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Abstract

A parallel implementation of the BDDC method using the frontal solver is employed
to solve systems of linear equations from finite element analysis, and incorporated
into a standard finite element system for engineering analysis by linear elasticity.
Results of computation of stress in a hip replacement are presented. The part is
made of titanium and loaded by the weight of human body. The performance of
BDDC with added constraints by averages and with added corners is compared.
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1 Introduction

Parallel numerical solution of linear problems arising from linearized isotropic
elasticity discretized by finite elements is important in many areas of
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engineering. The matrix of the system is typically large, sparse, and ill-
conditioned. The classical frontal solver [8] has became a popular direct
method for solving problems with such matrices arising from finite element
analyses. However, for large problems, the computational cost of direct
solvers makes them less competitive compared to iterative methods, such
as the preconditioned conjugate gradients (PCG) [4]. The goal is then to
design efficient preconditioners that result in a lower overall cost and can
be implemented in parallel, which has given rise to the field of domain
decomposition and iterative substructuring [17].

The Balancing Domain Decomposition based on Constraints (BDDC) [6] is
one of the most advanced preconditioners of this class. However, the additional
custom coding effort required can be an obstacle to the use of the method in an
existing finite element code. We propose an implementation of BDDC built
on top of common components of existing finite element codes, namely the
frontal solver and the element stiffness matrix generation. The implementation
requires only a minimal amount of additional code and it is therefore of
interest. For an important alternative implementation of BDDC, see [11].

BDDC is closely related to FETI-DP [7]. Though the methods are quite
different, they can be built largely from the same components, and the
eigenvalues of the preconditioned problem (other than the eigenvalue equal to
one) in BDDC and FETI-DP are the same [13]. See also [2,11,14] for simplified
proofs. Thus the performance of BDDC and FETI-DP is essentially identical,
and results for one method apply immediately to the other.

The frontal solver was used to implement a limited variant of BDDC in
[3,16]. The implementation takes advantage of the existing integration of the
frontal solver into the finite element methodology and of its implementation
of constraints, which is well-suited for BDDC. However, the frontal solver
treats naturally only point constraints, while an efficient BDDC method
in three dimensions requires constraints on averages. This fact was first
observed for FETI-DP experimentally in [7], and theoretically in [10], but
these observations apply to BDDC as well because of the equivalence between
the methods.

In this paper, we extend the previous implementation of BDDC by the frontal
solver to constraints on averages and apply the method to a problem in
biomechanics. We also compare the performance of the mehod with adding
averages and with additional point constraints. The implementation relies
on the separation of point constraints and enforcing the rest by Lagrange
multipliers, as suggested already in [6]. One new aspect of the present approach
is the use of reactions, which come naturally from the frontal solver, to avoid
custom coding.
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2 Mathematical formulation of BDDC

Consider the problem in a variational form

a(u, v) = 〈f, v〉 ∀ v ∈ V , (1)

where V is a finite element space of R3-valued piecewise polynomial functions
v continuous on a given domain Ω ⊂ R3, satisfying homogeneous Dirichlet
boundary conditions, and

a(u, v) =
∫

Ω
(λ divu div v +

1

2
µ (∇u+∇Tu) : (∇v +∇Tv)). (2)

Here λ and µ are the first, and the second Lamé’s parameter, respectively.
Solution u ∈ V represents the vector field of displacement. It is known that
a(u, v) is a symmetric positive definite bilinear form on V . An equivalent
formulation of (1) is to find a solution u to a linear system

Au = f, (3)

where A = (aij) is the stiffness matrix computed as aij = a(φi, φj), where {φi}
is a finite element basis of V , corresponding to set of unknowns, also called
degrees of freedom, defined as values of displacement at the nodes of a given
triangulation of the domain. The domain Ω is decomposed into nonoverlapping
subdomains Ωi, i = 1, . . . N , also called substructures. Unknowns common to
at least two subdomains are called boundary unknowns and the union of all
boundary unknowns is called the interface Γ.

