
Face-based Selection of Corners in 3D Substructuring
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Abstract

In most recent substructuring methods, a fundamental role is played by the
coarse space. For some of these methods (e.g. BDDC and FETI-DP), its
definition relies on a ‘minimal’ set of coarse nodes (sometimes called corners)
which assures invertibility of local subdomain problems and also of the global
coarse problem. This basic set is typically enhanced by enforcing continuity
of functions at some generalized degrees of freedom, such as average values
on edges or faces of subdomains. We revisit existing algorithms for selection
of corners. The main contribution of this paper consists of proposing a new
heuristic algorithm for this purpose. Considering faces as the basic building
blocks of the interface, inherent parallelism, and better robustness with respect
to disconnected subdomains are among features of the new technique. The
advantages of the presented algorithm in comparison to some earlier approaches
are demonstrated on three engineering problems of structural analysis solved by
the BDDC method.

Keywords: domain decomposition, iterative substructuring, finite elements,
linear elasticity, parallel algorithms, corner selection

1. Introduction

The Balancing Domain Decomposition based on Constraints (BDDC)
is a numerically scalable, nonoverlapping (substructuring), primary domain
decomposition method introduced in 2003 by Dohrmann [4]. Its algebraic theory
developed by Mandel, Dohrmann and Tezaur in [14] demonstrates close relation
to FETI-DP introduced by Farhat, Lesoinne, and Pierson [5]: the eigenvalues
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of the preconditioned problem in BDDC and FETI-DP are the same except
possibly those equal to 0 and 1 (see also [2], [13], and [16] for simplified proofs).
These results not only provide the theoretical reasoning for nearly identical
performance of BDDC and FETI-DP observed earlier, but also imply, that
many theoretical results obtained for one method apply readily to the other.

The coarse space, defined by constraints on continuity of functions across
the interface at coarse degrees of freedom, is essential for the performance of
both methods. A historical overview of an evolution of the concept of the
coarse space is presented, e.g., by Widlund in [23] and by Mandel and Soused́ık
in [17]. The usual basic choice of coarse degrees of freedom is presented by
selecting a set of coarse nodes (also called corners). This set is usually selected
to be ‘minimal’ in the sense that it is as small as possible while assuring
invertibility of local subdomain problems and of the global coarse problem.
For 2D problems this choice ensures good convergence properties. However,
both methods require additional constraints on some generalized degrees of
freedom such as average values on edges or faces of subdomains to achieve
good efficiency for 3D problems. This fact was first discovered for FETI-DP:
experimentally observed in Farhat, Lesoinne, and Pierson [5] and theoretically
supported by Klawonn, Widlund and Dryja in [11]. These observations apply
to BDDC through the above-mentioned correspondence between both methods.

A sufficiently robust definition of the coarse space in BDDC and FETI-
DP is still not available, especially for complex 3D geometries, and existing
methods tend to fail for such problems. Related work on choice of the coarse
degrees of freedom has focused on selecting a small and effective coarse space.
An algorithm for selecting the smallest set of coarse nodes to avoid coarse
mechanism is described by Lesoinne in [12]. Another algorithm, which is
already based on pairs of subdomains, was given by Dohrmann in [4]. This
task has been recently further discussed by Brož and Kruis in [3] for 2D case.
Klawonn and Widlund in [9] and [10] minimize a set of more general coarse
degrees of freedom (like weighted averages over edges and faces) to achieve
optimal convergence estimates, introducing the concept of an acceptable path.
Adaptive selection of coarse degrees of freedom based on local estimates using
eigenvectors associated with faces is described by Mandel and Soused́ık in [15],
and by Mandel, Soused́ık, and Š́ıstek in [19]. In this adaptive approach, which
provides additional averages on faces leading to optimal decrease of the expected
condition number, a sufficient number of initial constraints is required between
each pair of subdomains as an input. This assumption is in good agreement
with the output of the algorithm proposed in this paper.

