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We revisit the topic of the existence and azimuthal modulational stability of solitary vortices
(alias vortex solitons) in the two-dimensional (2D) cubic-quintic nonlinear Schrödinger equation.
We develop a semi-analytical approach, assuming that the vortex soliton is relatively narrow, and
thus splitting the full 2D equation into radial and azimuthal 1D equations. A variational approach
is used to predict the radial shape of the vortex soliton, using the radial equation, yielding results
very close to those obtained from numerical solutions. Previously known existence bounds for the
solitary vortices are recovered by means of this approach. The 1D azimuthal equation of motion is
used to analyze the modulational instability of the vortex solitons. The semi-analytical predictions
– in particular, that for the critical intrinsic frequency of the vortex soliton at the instability border
– are compared to systematic 2D simulations. We also compare our findings to those reported in
earlier works, which featured some discrepancies. We then perform a detailed computational study
of collisions between stable vortices with different topological charges. Borders between elastic and
destructive collisions are identified.

I. INTRODUCTION

The cubic-quintic nonlinear Schrödinger (CQNLS) equa-
tion is used to model a variety of physical settings. In
scaled units, the CQNLS equation takes the following form:

i
∂Ψ

∂t
+∇2Ψ+ |Ψ|2Ψ− |Ψ|4Ψ = 0, (1)

where Ψ(x, y, t) is the complex wave function, ∇2 is the
two-dimensional (2D) Laplacian, and the last two terms
represent, respectively, the focusing cubic and defocusing
quintic nonlinearities. The CQNLS equation emerges in
models of light propagation in diverse optical media, such
as non-Kerr crystals [20], chalcogenide glasses [34, 35], or-
ganic materials [38], colloids [2, 4], dye solutions [15], and
ferroelectrics [17]. It has also been predicted that this com-
plex nonlinearity can be synthesized by means of a cascad-
ing mechanism [12]. It should be noticed that, in the op-
tics models, evolution variable t is not time, but rather the
propagation distance.

The competition of the focusing (cubic) and defocusing
(quintic) nonlinear terms is the key feature of the CQNLS
model, which allows for the existence of stable multidimen-
sional structures which would be unstable in the focusing
cubic nonlinear Schrödinger (NLS) equation. In particu-
lar, the CQNLS equation supports solitary vortices (alias
vortex solitons) in 2D and 3D geometries. These are ring-
shaped structures which carry a rotational angular phase.
The respective integer winding number in the vortex is re-

∗
URL: http://nlds.sdsu.edu

ferred to as its topological charge (alias vorticity), m. An
example of a stable solitary vortex is depicted in Fig. 1.

FIG. 1: (Color online) An example of a vortex soliton with
charge m = 5 and frequency Ω = 0.16, found as a numerical
solution to the CQNLS equation. The height of the profiles rep-
resents the value of the wave function. The gray profile displays
the squared absolute value, while the dark (blue) and light (red)
meshes represent the real and imaginary parts, respectively.

It is well known that the cubic NLS equation supports
“dark” (delocalized) and “bright” (localized) vortices, with
the self-defocusing and focusing signs of the nonlinearity,
respectively. Dark vortices of unitary charge are stable,
while higher-order ones are unstable, splitting into unitary
eddies [13]. On the other hand, the “bright” modes (vortex
solitons) are always azimuthally unstable in the framework
of the cubic equation or its counterpart with the saturable
nonlinearity [14], which leads to the breaking of the vortex
soliton into a number of fragments depending on the charge
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[8, 24]. The addition of a periodic potential to the cubic
NLS equation may stabilize vortex solitons of a different
type, which are built (in the simplest case) as a chain of four
peaks with the phase circulation corresponding to integer
vorticitym [5, 18, 25, 30, 37]. An example of the azimuthal
breakup of an unstable vortex is displayed in Fig. 2.

FIG. 2: (Color online) An example of the evolution of the vortex
soliton with charge m = 4 in the CQNLS equation, exhibiting
breakup (left to right) due to the azimuthal modulational in-
stability. Shown is the intensity (squared absolute value of the
wave function) at consecutive moments of time, from left to
right. The numerical method and parameters are presented in
Sec. V.

In contrast to the cubic NLS, the CQNLS can support
stable solitary vortices. For the first time, this remarkable
fact was discovered “empirically” in simulations of the 2D
CQNLS equation [31], and later was investigated in detail
in a more rigorous form in Refs. [23, 36]. Moreover, three-
dimensional solitons with embedded vorticity m = 1 also
have their stability region in the 3D CQNLS equation[26]
(see also reviews [10, 24]). Stable vortex solitons may find
their potential applications in the design of all-optical data-
processing schemes. In that respect, knowing the growth
rates of unstable modes is also important, because, if the
rates are small enough, the vortices may be considered as
practically stable ones, as they will not exhibit an observ-
able instability over relevant propagation distances.
One of objectives of this paper is to revisit the topic of

the azimuthal modulational stability of solitary-vortex so-
lutions in the 2D CQNLS equation. As mentioned above,
numerous studies of this problem have already been pub-
lished [10, 23, 27, 31, 36]. The aim of the analysis was to
find a critical value (Ωst) of the intrinsic frequency of the
vortex [for its exact definition see Eqs. (2) and (3) below],
above which the vortices with a given value of the topolog-
ical charge are stable. In Ref. [31], 2D azimuthally stable
vortices with m = 1 were shown to exist. It was found that
the slope of the vortex’ profile at the pivotal point peaked
at a specific value of Ω, which was considered as the crit-
ical frequency, Ωst(m = 1) ≈ 0.145, while the vortices,
with all values of m, exist at Ω < Ω1D

max = 3/16 ≡ 0.1875
(at Ω = Ω1D

max, the radius of the vortex diverges, i.e.,
the “bright” vortex goes over into a “dark” one). The
same value, Ω1D

max is simultaneously the largest one up to
which exact soliton solutions exist in the 1D version of the
CQNLS equation [28]. In work [31], a variational approach
(VA) was developed for 2D vortex solitons, yielding results
similar to those obtained in the numerical form. Full 2D

simulations of the CQNLS equation reported in Ref. [31]
had confirmed that vortices with Ωst < Ω < Ω1D

max were
indeed stable, while those with 0 < Ω < Ωst were not.

Works [10, 23, 36] employed a more rigorous approach.
They introduced small perturbations around the 2D vor-
tex soliton and solved the resulting eigenvalue problem nu-
merically. In this way, the critical frequencies were found
as Ωst(m = 1) ≈ 0.16 and Ωst(m = 2) ≈ 0.17. Also,
in Ref. [29], using the Gagliardo-Nirenberg and Hölder in-
equalities together with Pohozaev identities, is was shown
that the eigenvalues generated by the CQNLS equation
possess an upper cutoff value.

In Ref. [27], 2D perturbations were considered too.
Through an extensive analysis, the problem was trans-
formed into finding, by means of numerical methods, ze-
ros of respective Evans functions for a set of ordinary dif-
ferential equations (ODEs). In this way, the existence of
azimuthally stable vortices of all integer values of m was
predicted (in Refs. [36] and [31], the stability regions for
m ≥ 3 were not identified, as they are extremely small).
The predictions for the critical frequencies reported in Ref.
[27], which are somewhat different from those in Refs. [36]
and [31], are shown in Table II.