The first step is the reduction of the problem to the interface. This is quite
standard and described in the literature, e.g., [17]. The space V is decomposed
as the a-orthogonal direct sum V = V1 ⊕ · · · ⊕ VN ⊕ VΓ, where Vi is the space
of all functions from V with nonzero values only inside Ωi (in particular,
they are zero on Γ), and VΓ is the a-orthogonal complement of all spaces
Vi; VΓ = {v ∈ V : a(v, w) = 0 ∀w ∈ Vi, i = 1, . . . N}. Functions from
VΓ are fully determined by their values at unknowns on Γ and the discrete
harmonic condition that they have minimal energy on every subdomain (i.e.
solve the system with zero right hand side in corresponding equations). They
are represented in the computation by their values on the interface Γ. Solution
u may be split into the sum of interior solutions uo =

∑N
i ui, ui ∈ Vi, and

uΓ ∈ VΓ. Then problem (3) may be rewritten as

A(uΓ + uo) = f. (4)

Let us now write problem (4) in the block form, with the first block
corresponding to unknowns in subdomain interiors, and the second block
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corresponding to unknowns at the interface,A11 A12

A21 A22


uΓ1 + uo1

uΓ2 + uo2

 =

 f1

f2

 , (5)

with uo2 = 0. Using the fact that functions from VΓ are energy orthogonal
to interior functions (so it holds A11uΓ1 + A12uΓ2 = 0) and eliminating the
variable uo1, we obtain that (5) is equivalent to

A11uo1 = f1, (6)A11 A12

A21 A22


uΓ1

uΓ2

 =

 0

f2 − A21uo1

 , (7)

and the solution is obtained as u = uΓ + uo. Problem (7) is equivalent to the
problem A11 A12

0 S


uΓ1

uΓ2

 =

 0

g2

 , (8)

where S is the Schur complement with respect to interface: S = A22 −
A21A

−1
11 A12, and g2 is the condensed right hand side g2 = f2 − A21uo1 =

f2 − A21A
−1
11 f1. Problem (8) can be split into two problems

A11uΓ1 = −A12uΓ2, (9)

SuΓ2 = g2. (10)

Since A11 has a block diagonal structure, the solution to (6) may be found in
parallel and similarly the solution to (9).

The BDDC method is a particular kind of preconditioner for the reduced
problem (10). The main idea of the BDDC preconditioner in an abstract form
[14] is to construct an auxiliary finite dimensional space W̃ such that VΓ ⊂ W̃
and extend the bilinear form a (·, ·) to a form ã (·, ·) defined on W̃ × W̃ and
such that solving the variational problem (1) with ã (·, ·) in place of a (·, ·) is
cheaper and can be split into independent computations done in parallel. Then
the solution projected to VΓ is used for the preconditioning of S. Specifically,
let E : W̃ → VΓ be a given projection of W̃ onto VΓ, and r2 = g2 − SuΓ2 the
residual in a PCG iteration. Then the output of the BDDC preconditioner is
the part v2 of v = Ew, where

w ∈ W̃ : ã (w, z) = 〈r, Ez〉 ∀z ∈ W̃ , (11)

r =

 r1

r2

 , v =

 v1

v2
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In terms of operators, v = ES̃−1ET r, where S̃ is the operator on VΓ associated
with the bilinear form ã (but not computed explicitly as a matrix).

Note that while the residual r2 in the PCG method applied to the reduced
problem is given at the interface only, the residual in (11) has the dimension of
all unknowns on the subdomain. This is corrected naturally by extending the
residual r2 to subdomain interiors by zeros (setting r1 = 0), which is required
by the condition that the solution v is discrete harmonic inside subdomain.
Similarly, only interface values v2 of v are used in further PCG computation.
Such approach is equivalent to computing with explicit Schur complements.