While proposing the new algorithm for selection of the basic set of corners
is the main contribution of the manuscript, we further explore the potential of
adding more coarse nodes into the coarse problem. This approach is technically
simple and allows flexible setting of desired approximation. It is observed,
that by loosening the requirement of ‘minimal’ selection and identifying more
interface nodes as corners, the performance of the BDDC preconditioner may
be cheaply but considerably improved. Numerical experiments on industrial
3D elasticity problems demonstrate the advantages of the new corner selecting
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algorithm in comparison to several earlier approaches. They also show the fact,
that by enhancing the basic set of constraints by additional coarse nodes, the
computational times might be further reduced.

2. BDDC method

In this paper, we study the selection of the initial set of constraints in
the context of the BDDC method [4], which is briefly recalled in this section.
However, the main ideas of the paper apply to FETI-DP method as well.

After a discretization of a linearized partial differential equation of elliptic
type in a given domain Ω by means of finite element method (FEM), a system
of linear algebraic equations

Ax = f (1)

with a symmetric positive definite matrix A and a right-hand side f is solved
for the unknown vector x. Components of x represent function values at mesh
nodes and they are often called degrees of freedom. In 3D linear elasticity, there
are 3 unknown values of displacement (3 degrees of freedom) at every mesh
node.

The first step in the BDDC method is the reduction of the problem to
the interface. This is quite standard and described in the literature, e.g.,
Toselli and Widlund [22]: the underlying discretized domain Ω is split into
N nonoverlapping subdomains (also called substructures) Ωi, i = 1, . . . , N
with common interface Γ, and problem (1) is reduced to the Schur complement
problem with respect to interface

Su = g (2)

with a symmetric positive definite matrix S. The vector u now represents the
subset of degrees of freedom in x that correspond to the interface Γ. Solution
u of the problem (2) can be also represented as the minimum of the functional

1

2
uTSu− uTg → min , u ∈ Ŵ (3)

on the space Ŵ of unknowns on the interface Γ. The space Ŵ can be identified
with the space of discrete harmonic functions, that are fully determined by
their values of unknowns on the interface Γ and have minimal energy on every
subdomain.

The problem (2) is then solved by the preconditioned conjugate gradient
(PCG) method, for which BDDC acts as the preconditioner. The main idea
of the BDDC method is shortly described bellow. More details, together with
connection to FETI-DP, can be found in Mandel, Dohrmann and Tezaur [14] or
Mandel and Soused́ık [16].

A preconditioner M for the system (2) should realize an approximation of
S−1 such that obtaining a preconditioned residual p = Mr can be considerably
easier than solving the original problem (2). Construction of the BDDC
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preconditioner is based on the idea that instead of minimising (3) on the space

Ŵ , which represents solving the system (2), the minimization is performed on

some larger space W̃ such that Ŵ ⊂ W̃ :

1

2
ũTS̃ũ− ũTg̃ → min , ũ ∈ W̃ , (4)

where S̃ is a symmetric positive definite extension of S to W̃ and g̃ is an
extension of g. The space W̃ has to be chosen so that the symmetric positive
definite extension S̃ on W̃ exists. At the same time, solving problem (4) should
be considerably easier than solving the original problem (3), while providing
good approximation of the solution of (3). The BDDC preconditioner is then
defined as

M = ES̃−1ET , (5)

where E represents a projection from W̃ onto Ŵ realized by a kind of averaging.

3. Coarse degrees of freedom

In BDDC, the space W̃ is specified by relaxing the requirement of the
continuity of discrete harmonic functions across the interface. The functions
of W̃ are required to be continuous only at selected coarse degrees of freedom.
In this paper, we focus on the simplest choice of coarse degrees of freedom, which
is a function value at a selected node on the interface. Such node is then called
coarse node or corner. More general coarse degrees of freedom are commented
at the end of this section and are considered in computations.

In terms of mechanics, the transition from Ŵ to W̃ can be interpreted
as making cuts into the continuous function along the interface, leaving the
function continuous across the interface only at the corners. A schematic
illustration of the continuity constraints is depicted in Figure 1: functions from
Ŵ are continuous across the interface, functions from W̃ are continuous only at
selected coarse nodes.

