maruyama approximations Z
h/2
t and Zh

t calculated with step sizes h
and h/2. The sample average uM,h = 1

M

∑M
k=1 f(Yt(ωk)), ωk ∈ Ω, of M in-

dependent simulated realizations of the considered approximation Yt is cal-
culated in order to estimate the expectation. In the following, we denote by
µ̂ = uM,h − E(f(Xt)) the mean error and by σ̂2

µ the empirical variance of the
mean error. Further, we calculate the confidence interval with boundaries a
and b to the level of 90% for the estimated error µ̂ (see [5,12] for details).

As the first example, we consider the non-linear SDE [5,7,11]

dXt =
(

1
2
Xt +

√

X2
t + 1

)

dt+
√

X2
t + 1 dWt, X0 = 0, (27)

on the time interval I = [0, 2] with the solution Xt = sinh(t +Wt). Here, we
choose f(x) = p(arsinh(x)), where p(z) = z3 − 6z2 +8z is a polynomial. Then
the expectation of the solution can be calculated as

E(f(Xt)) = t3 − 3t2 + 2t . (28)

The solution E(f(Xt)) is approximated with step sizes 2−1, . . . , 2−4 and M =
109 simulations are performed in order to determine the systematic error of
the considered schemes at time t = 2. The results for the applied schemes
are presented in Table 5. The orders of convergence correspond to the slope
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Table 5
Mean errors, empirical variances and confidence intervals for SDE (27).

h |µ̂| σ̂2
µ a b

EM

2−1 8.797E-01 6.534E-07 -8.799E-01 -8.795E-01
2−2 7.705E-01 1.592E-06 -7.708E-01 -7.702E-01
2−3 4.825E-01 1.599E-06 -4.828E-01 -4.822E-01
2−4 2.691E-01 1.754E-06 -2.694E-01 -2.688E-01

RDI1WM

2−1 1.101E-00 1.381E-06 -1.101E-00 -1.100E-00
2−2 5.342E-01 2.080E-06 -5.346E-01 -5.339E-01
2−3 2.390E-01 3.297E-06 -2.394E-01 -2.386E-01
2−4 1.112E-01 2.984E-06 -1.116E-01 -1.107E-01

EXEM

2−1 1.359E-00 2.990E-06 -1.359E-00 -1.359E-00
2−2 6.614E-01 7.315E-06 -6.620E-01 -6.607E-01
2−3 1.945E-01 8.629E-06 -1.952E-01 -1.938E-01
2−4 5.570E-02 9.014E-06 -5.641E-02 -5.499E-02

PL1WM

2−1 3.837E-01 1.885E-06 -3.841E-01 -3.834E-01
2−2 1.165E-01 3.207E-06 -1.169E-01 -1.161E-01
2−3 3.348E-02 2.475E-06 -3.386E-02 -3.311E-02
2−4 8.949E-03 3.447E-06 -9.390E-03 -8.509E-03

RDI3WM

2−1 3.926E-01 1.400E-06 -3.929E-01 -3.923E-01
2−2 1.041E-01 2.787E-06 -1.045E-01 -1.037E-01
2−3 2.748E-02 2.427E-06 -2.785E-02 -2.711E-02
2−4 7.054E-03 1.813E-06 -7.373E-03 -6.734E-03

RDI4WM

2−1 3.760E-01 1.488E-06 -3.762E-01 -3.757E-01
2−2 9.454E-02 2.823E-06 -9.494E-02 -9.414E-02
2−3 2.318E-02 2.441E-06 -2.355E-02 -2.281E-02
2−4 5.816E-03 1.816E-06 -6.135E-03 -5.496E-03

of the regression lines plotted in Figure 1 where we get the order 0.58 for
the EM scheme, order 1.11 for RDI1WM, order 1.80 for EXEM, order 1.81
for PL1WM, order 1.93 for RDI3WM and order 2.01 for the scheme RDI4WM.

As a second example, a multi-dimensional SDE with a 2-dimensional driving
Wiener process is considered:

d

(

X1
t

X2
t

)

=

(

−273
512

0

− 1
160

−785
512

+
√
2
8

) (

X1
t

X2
t

)

dt+

(

1
4
X1

t
1
16
X1

t
1−2

√
2

4
X2

t
1
10
X1

t +
1
16
X2

t

)

d

(

W 1
t

W 2
t

)

(29)

with initial value X0 = (1, 1)T . This SDE system is of special interest due
to the fact that it has no commutative noise. Here, we are interested in the
second moments which depend on both, the drift and the diffusion function
(see [5] for details). Therefore, we choose f(x) = (x1)2 and obtain

E(f(Xt)) = exp(−t) . (30)

We approximate E(f(Xt)) at t = 4 by M = 5 · 108 simulated trajectories with
step sizes 2−0, . . . , 2−3. The results for the considered schemes are presented
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Table 6
Mean errors, empirical variances and confidence intervals for SDE (29).