The present work aims to undertake an additional study
of the stability of vortices in the CQNLS equation for two
reasons. Firstly, the previous studies demonstrated some
(relatively small, but not negligible) disagreement in the
predictions of the critical frequency. Therefore, since we
will use a different approach, our results may help in com-
paring and verifying the previous findings. Secondly, al-
though in Ref. [31] 2D simulations were performed for the
vortices, this was only done for m = 1, and longer simula-
tions later showed that some vortices which were originally
concluded to be stable turned out to be eventually unsta-
ble [36]. Therefore, stability results from additional 2D nu-
merical simulations are needed for comparison with various
predictions of the stability. In fact, our numerical results
will illustrate that the predictions of Ref. [27] are the most
accurate ones. In parallel to extensive direct simulations,
we elaborate a semi-analytical methodology, following the
lines of previous studies of the azimuthal modulational in-
stability of vortices in the cubic NLS equation [8]. The
approximation amounts to splitting the full 2D equation
into effectively one-dimensional radial and azimuthal equa-
tions. The former equation is used to compute the radial
shape of the soliton by means of a VA to find an analytic
approximation to the profile, which is then used as an ini-
tial condition to a numerical optimization routine to find
the numerically ‘exact’ profile. The closeness between the
numerically computed profiles and the VA approximation
testify to the good accuracy of the VA. The analysis of
the azimuthal equation makes it possible to predict the
threshold of the onset of the splitting instability of the
vortex soliton. Our results predicting the growth rates of
individual azimuthal modes of unstable vortices match full
simulations very well, but the predictions for the critical
frequency are less accurate, when compared to the simula-
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tions. This semi-analytical technique may be quite relevant
for applications in other 2D models.
Another objective of the work is to study, by means of

systematic simulations, collisions between stable vortices.
Except for few examples reported in Ref. [31], this problem
was not studied before.
The paper is organized as follows. In Sec. 2 we derive an

approximate analytical description of the vortex profile by
first finding an analytical asymptotic approximation to it,
which is then employed as the ansatz on which the VA is
based. In Sec. 3 we use the variational ansatz as the initial
guess, to generate numerically exact vortex profiles by dint
of a nonlinear optimization routine. We then compare the
numerical profiles with the variational ansatz to show its
accuracy. In Sec. 4 we derive an approximate 1D equation
for the dynamics along the azimuthal direction. A linear
stability analysis is subsequently performed to find stabil-
ity criteria and growth rates of unstable modes within the
framework of the azimuthal equation. In Sec. 5 we present
full 2D simulations of the vortices, and the respective re-
sults for their stability. These results are compared to our
predictions, as well as to the predictions produced by pre-
vious works. In Sec. 6, we use direct simulations to explore
collisions between stable vortices in detail. In particular,
these studies allow us to identify a border between quasi-
elastic and destructive collisions. Finally, in Sec. 7, we
summarize our findings and formulate concluding remarks.

II. APPROXIMATE ANALYTICAL PROFILES OF

STEADY-STATE VORTICES

A steady-state vortex solution to Eq. (1) is looked for as

Ψ(r, θ, t) = f(r)A(θ, t), (2)

where real function f(r) is a stationary radial profile with
azimuthal dependence given by

A(θ, t) = ei(mθ+Ωt), (3)

with topological charge m and frequency Ω. Analytical
solutions being not available for the profile f(r), we begin
the study by finding an approximate analytic expression for
f(r) and identifying its existence bounds. As shown below
in Sec. III, the predicted profile is very close to the true
solution, therefore it can be used to predict the existence
and stability regions of the vortex solitons. The developed
analytical method is quite general and may be applied to
other physically relevant equations.

A. The Asymptotic Vortex Profile

Inserting expression (2) into the underlying equation (1)
yields the following ODE for the radial profile of the vortex
with charge m:

1

r

d

dr

(

r
df

dr

)

−
(

Ω +
m2

r2

)

f(r) + f3(r) − f5(r) = 0. (4)

If we assume that the vortex takes the form of a relatively
narrow ring with a large radius, then, in the region of in-
terest, variable r may be approximately replaced by a con-
stant, rc ≫ 1, which we take to be the value of r at a point
where the radial profile attains its maximum. Since we as-
sume rc to be large, in the lowest approximation we neglect
the 1/rc term in the Laplacian. An obvious consequence of
dropping this term is that the approximate profiles which
we are going to derive will be less accurate for smaller val-
ues of rc, see Sec. III.
Under the large-radius assumption, Eq. (4) becomes

d2f

dr2
− Ω∗ f(r) + f3(r) − f5(r) = 0, (5)

Ω∗ ≡ Ω+m2/r2c . (6)

For a relatively narrow ring, one can treat Eq. (5) as if
r ∈ (−∞,+∞), in which case the equation has a well-
known 1D analytical solution for the soliton [9, 28]:

f2
asy(r) =

4Ω∗

1 +
√

1− (16/3)Ω∗ cosh
(

2
√
Ω∗ (r − rc)

) . (7)

As mentioned above, this solution exists for 0 < Ω∗ <
Ω1D

max ≡ 3/16. At point Ω∗ = 3/16, the solution degener-

ates into a constant, f(r) = f0 ≡
√

3/4. The family of
solutions (7) parameterized by Ω∗ is depicted in Fig. 3.
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FIG. 3: (Color online) A set of solutions (7) for Ω∗ =
0.05, 0.1, 0.15, 0.18, 0.1874, 0.1874999, 0.1875 are shown from
bottom to top. As Ω∗ increases, the profile flattens out, and
it degenerates into a constant at Ω = Ω∗.

To obtain a closed-form analytical approximation, it is
now necessary to find an expression for the radius of the
profile, rc, for given frequency Ω. To this end, we will use
the VA, and will then compare the results with numerically
found profiles.
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B. The Variational Approach

To apply the VA, we use the Lagrangian density corre-
sponding to the CQNLS equation:

L =
i

2
(ΨΨ∗

t −Ψ∗Ψt) + |Ψr|2 + r−2|Ψθ|2 −
1

2
|Ψ|4 + 1

3
|Ψ|6,
(8)

where the subscripts denote partial derivatives. Inserting
here expression (2), to be used as a factorized ansatz, yields

L =

(

Ω +
m2

r2

)

f2(r) +

(

df

dr

)2

− 1

2
f4(r) +

1

3
f6(r). (9)

The integration of density (9) gives rise to the full La-
grangian:

L ≡ 2π

∫

∞

0

L(r)dr = 2π

(

ΩC1 + C2 +m2 C3 −
1

2
C4 +

1

3
C5

)

,

(10)
where

C1 ≡
∫

∞

0

f2(r)r dr, C2 ≡
∫

∞

0

(

df

dr

)2

r dr,

C3 ≡
∫

∞

0

f2(r)
dr

r
, C4 ≡

∫

∞

0

f4(r)r dr, (11)

C5 ≡
∫

∞

0

f6(r)r dr.