The choice of the space W̃ and the projection E determines a particular
instance of BDDC [6,14]. All functions from VΓ are continuous on the domain
Ω. In order to design the space W̃ , we relax the continuity on the interface
Γ. On Γ, we select coarse degrees of freedom and define W̃ as the space of
finite element functions with minimal energy on every subdomain, continuous
across Γ only at coarse degrees of freedom. The coarse degrees of freedom can
be of two basic types – explicit unknowns (called coarse unknowns) at selected
nodes (called corners), and averages over larger sets of nodes (subdomain
faces or edges). The continuity condition then means that the values at the
corresponding corners, resp. averages, on neighbouring subdomains coincide.
The bilinear form a (·, ·) from (2) is extended to ã (·, ·) on W̃×W̃ by integrating
(2) over the subdomains Ωi separately and adding the results.

The projection E : W̃ → VΓ is defined at unknowns on the interface Γ (the
uΓ2 part) as a weighted average of values from different subdomains and thus
resulting in function continuous across the interface. These averaged values
on Γ determine the projection E, because values inside subdomains (the uΓ1

part) are then obtained by the solutions of local subdomain problems (9) to
make the averaged function discrete harmonic. To assure good performance
regardless of different stiffness of the subdomains [12], the weights are chosen
proportional to the corresponding diagonal entries of the subdomain stiffness
matrices. The transposed projection ET is used for distribution of the residual
r2 among neighbouring subdomains and represents the decomposition of unity
at unknowns on interface.

The decomposition into subspaces used to derive the problem with Schur
complement (10) is now repeated for space W̃ , with the coarse degrees
of freedom playing the role of interface unknowns and ã(·, ·) the role of
a(·, ·). Namely, space W̃ is decomposed as ã-orthogonal direct sum W̃ =
W̃1 ⊕ · · · ⊕ W̃N ⊕ W̃C , where W̃i is the space of functions with nonzero values
only in Ωi outside coarse degrees of freedom (they have zero values at corners,
they are generally not continuous at other unknowns on Γ, and they have zero
averages) and W̃C is the coarse space, defined as the ã-orthogonal complement
of all spaces W̃i: W̃C = {v ∈ W̃ : ã(v, w) = 0 ∀w ∈ W̃i, i = 1, . . . N}.
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Functions from W̃C are fully determined by their values at coarse degrees of
freedom (where they are continuous) and have minimal energy. Thus, they
are generally discontinuous across Γ outside the corners. The solution w ∈ W̃
from (11) is now split accordingly as w = wC +

∑N
i=1 wi, where wC , determined

by
wC ∈ W̃C : ã (wC , v) = 〈r, Ev〉 ∀v ∈ W̃C , (12)

is called the coarse correction, and wi, determined by

wi ∈ W̃i : ã (wi, v) = 〈r, Ev〉 ∀v ∈ W̃i, (13)

is the substructure correction from Ωi, i = 1, . . . N .

Let us now rewrite the BDDC preconditioner in terms of matrices, following
[6]. Problem (13) is formulated in a saddle point form asKi C

T

i

Ci 0


wi

µi

 =

 ri

0

 , (14)

where Ki denotes the substructure local stiffness matrix, obtained by the
subassembly of element matrices only of elements in substructure i, matrix
Ci represents constraints on subdomain, that enforce zero values of coarse
degrees of freedom, µi is vector of Lagrange multipliers, and ri is the weighted
residual ET r restricted to subdomain i.

Matrix Ki is singular for floating subdomains (subdomains not touching
Dirichlet boundary conditions), while the augmented matrix of problem (14) is
regular and may be factorized. Matrix Ci contains both constraints enforcing
continuity across corners (single point continuity), and constraints enforcing
equality of averages over edges and faces of subdomains. The former type
corresponds to just one nonzero entry equal to 1 on a row of Ci, while the
latter leads to several nonzero entries on a row. This structure will be exploited
in the following section.