h |µ̂| σ̂2
µ a b

EM

2−0 1.178E-02 3.946E-11 -1.178E-02 -1.178E-02
2−1 7.002E-03 6.669E-11 -7.004E-03 -7.000E-03
2−2 3.738E-03 5.799E-11 -3.740E-03 -3.736E-03
2−3 1.922E-03 8.614E-11 -1.925E-03 -1.920E-03

RDI1WM

2−0 9.000E-03 1.275E-10 8.998E-03 9.004E-03
2−1 2.472E-03 1.127E-10 2.470E-03 2.475E-03
2−2 8.870E-04 8.278E-11 8.848E-04 8.891E-04
2−3 3.714E-04 8.926E-11 3.691E-04 3.736E-04

EXEM

2−0 2.223E-03 2.871E-10 -2.227E-03 -2.219E-03
2−1 4.733E-04 2.500E-10 -4.771E-04 -4.696E-04
2−2 1.071E-04 3.585E-10 -1.116E-04 -1.026E-04
2−3 2.348E-05 3.919E-10 -2.818E-05 -1.879E-05

PL1W1

2−0 4.230E-03 6.967E-11 4.228E-03 4.232E-03
2−1 7.736E-04 8.594E-11 7.714E-04 7.758E-04
2−2 1.728E-04 8.412E-11 1.706E-04 1.750E-04
2−3 4.148E-05 8.356E-11 3.932E-05 4.365E-05

RDI3WM

2−0 1.909E-03 3.700E-11 -1.910E-03 -1.907E-03
2−1 3.822E-04 6.597E-11 -3.841E-04 -3.803E-04
2−2 8.282E-05 6.356E-11 -8.471E-05 -8.093E-05
2−3 1.797E-05 8.787E-11 -2.019E-05 -1.574E-05

RDI4WM

2−0 1.608E-03 4.285E-11 -1.609E-03 -1.606E-03
2−1 3.089E-04 6.812E-11 -3.108E-04 -3.069E-04
2−2 6.583E-05 6.403E-11 -6.773E-05 -6.394E-05
2−3 1.392E-05 8.803E-11 -1.615E-05 -1.170E-05
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Fig. 1. Orders of convergence for SDE (27) and SDE (29).

in Table 6 and Figure 1. Here, the order of convergence is 0.88 for the Euler-
Maruyama scheme, 1.53 for RDI1WM, 2.22 for PL1WM, 2.18 for EXEM, 2.24
for RDI3WM and order 2.28 for the optimal SRK scheme RDI4WM.

Due to the results in Figure 1, we can see that for both test equations the
so called optimal SRK scheme RDI1WM attains much better orders of con-
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Fig. 2. Computational effort per simulation path versus precision for SDE (27) and
SDE (29).

vergence than the well known order one EM scheme. The same holds for the
optimal SRK schemes RDI3WM and RDI4WM compared to the order two
schemes EXEM and PL1WM. Clearly, the optimal SRK schemes RDI1WM,
RDI3WM and RDI4WM need some additional computational effort compared
to the schemes EM, EXEM and PL1WM, respectively. Therefore, we take the
number of evaluations of the drift function a and of each diffusion function
bj , 1 ≤ j ≤ m, as well as the number of random variables that have to be
simulated as a measure for the computational effort. Then we can compare the
computational effort versus the errors of the analyzed schemes. The results are
presented in Figure 2, and again, RDI1WM performs much better than the
scheme EM for both test equations. Further, RDI3WM yields similar results
like RDI4WM which is for higher precisions slightly better than PL1WM and
significantly better than the scheme EXEM for the test equation (27). Con-
sidering the multi-dimensional test equation (29), the scheme RDI3WM is
again close to RDI4WM which performs for higher precisions slightly better
than EXEM. However both optimal SRK schemes RDI3WM and RDI4WM
are significantly better than the SRK scheme PL1WM.

6 Conclusion

In the present work, a full classification of the coefficients for a class of explicit
SRK methods of order (1, 1) for s = 1 and order (2, 1) for s = 2 stages as
well as for the orders (2, 2) and (3, 2) with s = 3 stages is calculated. Based
on this classification, coefficients for so called optimal SRK schemes are deter-
mined by considering additional higher order conditions. Optimal coefficients
for SRK methods of order (2, 1), (2, 2) and (3, 2) are calculated and similarly to
the deterministic setting [4], better convergence results are expected for these
schemes in general. Finally, the SRK schemes based on optimal coefficients
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are applied to some test equations. Here, it turned out that the proposed op-
timal SRK schemes attain higher orders of convergence than the well known
schemes under consideration and they also perform very well if the computa-
tional effort is taken into account.

For future research, it would be interesting to extend the presented classi-
fication to diagonal or fully implicit SRK methods. Further, the given classi-
fication may be applied in order to determine coefficients for SRK methods
with optimal stability properties.
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