The space W̃ can be decomposed as S̃-orthogonal direct sum

W̃ = W̃1 ⊕ · · · ⊕ W̃N ⊕ W̃C , (6)

where W̃i, i = 1, . . . , N, are local, subdomain spaces and W̃C is the global coarse
space, defined as the S̃-orthogonal complement of all spaces W̃i, i.e.

wC ∈ W̃C ⇔ wT
C S̃w = 0 ∀w ∈ W̃i, i = 1, . . . , N. (7)

Functions from W̃i can have nonzero values only in Ωi except for coarse
degrees of freedom. They have zero values at coarse degrees of freedom,
and they are fully determined by degrees of freedom on Γ and the discrete
harmonic extension to interiors of subdomains. Similarly, functions from W̃C

are fully determined by their values at coarse degrees of freedom (where they are
continuous) and by the discrete harmonic extension to interiors of subdomains

4



and on the rest of the interface (i.e. everywhere apart from the coarse nodes).

Functions from the spaces W̃C and W̃i are generally discontinuous across Γ
outside corners.

According to decomposition (6), solution of the problem (4) can now be

split into solution of N local subdomain problems on the spaces W̃i and one
global coarse problem on the coarse space W̃C . All these problems are mutually
independent and so can be naturally parallelized.

Coarse degrees of freedom have to be selected so that stable invertibility of
both the coarse problem and the local problems is assured. Important role of
the coarse space is to assure scalability by global error propagation over the
whole domain. It was shown that while for 2D elasticity problems the BDDC
(or FETI-DP) preconditioner is scalable for coarse space defined by coarse nodes
(corners) only, in 3D elasticity problems more general coarse degrees of freedom,
such as (weighted) average values over edges and faces, need to be used in order
to achieve scalability, see e.g. Toselli and Widlund [22].

Choice of the coarse degrees of freedom has a great impact on the
performance of the preconditioner M. The more coarse degrees of freedom are
chosen, the more difficult it is to obtain the solution of (4), which, on the other
hand, is then closer to the solution of the original problem (3). In the extreme

case of selecting all interface nodes as coarse, W̃C ≡ W̃ ≡ Ŵ , coarse problem
becomes the original problem (3) and M ≡ S−1. In the opposite extreme, if no

coarse degrees of freedom are selected, W̃C is empty and solution of (4) splits
to N local problems only, some of which might not be invertible. Thus, the
optimal choice of the coarse space lies somewhere in-between.

4. Geometry and selection of the coarse space in 3D

The interface Γ in 3 dimensions can be specified as a set of nodes belonging to
at least two subdomains (subdomains are considered as closed sets). It consists
of subdomain faces, edges and vertices. While there is an intuitive geometric
notion what these three entities mean in a simple case of a cubic domain divided
into cubic subdomains, there is no unique exact classification in more general
case of domain with complicated geometry and subdomains obtained, e.g., by a
graph partitioning tool. We adopt the classification presented by Klawonn and
Rheinbach in [8] and use it in a slightly simplified form, which does not assume
knowledge of boundary of the domain and is easy to implement:

Definition 1.

• a face contains all nodes shared by the same two subdomains,

• an edge contains nodes shared by the same more than two subdomains,

• a vertex is a degenerated edge with only one node.

Then every node of the interface belongs to just one of the entities defined
above. Two subdomains are called adjacent if they share a face.
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However, this classification does not reproduce our intuition in the case of
cubic subdomains, as can be seen in Figure 2: for instance the interface of
a domain consisting of two cubic subdomains has neither vertex nor edge, just
one face (the left case in Figure 2). Different definitions of faces and edges are
discussed by Klawonn and Rheinbach in [7, Section 2].

In practice, there are often not enough vertices, edges, or faces for
satisfactory number of constraints. We have found it useful to introduce one
additional entity:

Definition 2.