Next, we use the asymptotic approximate profile (7) as
an ansatz for radial profile, treating Ω∗ and rc in Eq. (7)
as variational parameters. Inserting expression (7) into the
integral terms in the Lagrangian, and again making use of
the large-radius approximation yields

C1 ≈ 2
√
3T rc, C2 ≈ rc

[

3

8

√
Ω∗ −

√
3T

(

3

16
− Ω∗

)]

,

C3 ≈ 2
√
3T

rc
, C4 ≈ −3 rc

[

√
Ω∗ −

√
3

2
T

]

, (12)

C5 ≈ −rc

[

27

8

√
Ω∗ − 3

√
3T

(

9

16
− Ω∗

)]

,

where

T ≡ arctanh

[

√

3

16Ω∗
−
√

3

16Ω∗
− 1

]

. (13)

The respective static Euler-Lagrange equations, ∂L/∂rc =
0 and ∂L/∂Ω∗ = 0, yield, respectively, equation

rc = m

(

Ω− 3

16
+

√
3Ω∗

8T

)

−1/2

, (14)

and the other one which is equivalent to Eq. (6). Eliminat-
ing rc from these equations, one concludes that Ω∗ is, for
a chosen value of Ω, a solution to the following equation,

Ω =
Ω∗

2
+

3

32
−

√
3Ω∗

16T
≡ G(Ω∗). (15)

This yields the final form of the vortex radial profile, as
predicted by the VA:

f2
va(r) =

4Ω∗

1 +
√

1− (16/3)Ω∗ cosh
(

2
√
Ω∗ (r − rvac )

) ,

(16)

rvac ≡ m
√

Ω∗ −G(Ω∗)
. (17)

Finally, the transcendental equation (15), together with
Eq. (13), was solved numerically by means of a simple bi-
section method with a tolerance of 10−15.
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FIG. 4: (Color online) Top: The vortex’ radius, as predicted
by the variational approximation, rva

c
, versus Ω = G(Ω∗), and

Ω∗, for m = 5. Bottom: The values of Ω = G(Ω∗) vs. Ω∗, see
Eq. (6). G(Ω∗) was evaluated over interval Ω∗

∈ [0.01, 0.1875]
with step ∆Ω∗ = 0.00001.

In Fig. 4 we show rvac versus Ω and Ω∗ for m = 5, along
with relationship (15). We see that, with the increase of
Ω, the radius of the vortex starts from very large values
(infinite at Ω = 0), decreases until it reaches a minimum
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value, and then increases rapidly (it becomes infinite once
again at Ω = Ω2D

max). We also see that the relationship
between Ω and Ω∗ does not depend on charge m, and that
Ω → 3/16 as Ω∗ → 0.1875 (the apparent gap near the right
edge of the plot is due to the sensitivity of the relationship,
which we discuss below).

C. Existence Bounds for the Two-Dimensional

Vortex Profiles

From numerical investigations performed in Refs. [31]
and [11], the existence border for the two-dimensional
CQNLS equation vortex solution was found to be
(

Ω2D
max

)

num
≈ 0.180, while, as said above, the analyti-

cal limit, which is identical for 1D and 2D equations, is
Ω2D

max = Ω1D
max = 3/16 = 0.1875. The discrepancy may be

explained by the sensitivity of relationship (15) between
Ω and Ω∗, as produced by the variational approximation.
From Eqs. (15) and (13) we see that, as Ω∗ → 3/16,
T → ∞, and so Ω = G(Ω∗) → Ω∗/2 + 3/32 = 3/16, in
accordance with the exact result. However, as seen in the
right panel of Fig. 4, the relationship between Ω and Ω∗

seems to be extremely sensitive near this limit (see the in-
set in the right panel of Fig. 4). This sensitivity can also be
observed in Table I, where some values of Ω∗ and the corre-
sponding G(Ω∗) = Ω are given. It is clearly seen that one
quickly approaches the limit of machine double precision
for Ω∗ as Ω → 0.1875.

Ω∗ Ω = G(Ω∗)

0.1874 0.1664. . .

0.187499 0.1736. . .

0.187499999 0.1783. . .

0.187499999999 0.1806. . .

0.1874999999999999 0.1823. . .

TABLE I: The evaluation of Ω = G(Ω∗) near Ω2D
max = 0.1875

for double precision arithmetic. Four significant digits in G(Ω∗)
are given. The extreme sensitivity of relationship Ω = G(Ω∗)
is observed. To obtain more precise Ω∗ values for Ω closer to
Ω2D
max = 0.1875, the use of higher-precision arithmetic is re-

quired (results not shown here).

This effect can also be understood from the logarithmic
divergence of T (Ω∗) close to the limit point, see Eq. (13).
Therefore, it is not surprising then that numerical esti-
mates of Ω2D

max, obtained by means of a shooting method
to look for profiles at different vales of Ω, gave lower es-
timates of the existence bound. In Sec. III, we confirm,
using accurate numerical methods to find vortex profiles
for Ω > 0.180, that the actual existence bound Ω2D

max is
greater than the numerical estimates of Refs. [31] and [11].
The analytical approximation (16) of the vortex profile

is used in the following sections as an input to a numeri-
cal optimization routine which solves the ODE (4) to find

numerically exact radial profiles.

III. NUMERICALLY EXACT STEADY-STATE

VORTEX PROFILES AND COMPARISON TO THE

VARIATIONAL APPROXIMATION

To find numerical solutions to Eq. (4), we used a modi-
fied Gauss-Newton optimization routine, with a tolerance
10−7 [8]. In Fig. 5, some numerically found radial pro-
files are displayed for charges m = 1, m = 2, and m = 3
and Ω > 0.18, including Ω as close to Ω2D

max = 0.187 5 as
Ω = 0.186. To our knowledge, the profiles above Ω = 0.181
have not been shown in any previous study. It is seen that
the profiles flatten out as Ω grows, pushing the profile far-
ther from r = 0. At the same time, the ring of the vortex
becomes wider without a change in its height. It is worth
mentioning that, due to the high sensitivity of the numer-
ics mentioned in the previous sections, computing profiles
past Ω = 0.18 is a daunting task requiring high-precision
arithmetic. Implementing high-precision arithmetics in a
Gauss-Newton optimization routine (or any fixed-point it-
eration method) would be quite involved and very time
consuming. Nonetheless, we have found that, using high-
precision arithmetics (up to 300 decimal places for frequen-
cies as close to 0.187 5 as 0.187) in the calculation of Ω∗

in the variational equation (15) yields approximate analyt-
ical solutions that the Gauss-Newton subroutine is able to
process into numerically accurate solutions for values of Ω
very close to Ω2D

max = 0.1875, as shown in Fig. 5. The re-
sults clearly demonstrate the usefulness of the VA: without
using this approximation for generating the initial profiles
to be fed into the numerical solver, a prohibitively com-
plex high-precision fixed-point algorithm would be needed
to obtain meaningful profiles past Ω = 0.18.
The accuracy of the variational ansatz per se can be

tested by comparing it to the numerical solutions computed
by means of the Gauss-Newton routine. In Fig. 6 we com-
pare the VA prediction for the vortex-ring’s radius, rc, to
the numerically found values for m = 5. We observe that
the radii provided by both methods are virtually identical,
allowing one to use the VA-predicted radius in applications,
that may be useful in experimental situations.
To get an even better idea of how close the variational

approach is to the Gauss-Newton profile overall, in Fig. 7
we compare the relative sum of squared deviations of the
variational profiles from their the numerically found coun-
terparts, for different values of m and different values of Ω.
We also plot a series of profiles produced by the VA and by
the Gauss-Newton method for Ω = 0.15. We observe that,
as m increases, the mismatch between the variational and
numerical profiles decreases. This is understandable, as we
have neglected the 1/rc term in the Laplacian, while for-
mulating the variational ansatz. Therefore, since vortices
with smaller m have smaller inner radii, the discrepancy
between the variational ansatz and the numerically exact
solution are expected for lower values of m. The total dis-
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FIG. 5: Steady-state vortex radial profiles computed by means of the Gauss-Newton routine for m = 1 (top left), m = 2 (top
right), and m = 3 (the bottom row of panels) for the indicated values of Ω. In all cases, the variational ansatz was used as the
input (not shown here) with the value of Ω∗ computed using high-precision arithmetic (see text for details). The radial direction
was discretized with a grid spacing of ∆r = 0.5. The stopping tolerance of 10−7 was used in the Gauss-Newton routine. As Ω
approaches the limit value, 3/16, the profiles flatten out due to the increase of the vortex’ radius.

crepancy is observed to be quite low overall, showing that
the variational profile provides for a very accurate rendi-
tion of the true solution, especially for larger values of m.
Since our VA provides an accurate radial profile of the vor-
tex solitons, we can use it to derive fully analytic azimuthal
modulational stability predictions, which is done below.

