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Abstract

In this paper we present the results of a time-domain identification procedure to estimate the linear parameters of a salient-pole
synchronous machine at standstill.

A new approach is proposed for the estimation of synchronous machine coupled to DC-chopper and Pseudo Random Binary
Sequences excitations; using data recorded during steady-state operation of the chopper-machine unit. This procedure consists of
defining and conducting the standstill tests, identifying the model structure, estimating the corresponding parameters, and validating
the resulting model. The signals used for identification are the different excitation voltages at standstill and the flowing current in
different windings. We estimate the parameters of operational impedances, or in other terms, the reactances and the time constants.

The results are presented from tests on a synchronous machine of 3 kVA/220 V/1500 rpm.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Synchronous machine; Parameter estimation; Standstill tests

1. Introduction

There are many suggested methods for the determination of synchronous machine parameters. Among the modern
techniques used are neural networks, finite elements, on-line and off-line statistical methods, frequency response, load
rejection and others [3,5,8,12–14].

Different measurement techniques, identification procedures and models structures are developed to obtain models
as accurate predictors for the transient behaviour of generators.

The standstill modelling approach has received great emphasis due to its relatively simple testing method where the
d- and q-axis are decoupled [2,6,10,14,15].

This paper deals with the experimental determination of synchronous machine parameters and models.
The characteristic parameters obtained from reduced models of the synchronous machine are proposed and there is

no need to any hypothesis. The first order equations, which approximate all the behaviour of the machine, are given.
These reduced models traduce the subtransient, the transient and the steady-state operations of the machine respectively.
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Nomenclature

List of symbols
p Laplace’s operator
ω, ω0 angular speeds
ϕd, ϕq d- and q-axis flux linkage
Vd, Vq d- and q-axis stator voltages
id, iq d- and q-axis stator currents
Vf, if d-axis field voltage and current
ra, rf armature and field resistances
xd, xq d- and q-axis synchronous reactance
xd

′, xd
′′ d-axis transient and subtransient reactances

xq
′, xq

′′ q-axis transient and subtransient reactances
xmd d-axis magnetizing reactance
xa armature leakage reactance
xf field leakage reactance
Yd,q(p) d- and q-axis operational admittances
Tfo, Tf field open-circuit and short-circuit time constant
Tdo

′, Td
′ d-axis transient open-circuit and short-circuit time constant

Tdo
′′, Td

′′ d-axis subtransient open-circuit and short-circuit time constant
Tqo

′, Tq
′ q-axis transient open-circuit and short-circuit time constant

Tqo
′′, Tq

′′ q-axis subtransient open-circuit and short-circuit time constant
PRBS Pseudo Random Binary Sequences

Depending on whether the synchronous machine is supplied with voltage, we propose different differential equations
from which analytical expressions of the currents and the voltages are deduced. The expressions are given as functions
of the characteristic parameters: open-circuit and short-circuit time constants and reactances.

As an application, we have worked on the following methods:

• DC decay test in armature winding at standstill.
• Excitation by DC-chopper.
• Excitation by PRBS.

The purpose of these studies is to determine the static experimental conditions to estimate the parameters of a
salient-pole synchronous machine using DC decay, DC-chopper and Pseudo Random Binary Sequences excitations.

The tests are performed and studied on a synchronous machine (Sn = 3 kVA, Un = 220 V, In = 8 A, Nn = 1500 rpm).

2. Synchronous machine modelling

The study of the electric machines based on the Park’s transform was already treated in several works and specialized
publications. This model allows, by a change of reference frame, to pass from the stator system to the rotor system
with elimination of certain variables.

The basic model consists to considering one salient-pole synchronous machine with one pair of poles to the rotor
and a three-phase stator winding.

The field winding is on the rotor of the machine according to the axis of the salience (direct axis).
The presence of grid or cage of dampers to the rotor, are modeled by two equivalent circuits dampers; one on the

direct axis and the other on the quadrature axis.
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Fig. 1. Three-phase synchronous machine with dampers.

Fig. 2. Three-phase synchronous machine, dampers assimilated to two windings in short-circuit

The six windings representing Fig. 1 are described by the following equations

Va = Raia + dϕa

dt

Vb = Raib + dϕb

dt

Vc = Raic + dϕc

dt

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

armature (Stator) (1)

Vf = Rfif + dϕf

dt

0 = RDiD + dϕD

dt

0 = RQiQ + dϕQ

dt

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

field (Rotor) (2)

The voltage applied to the D and Q circuits are null, since they are in short-circuit (Fig. 2).

fadel
Rectangle



280 M. Hasni et al. / Mathematics and Computers in Simulation 81 (2010) 277–289

Fig. 3. Standard d–q axis circuit models.