• a corner is any interface node selected as coarse.

In implementations of the BDDC method, it is often customary to
distinguish between the following two kinds of constraints on continuity across
interface.

Node constraints - corners
The most obvious choice of coarse degrees of freedom are node constraints (at
corners). The basic choice is a set of corners, that assures invertibility of local
subdomain problems and also the global coarse problem. This is often put as
a requirement on their selection (e.g. in [4], [21]).

Although vertices provide a good initial set of corners, they often do not
suffice for assuring invertibility of subdomain problems and/or of the coarse
problem (cf. Figure 2), and other constraints need to be added. When other
nodes are selected as corners, they have to be excluded from corresponding faces
or edges, so that every interface node is either a corner, or belongs to a face or
an edge.

Corner constraints are not as efficient as constraints on averages on edges
or faces, nevertheless they can be used as a substitute for these constraints, if
enough corners are employed. Figure 7 left illustrates the typical dependence
of the condition number of the preconditioned problem on number of corners
randomly selected from the interface, starting from some basic set. For small
numbers of corners, we can observe poor performance of the preconditioner even
though all system matrices are invertible. Then, after a typical sudden drop,
the condition number improves only slightly with adding more corners. Number
of iterations reproduces this dependence, see Figure 7 (centre).

Improving convergence by adding more corners leads to a larger coarse
problem than adding averages on faces or edges. On the other hand, its
implementation is straightforward and its scaling is easy to maintain.

For 2D problems, the basic set of corner constraints already ensures good
convergence properties. Although an efficient BDDC method for 3D elliptic
problems requires also constraints on some generalized degrees of freedom, such
as average values on edges or faces of subdomains described below, for many
industrial problems this simple approach also leads to satisfactory results.

Constraints on averages over edges and faces
General coarse degrees of freedom can be constructed as any linear combinations
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of function values at nodes belonging to one face or one edge. This type
of constraints is required for both BDDC and FETI-DP methods in three
dimensions, if one expects the optimal polylogarithmic bound on condition
number κ of the preconditioned operator

κ(MS) ≤ const.
(

1 + log
H

h

)2

, (8)

where H is the subdomain size and h is the finite element size (see [11]).
One of the standard choices is an arithmetic average over unknowns

separately for each component of displacement leading to three constraints
for 3D elasticity. We have tested this standard choice applied to all edges,
to all faces, or both. More sophisticated methods of weighted averaging were
developed, e.g., by Klawonn and Widlund [10], by Mandel and Soused́ık [15], or
recently by Mandel, Soused́ık, and Š́ıstek [19].

5. Selection of the basic set of corners

In this section, we concentrate on the selection of the basic set of corners
that leads to positive definiteness of matrix S̃ in (4). This task is equivalent to
assuring invertibility of both local subdomain problems and the global coarse
problem only by corner constraints, which is often required by implementations
(cf. [4], [21]). Therefore, we investigate selection of corners independently of
enforcing constraints on general coarse degrees of freedom.

From the mechanical point of view, the question of assuring invertibility of
local subdomain problems corresponds to enforcing enough boundary conditions
on a body to fix rigid body modes, with subdomain playing the role of the body.
This goal is easily attained by selecting three nodes (not in a line) of the interface
of a subdomain as corners.

It turns out, that assuring invertibility of the coarse matrix is the more
difficult task, since selection with respect to subdomain problems only may
still lead to mechanisms in the coarse problem (see [12]). To see this, one can
simply think of a domain divided into subdomains in a linear fashion. Figure 3
illustrates this on a 2D case, where two corners for each subdomain are sufficient
for invertibility of subdomain stiffness matrices.

An algorithm attempting to select the smallest set of coarse nodes to avoid
coarse mechanisms was given by Lesoinne in [12]. Minimization of the number
of corners is obtained mainly by favouring already selected corners. Thus, the
approach is serial in its nature.

