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Abstract

Fixed coefficients State-Space and VARMAX models are equivalent, mea-

ning that they are able to represent the same linear dynamics, being indis-

tinguishable in terms of overall fit. However, each representation can be

specifically adequate for certain uses, so it is relevant to be able to choose

between them. To this end, we propose two algorithms to go from gen-

eral State-Space models to VARMAX forms. The first one computes the

coefficients of a standard VARMAX model under some assumptions while

the second, which is more general, returns the coefficients of a VARMAX

echelon. These procedures supplement the results already available in the

literature allowing one to obtain the State-Space model matrices correspond-

ing to any VARMAX. The paper also discusses some applications of these

procedures by solving several theoretical and practical problems.

Keywords: State-Space, VARMAX models, Canonical forms, echelon

∗Departamento de Fundamentos del Análisis Económico II. Facultad de Ciencias Econmicas.
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1 Introduction

This paper describes two algorithms to compute the coefficients of a VARMAX

model, in its standard (Quenouille, 1957) or echelon (Hannan and Deistler, 1988)

form, from a general fixed coefficients State-Space model. To avoid cumbersome

wordings, from now on we will refer to these models as “VARMAX” and “SS”,

respectively.

The relationship between VARMAX and SS representations goes in both direc-

tions. First, it is well known (Aoki, 1990) that any fixed-coefficient linear stochastic

process can be written in an equivalent SS form. Second, a not so-well known result

states that a specific canonical SS model can be written in canonical VARMAX

form, see Dickinson et al. (1974). In this paper we present two structured algo-

rithms to obtain the coefficients of an invertible VARMAX model corresponding

to a general SS structure, which extends and refines in several ways the results

of Dickinson et al. (1974). The first procedure is simpler, but requires two condi-

tions that can be summarized in the idea that every component of the endogenous

variable must have the same dynamic order, i.e., their, so-called, observability or

Kronecker indices must be equal. The second method is more complex, but does

not constrain the model dynamics. Further, we illustrate how these procedures

help in model building.

The structure of the paper is as follows. Section 2 presents the different VAR-

MAX and SS representations that will be used in the rest of the article and sum-

marizes some previous results. Section 3 describes the general structure of the

algorithms proposed and provides all the details required to implement them in

practice. Section 4 discusses some practical applications including examples with

real data. The utility and implications of these procedures are pointed out in Sec-

tion 5, which also indicates how to obtain a free MATLAB toolbox that implements

them.
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2 Preliminaries

2.1 VARMAX models

Much work in applied time series analysis is based on the linear dynamic model:

F̄ (B)zt = Ḡ(B)ut + L̄(B)at (1)

where zt ∈ Rm is an observable output, ut ∈ Rr is an observable input, at ∈ Rm is

an innovation such that at ∼ iid(0,Σa). Finally, B denotes the backshift operator,

such that for any ωt: B
iωt = ωt−i, i = 0,±1,±2, ..., I and:

F̄ (B) =

p∑
j=0

F̄jB
j, Ḡ(B) =

s∑
j=0

ḠjB
j, L̄(B) =

q∑
j=0

L̄jB
j

An important characteristic of model (1) is the maximum dynamic order, defined

as pmax = max{p, s, q}, which will be used throughout the paper. Model (1) is

assumed to be left coprime but the roots of F̄ (B) and L̄(B) are allowed to be

greater or equal to unity. Note that even left coprimeness does not imply that

the model is identified as there are still infinite parameter sets that realize zt. To

achieve identification, one must impose some additional constraints over F̄ 0 and

L̄0. For instance, F̄ 0 = L̄0 = I yields the standard VARMAX representation

introduced, without exogenous inputs, by Quenouille (1957).