IV. THE AZIMUTHAL MODULATIONAL

STABILITY: ANALYTICAL RESULTS

With the profiles of the steady-state vortices available,
we proceed to the study of their azimuthal modulational
stability. To this end, we apply the methodology utilized
in previous works, dealing with circular gap solitons in the
model of the circular Bragg grating [7], and in the cubic
NLS equation [8]: we will derive an azimuthal equation
of motion by assuming a frozen radial profile, and then
perform a perturbation analysis to analyze the stability of
azimuthal perturbation modes.

In Ref. [8], numerically computed eigenmodes of pertur-
bations around the solitary vortices featured a slight cou-
pling in the radial and azimuthal directions, hence assum-
ing the compete separability of the radial and azimuthal
directions for the evolution of the perturbations may lead
to discrepancies between the predictions for the stability
and numerical results. Nonetheless, the coupling between
the radial and azimuthal directions is attenuated with the
increase of m, hence, the predictions made under the as-
sumption of the separability should be more accurate for
higher values of m. The trend to the improvement in the
accuracy of the analytical approximation with the increase
of m was observed in the numerical results presented in
Sec. III.

A. The Azimuthal Equation of Motion

To derive the azimuthal equation of motion, we first in-
sert the separable ansatz (2) into the Lagrangian density
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FIG. 6: The vortex-ring radius rc versus Ω as predicted by the
variational approximation (rva

c
, white circles), and produced by

the Gauss-Newton profile (rgnc , black squares) for m = 5. The
numerical radius was computed as the radial center of mass of
the vortex ring.

(8) to obtain

L =
i

2
f2(r) (AA∗

t −A∗At) +

(

df

dr

)2

|A|2 + (18)

1

r2
f2(r) |Aθ|2 −

1

2
f4(r) |A|4 + 1

3
f6(r) |A|6.

Using our steady-state radial profiles, we can perform the
integration of the Lagrangian density over dr, thus arriving
at an effectively one-dimensional (in the direction of θ)
Lagrangian that may be used to derive the equation of
motion for A(θ, t):

L1D =

∫ 2π

0

L1D dθ, (19)

L1D ≡ i

2
C1(AA

∗

t −A∗At) + C2|A|2 (20)

+C3|Aθ|2 −
s1
2
C4|A|4 −

s2
3
C5|A|6,

and Cj , j = 1, ..., 5, are the radial integrals defined as per
Eq. (11). Evaluating the variational derivative of the action
functional [22], and applying a linear transformation,

A → A exp(−iC2t/C1), dt → C3t/C1, (21)

yields the following evolution equation for A(θ, t):

iAt = −Aθθ − (C4/C3) |A|2A+ (C5/C3) |A|4A. (22)

This equation provides a description of how the radially-
frozen, azimuthally time-dependent solution will evolve in
the CQNLS model.
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FIG. 7: Top: The sum of squared errors between the varia-
tionally predicted and numerically found radial profiles of the
vortex soliton. Bottom: Examples of the variational (dashed)
and numerical (solid) profiles for Ω = 0.15. Shown from left
to right are the profiles for m = 1, ..., 5. It is seen that the
error decreases as m increases. The series of error values for
Ω = 0.05 and 0.1 terminate at m = 8 because at that point the
variational profiles are already within the prescribed tolerance
of 10−6 of the Gauss-Newton routine.

B. The Stability Analysis

To study the azimuthal modulational stability of vortex-
soliton solutions to the CQNLS equation, we performed a
perturbation analysis in the framework of the azimuthal
equation of motion (22), with the objective to compute
the growth rates of small perturbations. We begin with an
azimuthal “plane-wave” solution perturbed by a complex
time-dependent perturbation:

A(θ, t) = [1 + u(θ, t) + iv(θ, t)] ei(mθ+Ω
′

t), (23)

with |u|, |v| ≪ 1. Inserting this into Eq. (22), performing
the linearization with respect to the perturbations, and
separating the result into real and imaginary parts, we ob-
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tain a system of coupled equations (a time shift was made
here, t → t+ θ/ (2m)):

ut = −vθθ,

vt = uθθ +

(

2C4 − 4C5

C3

)

u.
(24)

In order to study the azimuthal modulational stability of
the solitary vortices, we expand u and v into Fourier series
over azimuthal harmonics with integer wavenumbers K:

û(K, t) =

∫ 2π

0

u(θ, t) eiKθ dθ,

v̂(K, t) =

∫ 2π

0

v(θ, t) eiKθ dθ. (25)

Applying these transforms to Eq. (24) yields two coupled
equations for the amplitudes of u and v of each mode. In
a matrix form, the equations are

d

dt







û

v̂






=







0 K2

(

2C4 − 4C5

C3
−K2

)

0













û

v̂






. (26)

The growth rates for each azimuthal wavenumber K are
simply eigenvalues of Eq. (26). Taking into account the
underlying rescaling (21), they are:

λ1,2 = ±C3

C1

√

K2 (K2
crit −K2), (27)

where Kcrit is the critical value of K, above which all the
modes are stable:

Kcrit ≡
√

2 (C4 − 2C5)

C3
. (28)

For the modulationally unstable vortices, it is useful to
know the maximum growth rate and the mode that exhibits
it. This is because, in an experiment, even an unstable
vortex may be practically “stable enough” if the maximum
perturbation growth rate is small enough. This informa-
tion can be extracted from expression (27) by equating
its derivative to zero and solving for K, which reveals the
fastest growing perturbation mode (and subsequently, the
prediction of the number of fragments that the unstable
vortices will break up into):

Kmax =

√

C4 − 2C5

C3
=

1√
2
Kcrit. (29)

We can then insert this value into Eq. (28), which yields
the maximum growth rate,

λmax =
C4 − 2C5

C1
=

C3

2C1
K2

crit. (30)

In fact, because K must be integer, the actual fastest grow-
ing eigenmode may correspond to the integer K closest to
value (29). Accordingly, the actual largest growth rate may
be somewhat smaller than the one given by Eq. (30).
For the vortex to be azimuthally stable against all modes,

one needs either Kcrit < 1 (then, there is no integer value
K < Kcrit) or Kcrit being purely imaginary. According to
Eq. (28), these two stability criteria amount to the follow-
ing inequalities:

imaginary Kcrit : C4 − 2C5 < 0; (31)

|Kcrit| < 1 : C4 − 2C5 − C3/2 < 0. (32)

Since C3 is positive, the former condition is stricter than
the latter one. Although the latter condition is sufficient
for the azimuthal stability, we also keep the former one
(according to the above derivation, it is relevant to the in-
finite line) because it leads to an estimation for the critical
frequency which is independent of charge m (see below).
For our predictions, we compute the Ci constants using

numerical integrals of the numerically exact radial profiles.
However, since the variational analytic profiles are so close
to the numerically exact profiles, one can use expressions
(12) to find approximate analytic values of Eqs. (31) and
(32), which then yield critical values Ωst(m) of Ω, above
which all the vortex solitons are azimuthally stable for
charge m. These values can then be compared to those
computed by the numerically exact profiles.