Another algorithm for selecting corners was described already by Dohrmann
in [4]. It is based on the investigation of all possible neighbourings between
substructures and selecting three corners from each such set, that maximise
the area of a triangle with corners at its vertices. However, this algorithm is
based on an incomplete classification of interface into vertices, edges, and faces,
and it does not distinguish between the last two groups. Also this algorithm
favours already selected corners by selecting vertices on the interface as the
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initial vertices of the triangle to be maximised. Nevertheless, it has provided a
good starting point for the new algorithm proposed here.

The third algorithm, which is based on selection of corners along edges,
was described in [20]. This idea is inspired by the definition of corners as end-
points of edges by Klawonn and Widlund [9]. Although it was successfully used
by our group in a number of practical computations, it may fail to produce
a mechanism-free coarse problem in the case of divisions where no edges are
present (cf. the leftmost case in Figure 2).

The aim to select a low number of corners inherent to all these algorithms is
motivated by the fact, that low number of corners results in a small size of the
matrix of the coarse problem and its cheap factorization. However, it has been
observed on a number of experiments (e.g. [21], also Section 7 in this paper)
that this motivation may be misleading, and in fact, larger sets are preferable
for the performance of the preconditioner often resulting in much lower number
of PCG iterations. It has been also shown, that using more corners may lead to
a considerable reduction of the computational time in spite of the longer time
spent in factorization of the larger matrix of the coarse problem, even in the
case of considering averages on edges and faces.

Based on these observations and experience with the algorithms, we see
several ideas that the new proposed algorithm should reflect:

(i) selection with respect to faces (by Definition 1) as these are the basic
building blocks of interface in 3D structures (Figure 2),

(ii) provide larger set of corners than the previous algorithms as this usually
leads to much better preconditioning,

(iii) independence of selection subdomain by subdomain and of order of going
through subdomains (better parallelization).

Points (ii) and (iii) are attained simply by not favouring already selected
corners and selecting optimal distribution of at least three corners between each
pair of substructures sharing a face, i.e. adjacent substructures, independently.

Let us now present an algorithm satisfying these requirements. For this,
denote the set of faces of subdomain Ωi as F(Ωi) and recall that N denotes the
number of subdomains. A face Fij between subdomains Ωi and Ωj is present
in both sets F(Ωi) and F(Ωj).

Algorithm 1 (Selection of corners for 3D elasticity problems).

1. Classify interface according to Definition 1 and use all vertices as corners.

2. For subdomain Ωi, i = 1, . . . , N ,
For face Fij ∈ F(Ωi), j = 1, . . . , size(F(Ωi)),

• find the set of all nodes shared with the adjacent subdomain (generally
larger set than the face under consideration, as it may contain also
edges and/or vertices),

• construct a graph of nodes of this set with connections defined by
elements, and detect components of this graph

• For each such component, select (in 3D) three corners by:
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(a) pick an arbitrary node of the subset,

(b) find the first corner as the most remote node from the arbitrary
node,

(c) find the second corner as the most remote node from the first
corner,

(d) find the third corner as the node maximising the area of the
triangle,

end,

end,
end.

3. Select corners as the union of vertices and face-based selection above.

4. Remove selected corners from edges and faces.

The algorithm assures that at least three corners are selected in an optimal
way with respect to each face. This situation is often not obtained by favouring
already selected corners, since corners optimally distributed for one pair of
subdomains may be far from optimal distribution with respect to another pair.
Presented algorithm is also much simpler for parallelization than algorithms
favouring already selected corners, since communication is needed only at
the end of the selection to synchronise locally detected corners. It typically
provides more corners than algorithms mentioned above, which we consider as
an advantage rather than a drawback.

Remark 1. A modification of Algorithm 1 favouring already selected corners
is simply possible by entering the face-based selection in any point (a), (b), (c),
or (d), depending on how many corners are already selected between adjacent
substructures. This modification leads to selection that is very similar to the
algorithm by Dohrmann in [4]. In our experience, this modification, referred
to as ‘minimal’, leads to lower number of corners, but also usually to worse
results (some of them are presented in Section 7). Thus, we recommend using
the (‘full’) version as stated by Algorithm 1.