On the other hand, an interesting alternative, known as the VARMAX echelon

form, is widely used. The system (1) is in echelon form if the triple
[
F̄ (B) : Ḡ(B) :

L̄(B)
]

is in echelon canonical form, i.e., denoting F̄kl(B), the kl-th element of F̄ (B)

and similarly Ḡkl(B) for Ḡ(B) and L̄kl(B) for L̄(B), the polynomial operators may

3



be uniquely defined by:

F̄kk(B) = 1 +

pk∑
i=1

F̄kk(i)B
i, for k = 1, ...,m. (2a)

F̄kl(B) =

pk∑
i=pk−pkl+1

F̄kl(i)B
i, for k 6= l. (2b)

Ḡkl(B) =

pk∑
i=0

Ḡkl(i)B
i, for k = 1, ...,m. (2c)

L̄kl(B) =

pk∑
i=0

L̄kl(i)B
i, with L̄kl(0) = F̄kl(0) for k, l = 1, ...,m. (2d)

The integers pk, k = 1, ...,m are called the Kronecker or observability indices and

they determine the structure of ones/zeros in the echelon form. Equation (2b)

uses the index pkl defined as,

pkl =

{
min(pk + 1, pl) for k ≥ l

min(pk, pl) for k < l

}
k, l = 1, 2, ...,m. (3)

As an illustration, consider the standard restricted VARMA(2,2) model:

(I + F̄ 1B + F̄ 2B
2)zt = (I + L̄1B + L̄2B

2)at (4)

where,

F̄ 1 =


−0.70 0 0

0.48 −0.50 −0.90

−0.02 0.30 −0.20

 ; F̄ 2 =


0.30 −0.20 0.50

−0.12 0.08 −0.20

0.18 −0.12 0.30

 ;

L̄1 =


−0.20 0.40 0.70

0.68 −0.46 −0.68

0.18 1.24 −0.38

 ; L̄2 =


0.30 0.50 −0.80

−0.12 −0.20 0.32

0.18 0.30 −0.48

 ;
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Note that this representation has 34 non-zero parameters, excluding those of the

covariance matrix, and pmax = 2.

Consider now the following VARMA echelon form:

(F̄0 + F̄1B + F̄2B
2)zt = (L̄0 + L̄1B + L̄2B

2)at, (5)

with,

F̄0 = Q0 =


1.0 0 0

0.4 1.0 0

−0.6 0 1.0

 ; F̄1 =


−0.7 0 0

0.2 −0.5 −0.9

0.4 0.3 −0.2

 ;

F̄2 =


0.3 −0.2 0.5

0 0 0

0 0 0

 ; L̄1 =


−0.2 0.4 0.7

0.6 −0.3 −0.4

0.3 1.0 −0.8

 ; L̄2 =


0.3 0.5 −0.8

0 0 0

0 0 0

 ;

One can find out that systems (4) and (5) are observationally equivalent by pre-

multiplying (5) by F̄−1
0 . Kronecker indices in model (5) are pk = {2, 1, 1}, cor-

responding to the maximum dynamic order of each component of zt. Obviously,

pmax must be the same in the standard (4) and echelon (5) representations. Fi-

nally, the VARMA echelon: (i) reduces the number of non-zero parameters from

34 to 24 and, (ii) is a canonical form, meaning that there are no alternative repre-

sentations with the same (or less) number of parameters. These advantages have

been pointed out by many authors, among others, Hannan and Deistler (1988),

Lütkepohl and Poskitt (1996) or, more recently, Mélard et al. (2006).
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2.2 SS models

The relationship between the variables zt and ut in (1) can also be described by

the SS model:

xt+1 = Φxt + Γut +Eat (6a)

zt = Hxt +Dut + at (6b)

where xt ∈ Rn is a vector of states variables or dynamic components. The in-

novations at coincide with those in (1), if both representations are adequately

normalized. This special SS structure is known as innovations form.

We use the innovations form (6a)-(6b) instead of a more common SS model

because it has a single error term and, therefore, is closer to VARMAX models.

However this representation is equally general, see Hannan and Deistler (1988) for

a theoretical discussion and Casals et al. (1999) for a procedure to compute the

parameters in (6a)-(6b) from any SS model.