C. Analytical Stability Predictions Using the

Variational Profile

As we showed in Sec. III, the variational ansatz yields
a useful approximation to the true radial profiles. There-
fore, the VA can be employed to calculate the constants
in Eq. (12), and thereby derive analytical predictions for
the azimuthal modulational stability. In Sec. IVB it was
demonstrated that, for studying the stability of the vor-
tices, only the values of Kcrit and C3/C1 are required,

Kva
crit = m

√

6Ω∗ − (15/8) + 5
√
3Ω∗/ (4T )

Ω∗ −G(Ω∗)
, (33)

(

C3

C1

)

va

=
Ω∗ −G(Ω∗)

m2
, (34)

since the other coefficients can be expressed in terms of
these two (here, as before, Ω = G(Ω∗)).
The VA can predict the critical value of Ω∗ above which

the vortices are modulationally stable. Inserting the con-
stants defined in Eq. (12) into the stability criteria (31)
and (32), we arrive at the following expressions which de-
termine the critical frequency:

Kcrit = 0 : 6Ω∗ − 15

8
+

5
√
3Ω∗

4T
= 0; (35)
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FIG. 8: (Color online) Top: The critical value of frequency
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st (m) versus topological charge m, according to the prediction

of the variational approach. Bottom: The rate of the conver-
gence between Ωva

st (m) and Ωva
st at increasing m. The plotted

curve, const × m−2, which starts from our m = 1 computed
value, demonstrates that the convergence rate is proportional
to 1/m2.

Kcrit = 1 :

√

6Ω∗ − 15/8 + 5
√
3Ω∗/ (4T )

Ω∗ −G(Ω∗)
− 1

m
= 0, (36)

where T is defined as per Eq. (13). We see that, atm → ∞,
these two criteria tend to coincide. At finite m, Eqs. (35)
and (36) give different critical values of Ω∗, and hence of Ω
too —one which depends on charge m, and the other one,
independent of m, which represents an upper bound on
Kcrit for all values of m. We denote the charge-dependent
critical value as Ωst(m), and the charge-independent one
as Ωst.
Solving Eq. (35) for Ω∗ by means of a root finder and

inserting the result into Eq. (15) yields

Ωva
st = 0.144320424. (37)

Since this value is smaller than Ω2D
max = 3/16, this result

predicts that azimuthally stable vortices exist for all val-

ues of m, at Ω > Ωva
st . We also solved Eq. (36) for Ω at

various values of m. The results are displayed in Fig. 8.
It is seen that the critical frequency Ωva

st (m) increases with
the increase of m and eventually converges to Ωva

st . Thus,
the stability window in Ω is larger for lower charges. In
Ref. [27], it was also concluded that azimuthally stable vor-
tices exist for all m, and that lower charges indeed have a
larger stability window. However, according to Ref. [27],
Ωst = Ω2D

max, i.e., the stability window shrinks towards 0 as
m → ∞. The estimate obtained in that work shows that
the window shrinks as 1/m2. This conclusion precludes ex-
perimental creation of higher-order stable vortices, as the
respective stability interval would be too small, and the
radius of the vortex too large.
According to the VA predictions, Ωst does increase with

m (and, as shown in Fig. 8, the difference Ωst − Ωst(m)
decays proportionally to 1/m2, which resembles the pre-
diction of Ref. [27]). On the other hand, since the varia-
tionally predicted value of Ωst is smaller than 3/16, there
remains a stability window at all m, which does not vanish
at m → ∞.
As shown in Table II, the variational predictions are very

close to those using the numerically-exact profiles. We then
note that the numerical results reported in Ref. [27] are
more accurate than our predictions, the stability window
indeed shrinking to zero at high values of m.

V. AZIMUTHAL MODULATIONAL STABILITY:

NUMERICAL RESULTS

In this section we report the numerical predictions
and full simulation results for the azimuthal modulational
(in)stability of the vortices. For the 2D simulations, we
used a finite-difference scheme with a central difference in
space and fourth-order Runge-Kutta in time [16]. We used
both polar-coordinate and Cartesian grids. The polar grid
makes computing the growth of individual perturbation
modes easier, therefore we used it to test our predictions
for azimuthally unstable vortices. However, the polar grid
forces one to use smaller time steps in the finite-difference
scheme than is needed for the equivalent Cartesian grid.
Therefore, for testing the critical frequency Ωst(m), which
requires running multiple long-time simulations, we use the
Cartesian grid. We used second-order differencing for the
polar-coordinate simulations, and (due to the long simula-
tion time needed) a fourth-order differencing for the Carte-
sian simulations.

A. Unstable Vortices

In Fig. 9 we show the results for the (in)stability of vor-
tices with charges m = 1, ..., 5 and Ω ∈ [0.03, 0.14]. In
general, we see a good agreement between the numerically
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FIG. 9: (Color online) Numerical predictions and numerical results for the growth rates of the fastest growing unstable perturbation
mode around vortex solitons with charges m = 1, ..., 5 (left to right, top to bottom). In the interval of Ω ∈ [0.03, 0.14], with the
step of ∆Ω = 0.01, the growth-rate predictions (shown by circles) were obtained by computing the integrals in the underlying
Lagrangian, using the numerically exact profiles obtained through the Gauss-Newton optimization. We then ran full simulations of
the vortex and recorded the average instability growth rate (shown by squares). The radial, angular, and temporal variables were
discretized with steps ∆r = 1, ∆θ = (2π)/(20max[m,Kmax, 2]), and ∆t = 0.001, respectively. Overall, the predictions match the
numerical results very well.

measured growth rates and the predictions form > 2; how-
ever, for values of Ω which get closer to 3/16, the accuracy
of the predictions becomes low in each case, implying that
our predictions for Ωst(m) are not precise. To further test
this, we ran long-time simulations of randomly perturbed

vortices.

For m = 1, 2, 3, we were easily able to identify the tran-
sition from unstable to stable vortices, but for m > 3 we
found it very difficult to detect a stable solution, because of
a snake-like instability which breaks the vortex into asym-
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FIG. 10: (Color online) Examples of the evolution of a vortex
with charge m = 4 and Ω = 0.18, perturbed by a random
perturbation of size ǫ = 0.05. Pictured is the squared absolute
value of the wave function. We have set ∆r = 2, rmax = 120
and ∆t = 0.6. The initial vortex shape becomes deformed and
then breaks up irregularly.

metric irregular fragments. An example of this is shown
in Fig. 10. Obviously, this snake-like instability is not cap-
tured by our study of the azimuthal modulational instabil-
ity. It is very plausible that it accounts for the discrepancy
between the analytic and numerical growth rates observed
in Fig. 9.