Problem (14) is solved in each iteration of the PCG method to find the
correction from substructure i. However, the matrix of (14) is used prior the
whole iteration process to construct the local subdomain matrix of the coarse
problem. First, the coarse basis functions are found independently for each
subdomain as the solution toKi C

T

i

Ci 0


ψi

λi

 =

 0

I

 . (15)

This is a problem with multiple right hand sides, where ψi is a matrix of coarse
basis functions with several columns, each corresponding to one coarse degree
of freedom on subdomain. These functions are given by values equal to 0 at all
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coarse degrees of freedom except one, where they have value equal to 1, and
they have minimal energy on subdomain outside coarse degrees of freedom.
The identity block I has the dimension of the number of constraints on the
subdomain.

Once ψi is known, the subdomain coarse matrix KCi is constructed as

KCi = ψT
i Kiψi. (16)

Matrices KCi are then assembled to form the global coarse matrix AC . This
procedure is same as the standard process of assembly in finite element
solution, with subdomains playing the role of elements, coarse degrees of
freedom on subdomain representing degrees of freedom on element, and matrix
KCi representing the element stiffness matrix.

Problem (12) is now

ACwC = rC , (17)

where rC is the global coarse residual obtained by the assembly of the
subdomain contributions of the form rCi = ψT

i ri.

The coarse solution wC has the dimension of the number of all coarse degrees
of freedom. So, to add the correction to subdomain problems, we first have to
restrict it to coarse degrees of freedom on each subdomain and to interpolate
it to the whole subdomain by wCi = ψiwCi. By extending wCi and wi by zero
to other subdomains, these can be summed over the subdomains to form the
final vector w. Finally, the preconditioned residual is obtained as v = Ew.

It is worth noticing that in the case of no constraints on averages, i.e. using
only coarse unknowns for the definition of the coarse space, matrix AC of
problem (17) is simply the Schur complement of matrix A with respect to
coarse unknowns. This fact was pointed out in [11]. If additional degrees of
freedom are added for averages, they correspond to new explicit unknowns in
wCi.

Obviously, several mapping operators among various spaces are needed in
the implementation, defining embedding of subdomains into global problem,
local subdomain coarse problem into global coarse problem etc. We have
circumvented their mathematical definition by words for the sake of brevity,
while we refer to [6,12] for rigorous definitions of these operators.
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3 BDDC implementation based on frontal solver

The frontal solver implements the solution of a square linear system with some
of the variables having prescribed values. Equations that correspond to the
fixed variables are omitted and the values of these variables are substituted into
the solution vector directly. The output of the solver consists of the solution
and the resulting imbalance in the equations, called reaction forces. More
precisely, consider a block decomposition of the vector of unknowns x with
the second block consisting of all fixed variables, and write a system matrix A
with the same block decomposition (here, the decomposition is different from
the one in Section 2). Then on exit from the frontal solver,A11 A12

A21 A22


x1

x2

 =

 f1

f2

+

 0

r2

 , (18)

where fixed variable values x2 and the load vectors f1 and f2 are the inputs,
while the solution x1 and the reaction r2 are the outputs. Stiffness matrices
of elements are input instead of the whole matrix, and their assembly is done
simultaneously with the factorization inside the frontal solver.

The key idea of this section is to split the constraints in matrix Ci and to
handle them in different ways. Those enforcing zero values at corners will be
enforced as fixed variables, while the remaining constraints, corresponding to
averages and denoted Ci, will be still enforced using Lagrange multipliers.the

In the rest of this section, we drop the subdomain subscript i and we write
subdomain vectors w in the block form with the second block consisting
of unknowns that are involved in coarse degrees of freedom (i.e. coarse
unknowns), denoted by the subscript c, and the first block consisting of the
remaining degrees of freedom, denoted by the subscript f . The vector of the
coarse degrees of freedom given by averages is written as Cw, where each row
of C contains the coefficients of the average that makes that degree of freedom.
Then subdomain vectors w ∈ W̃ are characterized by wc = 0, Cw = 0. Assume
that C = [Cf Cc], with Cc = 0, that is, the averages do not involve single
variable coarse degrees of freedom; then Cw = Cfwf . The subdomain stiffness
matrix K is singular for floating subdomains, but the block Kff is nonsingular
if there are enough corners to eliminate the rigid body motions, which will be
assumed.