The SS representation (even in innovations form) of a given dynamic system

is not unique. To see this, note that for any nonsingular arbitrary matrix T , ap-

plying the equivalence transformation x∗t = T−1xt, Φ∗ = T−1ΦT , Γ∗ = T−1Γ,

E∗ = T−1E, H∗ = HT to any SS form yields an alternative representation for

the output.

Any canonical SS representation is characterized by two elements: 1) a certain

structure of the transition matrix, e.g., some specific rows or columns must be

null or identity sub-matrices and, 2) a unique transformation matrix T (the only

matrix T which keeps this ones/zeros structure is the identity matrix). The main

interest of canonical representations lies in the fact that they realize the system

output as a function of a unique parameter set and, therefore, are exactly identified

and a must for many applications such as parameter estimation. In the context of

this article, we will use the Observable Canonical Form, hereafter OCF, and the
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Luenberger Canonical Form, from now on LCF, due to Luenberger (1967).

3 Main results

We propose two different procedures to derive the VARMAX coefficients corre-

sponding to a given SS model. Algorithm #1 requires two conditions while Al-

gorithm #2 is more general but also more complex. Note that they are mutually

coherent as they lead to the same VARMAX model when the conditions required

by Algorithm #1 hold. The following sub-sections detail how to compute these

procedures.

3.1 Algorithm #1: From general SS model to the equiva-

lent standard VARMAX representation

The first algorithm requires two conditions: 1) the system order, n, must be

multiple integer of m (from now on C.1) and, 2) the observability matrix, Opmax ,

for pmax = n/m must have full rank (hereafter C.2). It is straightforward to see

that every single-output minimal system fulfills both conditions as, m = 1 and,

consequently, Opmax becomes On, which has full rank when the system is min-

imal. Analogously, every multivariate minimal system whose components (zk,t)

have identical Kronecker indices (pk) also fits to C.1 and C.2, as n =
∑m

k=1 pk.

The algorithm can be computed as follows.

Step 1. Minimality: If the initial SS model is not minimal, reduce it to an

equivalent minimal SS realization by applying the staircase algorithm (Rosen-

brock, 1970). Note that minimality is a necessary and sufficient condition for the

system to be observable and controllable.

Step 2. Innovations form: Transform the model obtained from Step 1) to the

corresponding innovations form. Casals et al. (1999) provide an efficient proce-

dure to do it. This transformation has a suitable property: if we choose the strong
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solution to the Riccati equation, then the eigenvalues of (Φ −EH) will lie in or

within the unit circle and there will be no moving average roots outside the unit

circle in the resulting VARMAX model.

Step 3. Transformation to the OCF: To do so, we operate to find the trans-

formation matrix, T , such that Φ∗ = T−1ΦT and H∗ = HT present the OCF

defined as:

Φ∗ =



−F̄ 1 I 0 . . . 0

−F̄ 2 0 I . . . 0
...

...
...

. . .
...

−F̄ pmax−1 0 0 . . . I

−F̄ pmax 0 0 . . . 0


, H∗ =

[
I 0 . . . 0

]
. (7)

Appendix A shows all the details of how to compute the matrix T .

Step 4. Obtaining polynomial matrices Ḡ(B) and L̄(B):

Ḡ0 = D,


Ḡ1

Ḡ2

...

Ḡpmax

 = T−1Γ +


F̄ 1Ḡ0

F̄ 2Ḡ0

...

F̄ pmaxḠ0

 ,


L̄1

L̄2

...

L̄pmax

 = T−1E +


F̄ 1

F̄ 2

...

F̄ pmax


(8)

3.2 Algorithm #2: From general SS models to the equiva-

lent VARMAX echelon representation

This second algorithm is more general than the previous one, as it does not

require any particular condition. The downside is that it is more complex. For

example, it requires to identify the Kronecker indices which are directly specified

in Algorithm #1. Algorithm #2 can be broken into two stages: 1) obtaining the

Luenberger Canonical Form, and 2) deriving the VARMAX echelon coefficients.
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Stage 1: Computing the LCF.