2.1. Choice of model’s order

Using the Park’s d and q-axis reference frame, the synchronous machine is supposed to be modelled with one
damper winding for the d-axis and two windings for the q-axis (2 × 2 model) as shown in Fig. 1 [1,7,8,14,15].

Damper circuits, especially those in the quadrature axis provide much of the damper torque. This particularly
important in studies of small signal stability where conditions are examined about some operating point [13]. The
second order direct axis models includes a differential leakage reactance. In certain situations for second order models,
the identity of the transients field winding. Alternatively, the field circuit topology can alter by the presence of an
excitation system, with its associated non-linear features.

By considering Fig. 3, the equations of the machine are:

• Voltage equations

Vd(p) = raid(p) + pϕd(p) + ωrϕq(p) (3)

Vq(p) = raiq(p) + pϕq(p) − ωrϕd(p) (4)

Vf(p) = rfif(p) + pϕf(p) (5)

0 = rDiD(p) + pϕD(p) (6)

0 = rQiQ(p) + pϕQ(p) (7)

After eliminating ϕf, if, ϕD, iD, ϕQ, iQ we obtains the following equations:

Vd(p) = raid(p) + pϕd(p) + ωrϕq(p) (8)

Vq(p) = raiq(p) + pϕq(p) − ωrϕd(p) (9)

ϕd(p) = Xd(p)id(p) + G(p)Vf(p) (10)

ϕq(p) = Xq(p)iq(p) (11)

This writing form of the equations of the machine has the advantage of being independent of the number of dampers
considered on each axis.

In fact, it is the order of the functions Xd,q(p) and G(p), which depend on the number of dampers.
For a machine at standstill, the rotor speed is zero (w = 0) and using the p Laplace operator, the voltage equations

can then be written as:
• For the d-axis

Vd =
[
ra + P

ω0
Xd(p)

]
id + pG(p)vf (12)
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Vf =
[
rf + p

ω0
Xf(p)

]
if + p

ω0
Xmdid (13)

• For the q-axis

Vq =
[
ra + p

ω0
Xq(p)

]
iq (14)

with the operational reactances:

Xd,q,f(p) = Xd,q,f
(1 + pTd,q,f

′)(1 + pTd,q,f
′′)

(1 + pTd0,q0,f0
′)(1 + pTd0,q0,f0

′′)
(15)

and the operational function G(p):

G(p) = Xmd

rf

1

1 + pTd0
′ (16)

where d, q, f denote the d-axis, q-axis and field respectively. From these equations, it follows that only the three
functions Xd(p), Xq(p) and G(p) are necessary to identify a synchronous machine.

The reduced operational admittances of the d-axis and q-axis are deduced from the input–output signals

Yd,q(p) = id,q(p)

Vd,q(p)
,

or in other terms

Yd,q(p) = 1 + p(Td0,q0
′ + Td0,q0

′′) + p2Td0,q0
′Td0,q0

′′

ra + p
[
ra(Td0,q0

′ + Td0
′′) + xd,q

ω0

]
+ p2

[
raTd0

′Td0
′′ + xd,q

ω0
(Td,q

′ + Td,q
′′)

]
+ p3 xd

ω0
Td,q

′Td,q
′′

(17)

The reduced operational admittances take the following forms

Hd,q(p) = b0 + b1p + b2p
2

1 + a1p + a2p2 + a3p3 (18)

The problem lies in calculating the constants a1, a2, a3, b0, b1 and b2 by using non-linear programming methods.
For this purpose we have used a program, which calculates the six parameters quoted above from the input-output
signals for each axis. The structure of the model being selected, then the form of the transfer function is known, thus
the order of the numerator and of the denominator of equation (18) are, for our case, n = 2 and m = 3.

The objective of our estimation task is to make the simulated model response matches that of the actual response
by minimizing the error between the two of themes. In order to minimize this error, a good optimisation technique is
needed. For that we used a quadratic criterion to quantify the difference between the process and the model which is
based on the Levenberg–Marquardt algorithm.