We now show how to solve (14) – (17) using the frontal solver. In the case when
there are no averages as coarse degrees of freedom, we recover the previous
method from [3,16].

The local substructure problems (13) are written in the frontal solver form
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(18) as 
Kff Kfc C

T
f

Kcf Kcc 0

Cf 0 0




wf

wc

µ

 =


r

0

0

+


0

Rea

0

 , (19)

where wc = 0, r is the part in the f block of the residual in the PCG method
distributed to the substructures by the operator ET , and Rea is the reaction.
The constraint wc = 0 is enforced by marking the wc unknowns as fixed, while
the remaining constraints Cfwf = 0 are enforced via the Lagrange multiplier
µ. Using the fact that wc = 0, we get from (19) that

Kffwf = −CT
f µ+ r, (20)

Kcfwf = Rea, (21)

Cfwf = 0. (22)

From (20), wf = K−1
ff

(
−CT

f µ+ r
)
. Now substituting wf into (22), we get the

problem for Lagrange multiplier µ,

CfK
−1
ff C

T
f µ = CfK

−1
ff r. (23)

The matrix CfK
−1
ff C

T
f is dense but small, with the order equal to the number

of averages on the subdomain, and it is constructed by solving the system
KffU = CT

f with multiple right hand sides by the frontal solver and then the
multiplication CfU . After solving problem (23), we substitute for µ in (20)
and find wf from

Kff Kfc

Kcf Kcc


wf

wc

 =

 r − CT
f µ

0

+

 0

Rea

 (24)

by the frontal solver, considering wc = 0 fixed. The factorization in the frontal
solver for (24) and the factorization of the matrix CfK

−1
ff C

T
f for (23) need to

be computed only once in the setup phase.

The coarse problem (17) is solved by the frontal solver just like a finite
element problem, with the subdomains playing the role of elements. It only
remains to specify the basis functions of W̃C on the subdomain from (15),
and compute the local subdomain coarse matrix (16) efficiently. Denote by
ψc the matrix whose colums are coarse basis functions associated with the
coarse unknowns at corners, and ψavg the matrix made out of the coarse
basis functions associated with averages. To find the coarse basis functions,
we proceed similarly as in (19) and write the equations for the coarse basis
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functions in the frontal solver form, now with multiple right-hand sides,


Kff Kfc C

T
f

Kcf Kcc 0

Cf 0 0




ψc

f ψ
avg
f

I 0

λc λavg

 =


0 0

0 0

0 I

+


0 0

Reac Reaavg

0 0

 , (25)

where Reac and Reaavg are matrices of reactions. Denote ψf =
[
ψc

f ψ
avg
f

]
,

ψc =
[
ψc

c ψ
avg
c

]
=

[
I 0

]
, λ =

[
λc λavg

]
, Rea =

[
Reac Reaavg

]
, and

R =
[

0 I

]
. Then (25) becomes

Kffψf +Kfcψc = −CT
f λ, (26)

Kcfψf +Kccψc = Rea, (27)

Cfψf = R. (28)

From (26), we get ψf = −K−1
ff

(
Kfcψc + CT

f λ
)
. Substituting ψf into (28), we

derive the problem for Lagrange multipliers

CfK
−1
ff C

T
f λ = −

(
R + CfK

−1
ff Kfcψc

)
, (29)

which is solved for λ by solving the system (29) for multiple right hand sides.
Since ψc is known, we can use the frontal solver to solve (26)-(27) to find ψf

and Rea:

Kff Kfc

Kcf Kcc


ψf

ψc

 =

−CT
f λ

0

+

 0

Rea

 , (30)

considering ψc fixed. Finally, we construct the local coarse matrix
corresponding to the subdomain as

KC = ψTKψ = ψT

−CT
f λ

Rea

 =
[
ψT

f ψT
c

] −CT
f λ

Rea

 = −ψT
f C

T
f λ+

 I
0

Rea,
(31)

where ψ =
[
ψc ψavg

]
.