Steps 1, enforcing minimality, and 2, obtaining the innovations form, are iden-

tical to those in Algorithm #1.

Step 3. Identifying the Kronecker indices in the original SS representation: To

this end, consider the observability matrix of a SS model such as (6a-6b):

On =
(
H ′ (HΦ)′ (HΦ2)′ . . . (HΦn−1)′

)′
(9)

As the model is minimal, then this matrix has n linearly independent rows. If these

rows are chosen in descending order we can build a base which, after re-ordering,

can be written as:

M =
(
h1

(
h′1Φ

)′
...
(
h′1Φ

p1−1
)′
h2 ...

(
h′2Φ

p2−1
)′
... hm ...

(
h′mΦpm−1

)′)′
(10)

where hk is the k-th row of H , pk (k = 1, ...,m) are the Kronecker indices and,

therefore,
∑m

k=1 pk = n.

Step 4. Transformation to the LCF: Again, this is done through a similar

transformation. Appendix A shows all the details of how to compute the transfor-

mation matrix T .

Stage 2: Identifying the VARMAX echelon coefficients.
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The LCF is defined by the matrices Φ∗ and H∗, being:

Φ∗ =



F 1 Q1 0 . . . 0

F 2 0 Q2 . . . 0
...

...
...

. . .
...

F pmax−1 0 0 . . . Qpmax−1

F pmax 0 0 . . . 0


and H∗ =

[
F 0 0 0

]
. (11)

Φ∗ is a companion matrix, where each F j block (j = 1, ..., pmax) has a num-

ber of rows equal to the number of Kronecker indices greater or equal to k,

m̄ =
∑m

k=1 min{pk, 1} columns and some null elements. In fact, the (k, l)-th ele-

ment of F j will be nonzero only if j ∈
[
pk−pkl+1pk

]
, where pkl was defined in (3).

Each Qk block is a zeros/ones matrix, with as many columns as the number of ob-

servability indices which are greater or equal to k. If the endogenous variables are

sorted according to their corresponding observability indices, the structure of Qk

will be Qk =
[
Ik+1 0

]′
, where Ik+1 is an identity matrix with the same number

of rows as F k+1. With respect to H∗, F 0 is an m× m̄ matrix, such that the rows

corresponding to components with nonzero observability indices can be organized

in an m̄× m̄ lower triangular matrix with ones in the main diagonal.

Transforming model (6a)-(6b) to the Luenberger canonical structure yields:

x∗t+1 = Φ∗x∗t + Γ∗ut +E∗at (12a)

zt = H∗x∗t +Dut + at (12b)

where matrices Φ∗ and H∗ are as in (11). To write this model in an equivalent

polynomial form it is convenient to increase the system dimension up to m · pmax

by adding as many non-excited states as needed. Then, the structure of Φ∗ will

be as in (11) but with: i) the identity matrix instead of Qj, and ii) an augmented

dimension of matrices F j, now m×m. Note that the constraints about potentially

nonzero parameters also affect these augmented matrices. Consequently, the new

non-excited states require adding null columns to H∗ except for the endogenous
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variables with a null observability matrix, so that the augmented F j is a m ×m
lower triangular matrix with ones in its main diagonal. This particular structure

allows writing the observation equation as:

F−1
0 zt = x∗1:m,t + F−1

0 Dut + F−1
0 at (13)

where x∗1:m,t denotes the first m elements of the state vector x∗t . According to

(13), one can isolate x∗1:m,t and substitute them in the state equation. Finally,

taking into account the companion structure of Φ∗, we obtain the coefficients in

the VARMAX echelon form (1)-(3) as:

F̄ 0 = F−1
0 , F̄ j = −F jF

−1
0 ; (14a)

Ḡ0 = F−1
0 D, Ḡj = Γ∗ + F̄ jD; (14b)

L̄0 = F̄ 0, L̄j = E∗ + F̄ j, j = 1, 2, ..., pmax; (14c)

F̄ (B) =

pmax∑
j=0

F̄ jB
j, Ḡ(B) =

pmax∑
j=0

ḠjB
j, L̄(B) =

pmax∑
j=0

L̄jB
j. (14d)

This representation has the characteristic structure of a canonical VARMAX ech-

elon model, see Dickinson et al. (1974).