2.2. Levenberg–Marquardt’s algorithm

The Levenberg–Marquardt algorithm [11] is a general non-linear downhill minimisation algorithm. It dynamically
mixes Gauss-Newton and gradient-descent iterations. The unknown parameters are represented by the vector x, and
let the noisy measurements of x be made:

z(j) = h(j; x) + w(j), j = 1, . . . , k (19)

where h(j) is a measurement function and w(j) is a zero-mean noise with covariance N(j). Since we are describing
an iterative minimization algorithm, we shall assume that we have an estimate x̂− of x. A new estimate x̂ maximizes

χ2(x̂) =
k∑

j=1

(z(j) − h(j; x̂))TN(j)−1(z(j) − h(j; x̂)) (20)
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We form a quadratic approximation to χ2(·) around x̂−, and minimize this approximation to χ2(·) to obtain a new
estimate x̂+. In general we can write such a quadratic approximation as

χ2(x) ≈ α − 2aT(x − x̂−) + (x − x̂−)
T
A(x − x̂−)

for scalar α, vector a and matrix A.
After differentiating we obtain ∂χ2/∂x = −2a + 2A(x − x̂−), ∂2χ2/∂x2 = 2A.

At the minimum point, x̂ we have ∂χ2/∂x = 0. This means that

A(x̂+ − x̂−) = a. (21)

Thus we need to obtain a and A to compute the update. We now consider the form of χ2(·) in (20). Writing the
Jacobian of h(j, x) as H(j) = ∂h(j)/∂x, we have

∂χ2

∂x
= −2

k∑
j=1

H(j)TN(j)−1(z(j) − h(j; x)), (22)

∂2χ2

∂x2 = 2
k∑

j=1

H(j)TN(j)−1H(j) − 2
k∑

j=1

(
∂H(j)

∂x

)T

N(j)−1(z(j) − h(j; x)) ≈ 2
k∑

j=1

H(j)T N(j)−1H(j), (23)

In the last formula for ∂2χ2/∂x2, the terms involving the second derivatives of h(j, ·) have been omitted. This is
done because these terms are generally much smaller and can in practice be omitted.

Now we solve the above equations for a and Agiven the values of the function h(j) and the Jacobian H(j) evaluated
at the previous estimate x̂−. We have immediately A = ∑k

j=1H(j)TN(j)−1H(j).
We now write the innovation vectors v(j) as

v(j) = z(j) − h(j; x̂−)

Then we have

a =
k∑

j=1

H(j)TN(j)−1v(j) (24)

Combining Eqs. (21) and (24) we obtain the linear system

A(x̂+ − x̂−) = a =
k∑

j=1

H(j)TN(j)−1v(j) (25)

To be solved for the adjustment x̂+ − x̂−. the covariance of the state is P = A−1.
The update (25) may be repeated, substituting the new x̂+ as x̂−, and improving the estimate until convergence is

achieved according to some criterion. Levenberg–Marquardt modifies this updating procedure by adding a parameter
λ to the diagonal elements of the linear system matrix before inverting it to obtain the update. λ is reduced if the last
iteration gave an improved estimate, i.e. if χ2 was reduced, and increased if J increased, in which case the estimate of
x is reset to the estimate before the last iteration.

3. Standstill tests

In this section, the practical aspects of measurements are described and synchronous machine conditions for standstill
time-domain data are given [1,4,9,12].

Fig. 4 shows the experimental procedure of identification.
The alignment of the rotor can be accomplished with short-circuited field winding. A sinusoidal voltage is applied

between two stator phases. The duration of the application of the voltage should be limited to avoid serious overheating
of solid parts. The rotor is slowly rotated to find the angular positions corresponding to the maximum value of the
excitation current that gives the direct axis and zero value of the excitation winding current that corresponds to the
quadrature axis.
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Fig. 4. Experimental procedure of identification.

The machine is not saturated during standstill tests; in fact, the flux densities are below those on the more linear part
of the permeability characteristic that is commonly referred to as “unsaturated”. The determination of the quantities
referred to as the unsaturated state of the machine must be done from tests, with supply voltages (1–2%) of the nominal
values.

3.1. Experimental procedure

The two principal characteristic parameters, which relate to the listed definitions, are:

• Zd(p): the direct axis operational impedance equal to ra + pld(p), where ra is the DC armature resistance per phase.
• Zq(p): the quadrature axis operational impedance equal to ra + plq(p).

The above two quantities are the stator driving point impedances. While the above quantities are consistent with
the definitions, an alternative method of measuring theses parameters is given as follow:

G(p) = Ifd(p)

pId(p)
for Efd = 0 (26)

With a shorted field winding (Vf = 0), the d- and q-axis operational admittances are given:

Yd,q(p) = id,q(p)

vd,q(p)
for Vf = 0 (27)
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Fig. 5. d-Axis stator voltage and current for field winding shorted.

Fig. 6. d-Axis stator voltage and current for field winding open.

Fig. 7. Field voltage and current for stator winding shorted.