At the end of the setup phase, the matrix of coarse problem is factored by the
frontal solver, using subdomain coarse matrices as input.
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4 The algorithm

The setup starts with two types of factorization of the system matrix by frontal
algorithm that differ only in the set of fixed variables. In the first factorization,
all interface unknowns are prescribed as fixed, for the solution of problems (5)
and (7). In the second factorization, only the coarse unknowns are fixed, for the
solution of problems (24) and (30). Both factorizations are done subdomain by
subdomain, so the interface unknowns are represented by their own instance
in different subdomains. This naturally leads to parallelization according to
subdomains. Then the main steps of the algorithm are as follows.

(A) Solve (6) in parallel on every subdomain for g2 as reaction using the frontal
solver with uo2 = 0 fixed,A11 A12

A21 A22


uo1

0

 =

 f1

f2

+

 0

−g2

 (32)

(B) Solve (10) for uΓ2 using PCG with BDDC preconditioner (for more details
see bellow).
(C) Compute the solution u from (5) using the frontal solver with uΓ2 fixed
and uo2 = 0.

Step (B) in detail follows. Before starting cycle of PCG iterations, compute in
advance:

• Matrix CfK
−1
ff C

T
f of (23), resp. (29) and its factorization.

• Coarse basis functions ψi of (15) from (30). Multiplier λ on the right hand
side of (30) is computed from (29).
• Local matrices KCi of (16) from (31).
• Factorization of matrix AC of (17) using the frontal solver with local coarse

matrices KCi as ‘element’ matrices.
• The first residual r2 of (10) from the first approximation of uΓ2 using the

frontal solver on (7) with uΓ2 fixed,A11 A12

A21 A22


uΓ1

uΓ2

 =

 0

g2

+

 0

−r2

 . (33)

For the popular choice of initial solution uΓ2 = 0, this step reduces to setting
r2 = g2 (the discrete harmonic extension of zero function on interface is zero
also in the interior of subdomain).

Then in every PCG iteration, compute v2 from r2 in three steps:

(1) Compute ET r by distributing the residual r2 on interface Γ among
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neigbouring subdomains.
For every subdomain, compute ri as restriction of ET r to that subdomain.

(2) Compute w = S̃−1ET r as sum of all substructure corrections wi and
coarse correction wC . These can be computed in parallel for every ri:
• Substructure correction wi given by (14) is computed from (24) using

frontal with wc = 0 fixed. Multiplier µ on the right hand side of (24 )
is computed from (23) and r in both (24) and (23) is the part in the f

block of the ri.
• Coarse correction wC is solution of (17).
We are interested in values of w only on interface.

(3) Compute the v2 part of v = Ew at every interface node as weighted
average of values of w at that node (neigbouring subdomains have
generally different values of w at corresponding interface nodes).

Note that in every iteration of PCG, the product Sp2 is needed, where p2 is
a search direction. This product is computed using the frontal solver with p2

fixed, A11 A12

A21 A22


 p1

p2

 =

 0

0

+

 0

Sp2

 . (34)

The interior part p1 is computed only as a by-product, and it is not used in
the PCG iterations.

5 Numerical results

The implementation was first tested on the problem of unit cube, a classical
test problem of domain decomposition methods. In our case, the cube is made
of steel with Young’s modulus 2.1 · 1011 Pa and Poisson’s ratio 0.3. The cube
is fixed at one face and loaded by the force of 1, 000 N, acting on one edge
opposite to the fixed face in direction parallel to it and pointing outwards of the
cube. The mesh consists of 323 = 32, 768 trilinear elements. It was uniformly
divided into 8 and 64 subdomains, resulting in H/h = 16 and H/h = 8,
respectively (here H denotes the characteristic size of subdomains and h the
characteristic size of elements). These divisions are presented in Figure 1. The
interface is initially divided into 7 corners, 6 edges, and 12 faces in the case of
8 subdomains, and into 81 corners, 108 edges, and 144 faces in the case of 64
subdomains.