4 Examples

4.1 VARMAX representation of some common SS specifi-

cations

Structural SS models are adequate for many uses, such as displaying the struc-

tural components of a time series or dealing with nonstandard samples (e.g., those

with missing values, aggregated data or observation errors). On the other hand,

VARMAX representations are more adequate for other purposes such as diagnos-

tic checking, if only because they have a single source of errors. To get the best

of both worlds one needs then the ability to obtain the VARMAX reduced form

corresponding to SS model, bearing in mind that the converse transformation has

11



been solved by Aoki (1990).

Table 1 illustrates the results of the methods described in Section 3 by showing

the ARMAX structures corresponding to some common SS models.

[TABLE 1 SHOULD BE AROUND HERE]

All the SS models in Table 1 are univariate, so these results could have been ob-

tained by other approaches such as, e.g., by identifying the autocorrelation function

of the endogenous variable (Harvey, 1989, Chapter 2) or using the pseudo-spectrum

implied by the unobserved components and reduced form models (Bujosa et al.,

2007).

Table 2 shows that our method can also be applied to multivariate models.

Note that, even in the simplest cases, it would be very difficult to obtain the corre-

sponding VARMAX form by the previously mentioned autocorrelation or spectral

approaches.

[TABLE 2 SHOULD BE AROUND HERE]

4.2 Identifiability and conditioning

The methods described in Section 3 are also useful to analyze two important (but

often ignored) issues: model identifiability and conditioning.

A parametric model is said to be identifiable if no two parameter settings

yield the same distribution of observations. By definition, canonical VARMAX

models are always identified, while there may be infinite SS models realizing the

same reduced-form VARMAX. In this case, the SS models would be unidentifiable.

Our methods can be applied to analyze identification of the structural SS model

by the following procedure:
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Step 1: Compute the response of VARMAX coefficients to small perturbations

in the SS parameters. These values would be finite-difference approximations to

the corresponding partial derivatives.

Step 2: Organize these derivatives into a Jacobian matrix, J , with as many

columns as the number of free parameters in the SS model (PSS) and as many

rows as the number of parameters in the VARMAX form (PV ).

Step 3: Compute the rank of J , denoted as Rk(J).

Step 4: Characterize the identifiability of the system as described in Table 3.

[TABLE 3 SHOULD BE AROUND HERE]

An efficient way to perform Step 3 above would consist of computing the

singular-value decomposition (SVD) of J in Step 2. Note that a null singular

value corresponds to a linear combination of the VARMAX parameters that is not

affected by perturbations on the SS model parameters and, therefore, points out to

a specific source of non-identifiability. Accordingly, the rank of J is the number of

non-zero singular values. Moreover, by defining the transformation as the function

PV = f(PSS), the Jacobian, J , can also be used to compute its condition number

as c(f, PSS) = ||J || · ||PSS|| / ||PV ||, which informs about the robustness of the

transformation against numerical errors.

Consider, as an example, the following SS model:

xt+1 = −φxt + wt, wt ∼ iid(0, .1) (15)

zt = xt + vt, vt ∼ iid(0, 1) (16)
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with E(wt, vt) = 0, which has an ARMA(1,1) reduced form:

(1 + φB)zt = (1 + θB)at, at ∼ iid(0, σ2
a) (17)

where the AR parameter in (17) coincides with the opposite of the transition scalar

in (15). Figure 1 depicts the values of the θ and σ2
a parameters associated to dif-

ferent values of φ, as well as the smallest singular value of the Jacobian defined

above in each case. Observe that when φ = 0 the corresponding singular value is

null. In this case the structural model degenerates to the sum of two white noise

processes and is, accordingly, unidentifiable.