Remark 2. A modification of Algorithm 1 for 2D problems (where no edges
are present) or topologically 2D problems (such as for shell elements in 3D) is
simply possible by finishing the face-based selection with point (c).

Remark 3. Detection of components is aimed at problems divided into
subdomains by graph partitioners, such as METIS. These programs typically
provide divisions well balanced with respect to size of subdomains, but often
with some subdomains disconnected. Such divisions present a challenge
for many existing domain decomposition methods. With the detection of
components, the algorithm is able to detect many of such discontinuities, and
fix each component independently. The BDDC method is then able to proceed
with computation, keeping such subdomains disconnected, thus preserving the
suggested balance of load.
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We show the power of this detection on a simple problem of an elastic
beam consisting of two subdomains, one of which is wedged in the other as
in Figure 4. On the left-hand side of the figure, corners selected without the
detection of components are presented. In this case, both cuts are handled
as a single interface, and the search of triangle with maximal area does not
succeed. Resulting configuration has a mechanism in the coarse problem and,
consequently, BDDC method fails.

On the right-hand side of the figure, corners obtained with the component
detection enabled are shown. Now the optimal triangle is sought at each of the
cuts, which leads to a mechanism-free configuration of corners, and the BDDC
method converges in four iterations.

6. Implementation

The BDDC method has been implemented on top of common components of
existing finite element codes, namely the frontal solver and the element stiffness
matrix generation. Such implementation requires only a minimal amount of
additional code. In our case, most of the program is written in Fortran 77, with
some parts in Fortran 90. The MPI library is used for parallelization.

The implementation relies on the separation of node constraints and
enforcing the rest by Lagrange multipliers, as suggested already in
Dohrmann [4]. One new aspect of the implementation is the use of reactions,
which come naturally from the frontal solver, to avoid custom coding.
An external parallel multifrontal solver MUMPS [1] is used for the solution
of the coarse problem, instead of the serial frontal solver, as dimension of the
coarse space could become a bottleneck.

Detailed description of the implementation can be found in [21], and some
more experiments were presented in [20].

Recently, the proposed selection of corners has been implemented into the
parallel solver, and the natural parallelism of the algorithm is fully exploited.

7. Numerical results

Presented numerical results were computed on SGI Altix 4700 computer with
1.5 GHz Intel Itanium 2 processors (OS Linux) in Czech Technical University
Supercomputing Centre, Prague. For decompositions, we use the METIS graph
partitioner [6].

Three different industrial problems have been tested. The first one is
a problem of elasticity analysis of a turbine nozzle, through which the steam
enters the turbine blades (Figure 5). The geometry is discretized using 2 696
quadratic elements, which leads to 40 254 unknowns. The second one is
a problem of elasticity analysis of a hip joint replacement which is loaded by
pressure from human body weight. This mesh consists of 33 186 quadratic
elements resulting in 544 734 unknowns. Both meshes are divided into 36
subdomains by METIS. The turbine nozzle problem was computed using 12
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processors, for hip joint replacement 36 processors were used. The third problem
is stress analysis of a mine reel loaded by its own weight and the weight of the
steel wire rope (Figure 6). The mesh consists of 140 816 quadratic elements and
1 739 211 unknowns. It was divided into 1 024 subdomains by METIS. Problem
was computed using 32 processors. Decomposition characteristics of the three
industrial problems are summarized in Table 1.

Three algorithms for selecting the basic set of corners are tested: Algorithm 1
from Section 5 referred to as full, modified Algorithm 1 described in Remark 1
in Section 5 referred to as minimal, and the edge-based algorithm mentioned
in Section 5, inspired by [9] and described in [20], referred to as edge. The
number of PCG iterations was chosen as a measure of quality of the BDDC
preconditioning. Numbers of the basic sets of corners obtained by the three
algorithms for the three problems are recorded in Table 2 and corresponding
number of PCG iterations are summarized in Table 3. For the two smaller
problems (turbine nozzle and hip joint replacement), either constraints on
corners only (referred to as C ), or constraints on corners and all averages (over
all edges and faces) referred to as C+E+F are tested. For the larger problem
of mine reel, corner constraints alone turned out to be too weak to achieve a
reasonable convergence and the results are marked as ‘n/a’. The edge-based
algorithm did not work properly for hip joint replacement problem in the case
of the basic set of corners only, so the results are missing too.