All experiments with this problem were computed on 8 1.5 GHz Intel Itanium 2
processors of SGI Altix 4700 computer in CTU Supercomputing Centre,
Prague. The stopping criterion of PCG was chosen as ‖r‖2/‖g‖2 < 10−6.
In the presented results, an external parallel multifrontal solver MUMPS [1]
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was used for the factorization and solution of the coarse problem (17), instead
of the serial frontal solver.

The first experiment compares two ways of enriching the coarse space W̃C ,
namely by adding point constraints on randomly selected variables on the
substructure interfaces, i.e. adding more “corners” (Fig. 2 – 4), and by adding
averages to the initial set of corners (Table 1 and Table 2). In the first column
of these tables, no additional averages are considered and only corners were
used in the construction of W̃C . Then we enforce the equality of arithmetic
averages over all edges, over all faces, and over all edges and faces, respectively.

Although adding corners leads to an improvement of preconditioner in terms
of the condition number (Fig. 3) and the number of iterations (Fig. 2), after a
slight decrease early on the total computational time increases (Fig. 4) due to
the added cost of the setup and factorization of the coarse problem. This effect
is particularly pronounced with 8 subdomains, where the cost of creating the
coarse matrix dominates, as the frontal solver internally involves multiplication
of large dense matrices to compute reactions: (30) takes O(nin

2
ci) for multiple

right hand sides, where ni is the number of variables and nci is the number
of coarse variables in subdomain i. The problem divided into 64 subdomains
requires much less time than the problem with 8 subdomains also due to
the fact that the factorization time for subdomain problems grows fast with
subdomain size. Note that for 64 subdomains, the number of processors
remains the same and each of the 8 processors handles 8 subdomains.

The structural analysis of the replacement of the hip joint construction loaded
by pressure from body weight is an important problem in bioengineering. The
hip replacement consists of several parts made of titanium; here we consider
the central part of the replacement joint. The problem was simplified to
stationary linearized elasticity. The highest stress was reached in the notches of
the holders. In the original design, holders of the hip replacement had thickness
of 2 mm, which led to maximal von Mises stress about 1, 500 MPa. As the yield
point of titanium is about 800 MPa, the geometry of the construction had to
be modified. The thickness of the holders was increased to 3 mm, radiuses of
the notches were increased, and the notches were made smaller, as in Fig. 5.
The maximal von Mises stress on this new construction was only about 540
MPa, which satisfed the demands for the strength of the construction [5,18].
The mesh consists of 33,186 quadratic elements resulting in 544,734 unknowns.

The computation needs 400 minutes when using a serial frontal solver on
Compaq Alpha server ES47 at the Institute of Thermomechanics, Academy
of Sciences of the Czech Republic. With 32 subdomains and corner coarse
degrees of freedom only, BDDC on a single Alpha processor took 10 times
less, only 40 minutes.
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In this paper, we present results for decompositions into 16 and 32 subdomains
obtained by the METIS graph partitioner [9]. In the case of 16 subdomains,
the interface topology leads to 35 corners, 12 edges, and 35 faces, and in the
case of 32 subdomains, to 57 corners, 12 edges, and 66 faces. All presented
results were obtained on 16 processors of SGI Altix 4700. Again, the stopping
criterion of PCG was chosen as ‖r‖2/‖g‖2 < 10−6. Also these results were
obtained using MUMPS solver for the coarse problem solution.

We again investigate the two approaches to coarse space enrichment. The
results of random addition of corners are presented in Figures 7 – 9. Unlike in
the case of the cube, a substantial decrease of the total time is achieved. The
optimal number of additional corners depends on the division into subdomains.

Results of adding averages are summarized in Table 3 for the case of 16
subdomains, and in Table 4 for the case of 32 subdomains, both with the
initial set of corners.

The last experiment combines both approaches: we add averages to the optimal
size of the set of corners, determined from Figure 9 as ∼335 for the problem
with 16 subdomains, and ∼557 for the problem with 32 subdomains. These
results are presented in Tables 5 and 6. We can see that this synergy can lead
to the lowest overall time of the computation.