B. Stable Vortices

To identify the values of Ωst(m) corresponding to the sta-
bility border, we simulated the evolution of vortices with
Ω taken near the predicted values of Ωst(m), perturbed
by a small uniformly distributed random noise in the az-
imuthal direction. Our aim was to find a value Ω1 of Ω that
results in an unstable vortex soliton (and to observe the ac-
tual breakup), and then show that the vortex solution for
Ω2 = Ω1 + 0.001 is stable, by simulating its evolution for
an extremely long time, compared to the time necessary to
reveal the full breakup in the former case. We did this for
various charges m. In Fig. 11, we show the initial and final
states produced by this analysis for m = 1.
Since the snaking effect hinders our ability to simulate

the evolution of the vortices for extended time periods at
m > 3, we were not able to make precise stability predic-
tions in this case. However, as this effect is dynamically
distinct from the azimuthal breakup, we can still give an
approximate estimate of the critical frequency for higher
charges.
In Table II we display the predictions of Ωst(m) and

their numerically found counterparts for m = 1, ..., 5. The
column labeled “semi-numerical” are the predictions made
using the numerically exact radial profiles, while the col-
umn labeled “VA” gives the predictions made using the
variationally derived profiles. For comparison, in the same
Table we also display findings reported in earlier works.
We see that most of the predictions for m = 1 are close to
the numerical result. For m > 1, the results reported in
Ref. [27] are most accurate ones.
It is observed that the semi-numerical and variational re-

sults are very close, the latter ones being, in fact, slightly
more accurate in comparison with the numerical findings.

FIG. 11: (Color online) An example of the numerical identi-
fication of the stability border, Ωst(m), for m = 1. In this
case, the evolution of the vortex with Ω1 = 0.146 (top left) was
simulated with a random-noise perturbation in the azimuthal
direction, until it broke up into fragments due to the azimuthal
instability (top right). We then carried out long simulations
of the evolution of a vortex with Ω2 = Ω1 + 0.001 = 0.147
(bottom left), to make it sure that the vortex is stable —in
this example, up to t = 50, 000 (bottom right). The drift of
the position of the vortical pivot is due to the momentum im-
parted to it by the random perturbations. We thus conclude
that Ωst(m = 1) ∈ [0.146, 0.147]. In this example, we set the
grid spacing to be ∆x = ∆y = 1, time step to ∆t = 0.2, and
the perturbation amplitude to ǫ = 0.05.

m NUM semi-NUM VA Ref. [27] Ref. [23] Ref. [31]

1 0.147 0.1399 0.1403 0.1487 0.16 0.145

2 0.162 0.1433 0.1434 0.1619 0.17 NC

3 0.171 0.1437 0.1439 0.1700 NC NC

4 (0.178) 0.1437 0.1441 0.1769 NC NC

5 (0.18) 0.1437 0.1442 0.1806 NC NC

TABLE II: Comparison of the predictions and numerical results
for the stability border, Ωst(m). The columns labeled “semi-
NUM” and “VA” represent the predictions utilizing the numer-
ically exact and the variationally derived radial profiles respec-
tively. The column labeled “NUM” are the results obtained
from the full 2D simulations. Numerical findings in parenthe-
ses are those that were hard to fix due to the emergence of the
snake-like instability (not comprised by our stability analysis),
and may therefore be less accurate than the others. We also
show predictions reported in earlier works. When no value has
been computed or reported, we label the entry as “NC”. The
predictions made in Ref. [27] are the most accurate ones, in
comparison to our simulations.

This implies that the discrepancies in the variationally de-
rived predictions are not due to any inherent deficiency in
the VA. Rather, the discrepancies of both sets of predic-
tions are likely due to the approximation of the vortex soli-
ton as a separable entity composed of radial and azimuthal
parts (as discussed in Sec. IV).
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FIG. 12: (Color online) Collisions between stable vortices, all with frequency Ω = 0.17. First column: an elastic collision between
a moving vortex of charge m = 2, with a slow initial velocity of 0.03, and a stationary vortex of charge m = 1. The vortices have
no relative phase difference between them, which corresponds to their colliding sides being out-of-phase, hence the interaction is
repulsive. Accordingly, the vortices undergo an elastic collision. Second column: the same as in the first column, but with a π phase
difference between the colliding vortices, which implies that their colliding sides are in phase. This, in turn, gives rise to a mutual
attraction, which causes the vortices to merge and eventually break up into fragments. Third column: same as in the first column,
but for a larger collisional velocity of 0.3. The mutual repulsion between the in-phase vortices is not enough to counterbalance
the high collisional momentum, and the vortices merge and break up into fragments. Fourth column: a charge m = 1 vortex with
velocity 0.03 undergoing an elastic collision with an m = 2 vortex, in the case of a π phase difference between them, which in
turn collides with another π-phase-shifted vortex of charge m = 1. This phase arrangement corresponds to vortices colliding with
adjacent sides that are mutually π-out-of-phase, and thus repel each other. These results attest to the robustness of the vortices.

VI. COLLISIONS AND SCATTERING OF

STABLE VORTICES

In this section we study collisions and scattering of stable
vortices in the CQNLS. In Ref. [31], such collisions of vor-
tices of unit charge were considered in a brief form. It was
shown that both elastic and destructive collisions could be
observed depending on the phase difference, ∆φ, between
the colliding vortices, as well as on their relative velocity.
Here we expand this study in three directions: i) we in-
clude vortices of charge m = 2; ii) we consider the critical
velocity for elastic collisions as a function of ∆φ; iii) we
study the scattering of vortices colliding at various values
of impact parameters, by measuring the scattering angles
and speeds.
Summarizing results of numerous simulations, we have

found that, at sufficiently small collisional velocities[39],
the elastic or destructive character of the collision is solely
determined by the phase difference at the point of contact.
This fact seems to be independent of the charge of the vor-
tices involved in the collision. In Fig. 12 we display four
different cases that illustrate the main features of head-on
collisions between vortices with different charges. In the
first two columns of Fig. 12 we show the collision of vor-
tices carrying charges m = 2 and m = 1, with ∆φ = 0
and ∆φ = π, respectively. It can be seen that, since the
vortex with m = 2 has opposite phase on the collision side,
with respect to the vortex with m = 1, the interaction is
repulsive since it locally emulates the interaction of two

out-of-phase fundamental bright solitons [1, 21]. There-
fore, if the velocity is small enough, the mutual repulsion
determines the result of the collision. On the other hand,
when the vortex with charge m = 2 is phase-shifted by
π (or similarly, if the charge m = 2 vortex were to be
placed on the opposite side of the charge m = 1 vortex),
the adjacent sides of the colliding vortices are in phase.
Therefore, the interaction is similar to that between two
in-phase bright solitons, which is attractive [1, 21]. This
results in the merger of the two vortices and their eventual
breakup into fragments.
Clearly, even when the repulsive force acts between vor-

tices, but the collision velocity is sufficiently large, the vor-
tices have enough momentum for causing them to merge
and eventually break up as well. This case is depicted in
the third column of Fig. 12.