As the basic sets of corners selected by different algorithms have different
numbers of corners, for a fair comparison of the algorithms we added more
corners selected randomly from the interface to the smaller sets in order to
achieve the same number of corners. Comparison of the algorithms using the
same number of corner constraints is summarized in Table 4.

Interesting results are obtained by adding more randomly selected interface
nodes as corners to the basic set in order to improve convergence (see Figures 8 –
10 left): it seems that the initial choice of the basic set influences the convergence
properties even when many more randomly selected corners are added. Graphs
on the right side of these figures show that the best computational time is
achieved for higher numbers of corners than the basic sets for all problems
tested and all algorithms for selecting the basic set used.

It can be observed especially on the most difficult problem of mine reel
(Fig. 10), that the basic set of corners provided by the new algorithm in its
full version is much more efficient than the basic sets provided by the earlier
approaches and considerably reduces the computational time.

8. Conclusion

It has been observed on a number of practical computations by the BDDC
method, that the effort to find the minimal set of corners might be misleading
and selecting more corners often considerably improves the performance of the
preconditioner and reduces the computational time. This behaviour can be
explained for problems with complex interface by position of selected corners,
which may be optimal with respect to one pair of subdomains, but may lead
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to poorly conditioned problems for other subdomains. As a consequence, by
favouring already selected corners, these subdomains are not given the freedom
to select corners optimally distributed for their own fixation.

This has been the main motivation for presenting a new approach to selecting
the basic set of corners, which is proposed in Section 5. It attempts to combine
advantages of previous algorithms, and it is based on selection of corners
independently for each face, so it can be naturally parallelized. It does not
aspire to minimize the number of selected corners that assure the invertibility
of all problems in BDDC and typically produces a larger initial set of coarse
nodes than the other algorithms. We have seen this to be beneficial for all
performed computations.

Numerical experiments on three industrial problems show that for basic sets
of corners, this approach gives better results than the other two algorithms used
for comparison in all three tested problems. When more corners are added,
better results are obtained in two of the problems (turbine nozzle and mine
reel) and comparable results in the third case (hip joint replacement).

We are aware that for very large problems the solution of the coarse problem
might eventually dominate the computation and another approach than a
(parallel) direct solver could be necessary. In such cases, multilevel extension
of the BDDC method (e.g. [18]) seems to be a promising way. However, we
observed even for the largest test problem of the mine reel, that we did not
reach this computational bottleneck when adding more corners into the coarse
problem, and the curve of computational time with respect to the number of
corners was still decreasing. The expected bottleneck is also pushed farther by
the everlasting advances in parallel direct solvers.
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International Conference on Domain Decomposition Methods, Cocoyoc,
Mexico, January 6–12, 2002. http://www.ddm.org.

[13] Li, J., Widlund, O. B., 2006. FETI-DP, BDDC, and block Cholesky
methods. Internat. J. Numer. Methods Engrg. 66 (2), 250–271.

13

http://www.ddm.org


[14] Mandel, J., Dohrmann, C. R., Tezaur, R., 2005. An algebraic theory for
primal and dual substructuring methods by constraints. Appl. Numer.
Math. 54 (2), 167–193.

[15] Mandel, J., Soused́ık, B., 2007. Adaptive selection of face coarse degrees of
freedom in the BDDC and the FETI-DP iterative substructuring methods.
Comput. Methods Appl. Mech. Engrg. 196 (8), 1389–1399.