With a d-axis armature shorted (Vd = 0), the field winding parameters can be obtained by:

Yf(p) = if(p)

vf(p)
for Vd = 0 (28)

The waveforms recorded for the various excitations used are shown in Figs. 5–13.
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Fig. 8. d-Axis stator voltage and current for field winding shorted.

Fig. 9. d-Axis stator voltage and current for field winding open.

Fig. 10. Field voltage and current for stator winding shorted.
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Fig. 11. d-Axis stator voltage and current for field winding shorted.

Fig. 12. d-Axis stator voltage and current for field winding open.

Fig. 13. Field voltage and current for stator winding shorted.
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Table 1
Identified synchronous machine parameters.

Parameters DC-chopper PRBS voltages DC decay

Ra (p.u.) 0.149 0.149 0.149
Rf (p.u.) 4.95 4.95 4.95
Td

′ (s) 0.1856 0.1675 0.1840
Td

′′ (s) 0.0490 0.0526 –
Td0

′ (s) 1.0907 0.9189 1.1346
Td0

′′ (s) 0.4350 0.4785 –
Tq

′ (s) 0.1476 0.1284 0.1509
Tq

′′ (s) 0.0461 0.0361 –
Tq0

′ (s) 0.9022 0.7849 1.0279
Tq0

′′ (s) 0.4631 0.3829 –
Tf

′ (s) 0.2205 0.2306 0.2185
Xf (p.u.) 0.5314 0.5438 0.5287
Xd (p.u.) 2.0667 1.9980 2.0515
Xd

′ (p.u.) 0.3516 0.3459 0.3758
Xq (p.u.) 1.3378 1.5639 1.3880
Xq

′ (p.u.) 0.2089 0.1904 0.2413
Xd

′′ (p.u.) 0.0396 0.0345 –
Xq

′′ (p.u.) 0.0218 0.0198 –

3.2. DC decay test

Figs. 5 and 6 show the current and voltage waveforms during the DC decay test, for the d-axis tests (field winding
shorted and open, respectively). Fig. 7 shows field voltage and current for stator winding shorted.

3.3. Excitation by DC-chopper

In the same way, Figs. 8 and 9 show the current and voltage waveforms during the DC-chopper test, for the d-axis
tests (field winding shorted and open respectively). Fig. 10 shows field voltage and current for stator winding shorted.

3.4. Excitation by PRBS

Figs. 11 and 12 show the current and voltage waveform during the Pseudo Random Binary Sequences excitation
test, for the d-axis tests (field winding shorted and open, respectively). Fig. 13 shows field voltage and current for stator
winding shorted.

4. Identification results

The parameters identified by using the various excitations signals are gathered in Table 1.
The time-domain approach offers a method, which can yield useful models, particularly in the data, is interpreted

correctly.
The proposed model, the quality and the experimental data used to identify the model parameters and the robustness

of the estimation technique, affects the fidelity of synchronous machine models.
The results obtained with the various excitations and by using the same procedure of identification, show a good

agreement between the various identified parameters. It should be noted that the various signals used made it possible
to determine all the parameters of the equivalent circuits, except for the dc decay test which does not enable us to
determine the parameters varying very fast.

5. Model validation

The identified d–q axis models are verified by comparing their simulated d–q axis stator currents responses against the
measured standstill response, for that we present in Fig. 14, simulation results for d-axis stator current for signals among
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Fig. 14. (a) Comparison between measured and simulated d-axis current, for field winding open and short circuited (excitation by DC decay). (b)
Comparison between measured and simulated d-axis current, for field winding open and short circuited (excitation by DC-chopper voltages). (c)
Comparison between measured and simulated d-axis current, for field winding open and short circuited (excitation by PRBS voltages).

those presented previously. The measured and simulated responses to off-line excitation disturbances comparison show
that the machine linear parameters are accurately estimated to represent the machine at standstill conditions.

6. Conclusion

This paper presents a step-by-step procedure to identify the parameter values of the d–q axis synchronous machine
models using the standstill time-domain data analysis.

A three-phase salient-pole laboratory machine rated 3 kVA and 220 V is tested at standstill and its parameters
are estimated. Both the model transfer function and the equivalent circuit model parameters are identified using the
Levenberg–Marquardt algorithm.

The various excitations signals used gave very similar parameters results. Moreover, the simulation of measured
and calculated parameters shows the validity of the results obtained. It should be noted that the various signals used
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made it possible to determine all the parameters of the equivalent circuits, except for the DC decay test which does not
enable us to determine the parameters very quickly varying.

Among the advantages claimed for the time-domain approach at standstill, is that the tests are safe and relatively
inexpensive.

Furthermore, information about the quadrature axis, as well as the direct axis of the machine is obtained.
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