Slowly moving vortices with opposite phases at the point
of contact are quite robust against the collisions, as illus-
trated in the fourth column of Fig. 12. In this panel we
depict a “billiard”-type example, in which one vortex col-
lides with another, which in turn collides with a third one.
All collisions in this case are elastic because the relative
phases have been chosen such that the colliding sides are
always out-of-phase, providing for the necessary repulsion.
It is worthy to note that, although these collisions at low
velocities seem to be elastic, the stable vortices clearly have
internal breathing modes, that are excited during the col-
lisions. Therefore, a small fraction of the collisional energy
is transferred to these internal modes, preventing the colli-
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FIG. 13: (Color online) Critical velocity vcrit for elastic collisions between two vortices as a function of their phase difference ∆φ.
The vortex charges of the colliding vortices correspond to: (a) (m1, m2) = (1, 1), (b) (m1,m2) = (1, 2), and (c) (m1, m2) = (2, 2).
All vortices are taken with intrinsic frequency Ω = 0.17.
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FIG. 14: (Color online) Scattering between an incoming vortex with charge m1 and velocity vini1 , and a quiescent vortex of charge
m2. The trajectory for the incoming (stationary) vortex is depicted by small circles (squares). All panels depict different trajectories
for different values of impact parameter d, as indicated [d = 5, 15, 25, ..., 65 from top to bottom (bottom to top) for the incoming
(stationary) vortex]. Panels (a) and (b) correspond, respectively, to two unitary-charge vortices (m1 = m2 = 1), with ∆φ = 0
and collision velocities vini1 = 0.03 and vini1 = 0.06. Panels (c) and (d) correspond, respectively, to a m1 = 1 vortex scattered by a
m2 = 2 one and vice versa, for the collision velocity vini1 = 0.03 and ∆φ = π/2. Panel (e) corresponds to a m1 = 2 vortex scattered
by a m2 = 2 one, for vini1 = 0.02 and ∆φ = π/2. All vortices have intrinsic frequency Ω = 0.17.

sions from being completely elastic. A more in-depth anal-
ysis of the excitation of these internal modes and of the
degree of the inelasticity of the collisions fall outside of the
scope of the present work. Nonetheless, in order to quantify
the degree of the elasticity of the collisions, we have mea-
sured the critical velocity vcrit for the vortices to elastically
bounce off each other: at v < vcrit the vortices bounce elas-
tically, while at v > vcrit they merge and, most often, get
destroyed. The crucial parameter that controls vcrit, for a
particular combination of the charges of colliding vortices,
is their phase difference ∆φ. Different values of ∆φ allow to
have different relative phases at the colliding sides (as dis-

cussed above), and thus (partially) repel or attract. This
effect is illustrated by Fig. 13, where we depict vcrit versus
∆φ for vortex pairs with charges (a) (m1,m2) = (1, 1), (b)
(m1,m2) = (1, 2), and (c) (m1,m2) = (2, 2). From panel
(a) it is clear that, for chargesm1 = m2 = 1, the most “sta-
ble” (in terms of observing elastic collisions at larger colli-
sional velocities) collision occurs around ∆φ = 0. This cor-
responds exactly to the most stable case mentioned above,
when the collisional sides are out of phase. In panel (b) we
depict vcrit for (m1,m2) = (1, 2). It is seen in this panel
that vcrit is π-periodic, as a function of ∆φ, due to the
angular symmetry of the m2 = 2 vortex. For this vortex-
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FIG. 15: (Color online) Scattering angles for the collision of two vortices corresponding to the panels depicted in Fig. 14. Depicted
by (blue) circles is the negative of the scattering angle −θ1 of the incoming vortex, while (green) squares stand for the scattering
angle θ2 of the initially quiescent vortex. Triangles (in red) display the difference between these two angles, θ2 − θ1. All angles are
given in degrees.

charge combination, the most stable collision occurs around
∆φ = π/2 (or, due to the symmetry, ∆φ = 3π/2), which
again corresponds to the adjacent out-of-phase sides. Fi-
nally, in panel (c) we present the results for two vortices
with m1 = m2 = 2. The behavior is very similar to that
in panel (b): the same periodicity, shape and value of the
optimal phase difference. However, since the vortices with
m = 2 vortices are less stable than those with m = 1,
the critical velocity vcrit is lower for the (m1,m2) = (2, 2)
charge combination than for the case of (m1,m2) = (1, 2).
In order to fully characterize the collisions between vor-

tices with different charges, we studied the scattering of a
vortex of chargem1 impinging at velocity vini1 upon another
vortex of chargem2 at rest (v

ini
2 = 0), with impact parame-

ter d. The impact parameter d is defined as the perpendic-
ular distance between the trajectory of the incoming vortex
and the initially quiescent one. In Fig. 14 we show several
orbits for the two vortices with different impact parame-
ters, vortex-charge combinations, and incoming velocities.
It is seen, in all the panels, that all the trajectories are
well defined for the chosen parameters, and clearly feature
elastic scattering. The key to achieve elastic scattering is
to choose, for each charge combination, the optimal phase
difference, using Fig. 13 [i.e., ∆φ = 0 for m1 = m2 = 1
and ∆φ = π/2 for (m1,m2) = (1, 2), (2, 1), or (2, 2)], and
the initial velocity lower than the corresponding vcrit. For
example, we chose in panel (a) of Fig. 14 ∆φ = 0 and
vini2 = 0.03 < vcrit(π = 0) = 0.067. In fact, when one
uses a velocity closer to the critical one the vortices start
experiencing strong deformations of the quadrupole and oc-

tupole types when they collide nearly head-on. This effect
is clearly visible for the trajectory with d = 5 (also d = 10
and d = 20) in panel (b) of Fig. 14, where vini2 = 0.06 is
close to the critical value, vcrit = 0.067, and the trajectory
features undulations due to the internal deformation of the
vortex. Even larger velocities, i.e., above vcrit, lead to elas-
tic scattering for larger values of the impact parameter d,
and to annihilation of the colliding vortices at smaller d
(not shown here). It is interesting to note that, as for hard
spheres with different masses, the scattering of vortices can
also produce very different scattering angles, depending on
the mass combination of the two colliding objects. This
effect is made evident by the comparison of the scattering
between vortices with m1 = 1 and m2 = 2 in panel (c), and
the scattering between m1 = 2 and m2 = 1 in panel (d)
(all the other parameters coincide in both panels). When
a “lighter” vortex with m1 = 1 collides with the “heavier”
one, with m2 = 2, for d ≤ 15, the former vortex bounces
back after the collisions. In the reverse situation, with the
“heavier” m2 = 2 vortex impinging upon the “lighter” one
with m1 = 1, the “heavier” vortex only loses a portion of
its momentum and continues to move in a straighter trajec-
tory, while the “lighter” vortex is pushed away at a larger
velocity.
To further characterize the scattering between vortices

we analyzed the scattering angle as a function of the im-
pact parameter. In our scattering experiments, we initially
define horizontally moving and quiescent vortices. After
the collision, the trajectory of the moving vortex is de-
viated by scattering angle θ1 (in our case negative since
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FIG. 16: (Color online) Final (post-collision) velocities for the scattering of two vortices corresponding to the panels depicted in
Fig. 14. Depicted in (blue) circles and (green) squares are, respectively, the final velocities, v1 and v2, of the initially moving and
quiescent vortices. (Red) triangles depict the sum of these two velocities, v1 + v2. The thin horizontal black line designates the
initial velocity of the moving vortex.

we consider the moving vortex placed below the quiescent
one), and the initially quiescent vortex is scattered at angle
θ2 (in our case, positive). In Fig. 15 we depict the scatter-
ing angles corresponding to the scattering experiments dis-
played in Fig. 14. We depict by (blue) circles the negative
of the scattering angle, −θ1, of the incoming vortex, and
by (green) squares the scattering angle θ2. In all the cases,
we also depict the difference between the scattering angles,
∆θ = θ2 − θ1, by (red) triangles. In the case of the elastic
collision between two hard spheres of equal masses it is well
known that ∆θ = 90o. Figure 15 reveals that the collisions
between vortices with equal charges [m1 = m2 = 1 in pan-
els (a) and (b), and m1 = m2 = 2 in panel (e)] produce
∆θ very close to 90o for all values of the impact parameter.
In contrast, as it is the case for hard spheres with differ-
ent masses, our simulations demonstrate that ∆θ > 90o

for m1 < m2 [(m1,m2) = (1, 2) in panel (c)], and that
∆θ < 90o for m1 > m2 [(m1,m2) = (2, 1) in panel (d)].