[16] Mandel, J., Soused́ık, B., 2007. BDDC and FETI-DP under minimalist
assumptions. Computing 81, 269–280.

[17] Mandel, J., Soused́ık, B., 2011. Coarse space over the ages. In: Huang,
Y., Kornhuber, R., Widlund, O., Xu, J. (Eds.), Domain Decomposition
Methods in Science and Engineering XIX, Lecture Notes in Computational
Science and Engineering 78, Part 2. Springer-Verlag, pp. 213–220.

[18] Mandel, J., Soused́ık, B., Dohrmann, C. R., 2008. Multispace and multilevel
BDDC. Computing 83 (2-3), 55–85.
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Ŵ W̃

Figure 1: A schematic illustration of the continuity constraints: functions from Ŵ are

continuous across the interface (left), functions from W̃ are continuous only at corners, marked

by circles (centre and right, for two different choices of W̃ ).

1 face
4 faces
1 edge

12 faces
6 edges
1 vertex

Figure 2: Examples of classification of the interface nodes as faces, edges and vertices according
to Definition 1.

problem subs. vertices edges faces intf. nodes all nodes

Turbine nozzle 36 6 60 101 2 714 13 418
Hip replacement 36 1 19 78 9 222 181 578

Mine reel 1 024 2 451 1 209 4 164 117 113 579 737

Table 1: Decomposition characteristics of the tested problems.
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Figure 3: A 2D example of mechanism in the coarse problem for serial division into four
subdomains, red dots denote corners.

Figure 4: Example of a problem with one subdomain disconnected. Four corners obtained by
algorithm without detection of components (left), and eight corners obtained with detection
of components of interface (right).

problem full min edge

Turbine nozzle 218 145 115
Hip replacement 227 189 66

Mine reel 7 864 6 183 4 152

Table 2: Number of corners in the basic set selected by different algorithms.
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Figure 5: Turbine nozzle problem, 36 subdomains, initial set of 218 corners selected by the
full version of Algorithm 1 marked by balls.

Figure 6: Mine reel problem, finite element mesh (left) and a detail of the steel rope with
division into subdomains (right).
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Figure 7: Typical dependence of the condition number (left), the number of iterations of the
PCG (centre), and the total computational time (right) on the number of corner constraints.
Dashed line - corner constraints only, full line - corner constraints and all face and edge
averages. Hip joint replacement, 33 186 quadratic elements, 36 subdomains.
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C C+E+F
full min edge full min edge

Turbine nozzle 38 49 73 24 27 29
Hip replacement 95 99 n/a 50 52 n/a

Mine reel n/a n/a n/a 935 1 841 4 637

Table 3: Number of PCG iterations needed for convergence for different algorithms of selecting
the basic set of corners and different constraint type.

C C+E+F
full min edge full min edge

Turbine nozzle 38 41 42 24 25 26
Hip replacement 95 91 > 138 50 50 61

Mine reel n/a n/a n/a 935 1 674 ≈1 800

Table 4: Number of PCG iterations needed for convergence for different algorithms of selecting
the basic set of corners and different constraint type. For every problem, different basic sets
were completed to the same number of corners by adding randomly selected corners.
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Figure 8: Turbine nozzle problem, 36 subdomains, corner constraints only. Dependence of the
number of iterations (left) and the total computational time (right) on the number of corner
constraints. Full line - full version of the Algorithm 1, dash-dotted line - minimalistic version,
dashed line - the edge based algorithm.
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Figure 9: Hip joint replacement problem, 36 subdomains, corner constraints only. Dependence
of the number of iterations (left) and the total computational time (right) on the number of
corner constraints. Full line - full version of the Algorithm 1, dash-dotted line - minimalistic
version, dashed line - the edge based algorithm.
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Figure 10: Mine reel problem, 1024 subdomains, corner and all edge and face constraints.
A dependence of the number of iterations (left) and the total computational time (right) on
the number of corner constraints. Full line - full version of the Algorithm 1, dash-dotted line
- minimalistic version, dashed line - the edge based algorithm.
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