We observe that while the implementation of averages leads to a negligible
increase in the computational cost of the factorizations, it considerably
improves the condition number, and thus reduces the overall time of solution.
Also, the decomposition into 32 subdomains leads to significantly lower
computational times than the division into 16 subdomains. Note that although
the initial set of corners leads to non-singular local matrices and the coarse
matrix and so successful setup of the preconditioner, the iterations do not
converge in this case.

6 Conclusion

We have presented an application of a standard frontal solver within the
iterative substructuring method BDDC. The method was applied to a
biomechanical stress analysis problem. The numerical results show that the
improvement of preconditioning by additional constraints is significant and
can lead to a considerable savings of computational time, while the additional
cost is negligible.

For a model problem (cube), constraints by averages on edges and faces
are required for good performance, as predicted by the theory [10,13], and
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additional point constraints (i.e., corners) are not productive. However, for
the hip replacement problem (which is far from a regularly decomposed cube),
additional point constraints result in significantly lower total computational
time than the averages, and the best result is obtained by combining both the
added point constraints and the averages.

For large problems and a large number of processors, load balancing will be
essential [15].

Acknowledgement

This research has been supported by the Czech Science Foundation under
grant 106/08/0403 and by the U.S. National Science Foundation under grant
DMS-0713876. It has also been partly supported by the Czech Republic under
projects MSM6840770001 and AV0Z20760514. A part of this work was done
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modelováńı náhrady kyčelńıho kloubu, in czech), master thesis (2005).

16



Fig. 1. Cube problem, division into 8 (left) and 64 (right) subdomains

Fig. 2. Cube problem, number of iterations for adding corners

coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 38 19 17 13

cond. number est. 117 15 65 7

factorization (sec) 49 56 52 57

pcg iter (sec) 21 11 10 8

total (sec) 85 85 80 83

Table 1
Cube problem, 8 subdomains, adding averages, initial set of corners
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Fig. 3. Cube problem, condition number for adding corners

Fig. 4. Cube problem, wall clock time for adding corners
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coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 42 16 24 11

cond. number est. 55 8 27 4

factorization (sec) 2.2 3.2 2.8 4.0

pcg iter (sec) 7.5 3.7 5.1 3.6

total (sec) 11.6 8.8 10.4 9.6

Table 2
Cube problem, 64 subdomains, adding averages, initial set of corners

Fig. 5. Hip joint replacement, von Mises stresses in improved design.

Fig. 6. Hip joint replacement, division into 32 subdomains
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Fig. 7. Hip joint replacement, number of iterations for adding corners

Fig. 8. Hip joint replacement, condition number for adding corners
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Fig. 9. Hip joint replacement, wall clock time for adding corners

coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 181 171 69 62

cond. number est. 4,391 3,760 535 522

factorization (sec) 100 70 86 80

pcg iter (sec) 241 216 94 87

total (sec) 380 321 216 203

Table 3
Hip joint replacement, 16 subdomains, adding averages, 35 corners

coarse problem corners corners+edges corners+faces corners+edges+faces

iterations >500 >500 137 70

cond. number est. n/a n/a n/a n/a

factorization (sec) 79 65 53 52

pcg iter (sec) >545 >547 166 87

total (sec) >651 >638 236 161

Table 4
Hip joint replacement, 32 subdomains, adding averages, 57 corners
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coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 35 34 26 26

cond. number est. 96 96 65 65

factorization (sec) 91 80 78 106

pcg iter (sec) 53 49 38 37

total (sec) 183 166 153 181

Table 5
Hip joint replacement, 16 subdomains, adding averages, 335 corners

coarse problem corners corners+edges corners+faces corners+edges+faces

iterations 35 32 30 27

cond. number est. 149 70 59 46

factorization (sec) 60 57 59 62

pcg iter (sec) 49 40 37 34

total (sec) 128 115 113 113

Table 6
Hip joint replacement, 32 subdomains, adding averages, 557 corners
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