Another measure of the scattering can be given in terms
of the initial and final velocities. In Fig. 16, we present
the final velocities corresponding to the scattering events
shown in Fig. 14. The figure shows, by (blue) circles and
(green) squares, the post-collision velocities, v1 and v2, re-
spectively, of the initially moving and quiescent vortices.
We also depict, using (red) triangles, the sum of the final
velocities, v1 + v2, and the thin horizontal black line repre-
sents the initial velocity of the moving vortex, vini1 . It can
be concluded that v1 + v2 < vini1 for relatively small values
of the impact parameter, d, and v1 + v2 > vini1 for larger

values of d.

The above results suggest that the interactions between
vortices may be either elastic or destructive, depending on
the parameters. In order to simulate the interplay of these
interactions in a multi-vortex gas, we display in Fig. 17 a
time series depicting the time evolution of a random vortex
gas. The first two rows depict the local intensity plots at
the indicated moments of time, while the bottom two rows
depict the corresponding field phases. We use a square do-
main of size 120× 120 with periodic boundary conditions,
seeding 15 vortices of charge m = 1 at random positions
(such that initially no two vortices were closer than twice
the size of a single vortex), and with random phases. As
seen from the figure, due to the random phase differences
and collision angles, some vortex pairs experience elastic
collisions, while others tend to merge and destroy each
other. Since the destruction of vortices is an irreversible
process, all the vortices get eventually destroyed, leading
to a seemingly disordered pattern of interacting intensity
patches with an approximately constant phase inside each
one (see the correspondence between field patches in the
top rows and the phase patches in the bottom rows, at the
late stage of the evolution). The dynamics resembles the
grain coarsening in typical chaotic spatiotemporal systems,
see e.g., review [3].
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FIG. 17: Interaction of a random gas of vortices of charge m = 1 in a periodic box. The initial separation between any two
neighboring vortices exceeds twice the width of a single vortex. The initial phases are set randomly. The first two rows depict the
evolution of the field intensity at the times indicated, while the bottom two rows depict the respective phase of the field. Note the
coarsening effect due to vortex merger and destruction.

VII. CONCLUSIONS

In this work, we have revisited the issues of the existence,
stability, and interactions of solitary vortices in the two-
dimensional CQNLS (cubic-quintic nonlinear Schrödinger)
equation, using both numerical and analytical methods.
The latter one is based on the variational approach, that
has been shown to be increasingly more accurate as the vor-
tex’ topological charge increases. We have also developed
the analysis of the azimuthal modulational (in)stability of
vortices, using the approximation originally proposed in
other contexts in Refs. [7] and [8], which postulates the
separation between the frozen radial profile of the vortex
soliton and free evolution of azimuthal perturbations. This
approach leads to an effectively one-dimensional equation
for the azimuthal dynamics. Examining the stability of the
perturbed annulus within the framework of the latter equa-
tion, we were able to predict the stability of the vortices
against the breakup. We then ran full 2D simulations to
verify the semi-analytical predictions.

For azimuthally unstable vortices, our predictions of the
largest growth rate are fairly accurate over a wide range
of the vortex’ intrinsic frequency (especially for the higher-
order vortices, with topological charge m > 2). The so de-
veloped semi-analytical technique may be useful for other
applications. The analytical approach is less accurate in
predicting the stability border (intrinsic critical frequency

of the vortex) for m > 1. This discrepancy is due to de-
viation from the assumption admitting the separation of
the perturbed evolution into radial and azimuthal parts,
while the VA proper, which was used to predict the radial
shape of the stationary vortex solitons turns out to yield
accurate results. Comparing our numerical results for the
critical frequency with previously published ones, we have
concluded that the most accurate findings were reported
in Ref. [27]. We have also found that higher-order vortices
may be subject to a snaking radial instability.

The semi-analytical approach developed in this work
may be quite useful for other 2D models —at least, for the
description of the most stable vortex solitons with lowest
values of the topological charge.

We have also investigated, in detail, collisions between
stable vortex solitons in the two-dimensional CQNLS equa-
tion. The outcome of the collision crucially depends on the
phase difference and relative velocity of the vortices. We
have produced the results showing the critical velocity for
elastic collisions as a function of the relative phase for all
combinations of the vortices with m = 1 and 2. We also
studied the dependence on the scattering angles and post-
collision velocities on the impact parameter of the collision.

One relevant direction for the extension of the present
analysis is to find accurate conditions for the stabiliza-
tion of the nearly isotropic vortex solitons by an external
spatially periodic (lattice) potential, see Ref. [33] and ref-



17

erences therein. A challenging problem is to extend the
semi-analytical considerations to three-dimensional soli-
tons with embedded vorticity, in the model with the same
cubic-quintic nonlinearity. In fact, it is not known if such
3D vortex solitons with higher vorticity (m ≥ 2) may be
stable [24, 26].
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Kevrekidis, Azimuthal modulational instability of vortices
in the nonlinear Schrödinger equation, Opt. Commun. 282
(2009) 1399–1405.

[9] S. Cowan, R. H. Enns, S. S. Rangnekar, S. S. Sanghera,
Quasi-soliton and other behavior of the nonlinear cubic-
quintic Schrödinger equation, Can. J. Phys. 64 (1986) 311–
315.

[10] L. Crasovan, B.A. Malomed, D. Mihalache, Spinning soli-
tons in cubic-quintic nonlinear media, Pramana J. Phys. 57
(2001) 1041–1059.

[11] A. Desyatnikov, A. Maimistov, B.A. Malomed, Three-
dimensional spinning solitons in dispersive media with the
cubic-quintic nonlinearity, Phys. Rev. E 61, 3 (2000) 3107–
3113.

[12] K. Dolgaleva, H. Shin, R. W. Boyd, Observation of a mi-
croscopic cascaded contribution to the fifth-order nonlin-
ear susceptibility, Phys. Rev. Lett. 103 (2009) 113902.1–
113902.4.

[13] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).
[14] W. J. Firth, D. V. Skryabin, Optical solitons carrying or-

bital angular momentum, Phys. Rev. Lett. 79 (1997) 2450–
2453.

[15] R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M.
Suzuki, M. Turu, H. Kuroda, Fifth-order optical nonlinear-
ity of pseudoisocyanine solution at 529 nm, J. Opt. A: Pure

Appl. Opt. 6 (2004) 282–287.
[16] G. H. Golub, J. M. Ortega, Scientific computing and dif-

ferential equations an introduction to numerical methods,
Academic Press, San Diego, California, 2 edition, 1992.

[17] B. Gu, Y. Wang, W. Ji, J. Wang, Observation of a fifth-
order optical nonlinearity in Bi0.9La0.1Fe0.98Mg0.02O3 fer-
roelectric thin films, Appl. Phys. Lett. 95 (2009) 041114.1–
041114.3.

[18] G. Herring, L. D. Carr, R. Carretero-González, P. G.
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