[FIGURE 1 SHOULD BE AROUND HERE]

4.3 Fitting an errors-in-variables model to Wolf’s sunspot

series

This example illustrates the use of our procedures to perform the diagnostic check-

ing for a previously estimated SS model. To this end, consider the annual series of

Wolf’s Sunspot Numbers 1700-1988 taken from Tong (1990). This dataset draws

on records compiled by human observers using optical devices of varying quality,

so it seems natural to assume that the recorded values are affected by observation

errors. On the other hand, many previous analyses have found that this series has

a harmonic cycle with an 11 years period. Building on these two ideas, we fitted

and estimated by gaussian maximum-likelihood an AR(2) plus white noise errors

model to the square root of the original data. The resulting estimates are:

(1− 1.444
(.048)

B + .743
(.047)

B2)ẑ∗t = 1.476
(.145)

+ ŵt, σ̂2
w = 2.205; (18)

zt = ẑ∗t + v̂t, σ̂2
v = .147; (19)

where zt and z∗t are, respectively, the square root of the Wolf number at year t

and the underlying “error free” figure. Note that the primary AR(2) structure has

complex roots, which implies that the data follows a damped cycle with a period
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of 10.87 years.

Using the algorithm described in Section 3, the SS representation of (18)-(19)

can be written as the ARMA(2,2) model:

(1 + 1.444B + .743B2)zt = 1.476 + (1− .133B + .041B2)ât, σ2
â = 2.689,

Q(8) = 10.59, `∗(θ̂) = 554.246; (20)

where Q(8) is the portmanteau Q statistic computed with 8 lags and `∗ denotes

the minus log-likelihood corresponding to the estimates.

Model (20) has six parameters while (18)-(19) has only five. Therefore, the

latter is an overidentified structural form. It is immediate to check the empirical

consistency of the structural model constraint by estimating freely the parameters

in (20):

(1 + 1.428
(.069)

B + .733
(.055)

B2)zt = 1.509
(.181)

+ (1− .112
(.090)

B + .064
(.078)

B2)ât,

σ2
â = 2.688, `∗(θ̂) = 554.169; (21)

so models (20) and (21) are almost identical. Their equivalence can be formally as-

sessed by computing an LR statistic which value, .154, confirms that the structural

constraint is consistent with the data.

4.4 “Bottom-up” modeling of quarterly US GDP trend

The model-building sequence followed in Section 4.3 can be described as “top-

down”, meaning that we first fitted a structural (“top”) model and then obtained

the corresponding VARMAX (“bottom”) reduced form. In this example we will

show that our methods can also be applied to implement a “bottom-up” modeling

strategy.

By “bottom-up” we refer to the situation when one fits a reduced-form VAR-
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MAX model to the data and then computes the structural model parameters that

realize, exactly or approximately, this reduced form. This approach, originally pro-

posed by Nerlove et al. (1995), is justified if one wants to combine the advantages

of a structural SS model with the ability of reduced form models to capture the

data sample properties. Note also that this idea has a close relationship with the

notion of ARIMA-based time series decomposition, originally suggested by Hillmer

and Tiao (1982).

Consider now the quarterly and seasonally adjusted series of US Gross Domestic

Product (GDPt), from 1947 1st quarter to 2008 3rd quarter, in constant 2000 US

Dollars. The trend of GDP series is often extracted using the filter proposed by

Hodrick and Prescott (1997) which, as it is well known (see, e.g., Harvey and

Trimbur, 2008) is equivalent to the smoothed trend obtained from an integrated

random-walk trend model:

µt+1 = µt + βt

βt+1 = βt + ζt

zt = µt + εt (22)(
ζt

εt

)
∼ iid

{(
ζt

εt

)
,

(
σ2
ζ 0

0 σ2
ε

)}

with a signal-to-noise variance ratio such that σ2
ζ/σ

2
ε = 1/1600.

While the Hodrick-Prescott filter is a simple and effective tool to extract a

smooth long-term trend component, it does not capture well the data dynamics.

In this case, if we fit model (22) to the series zt = log(GDPt) × 100, maximum-

likelihood variance estimates would be σ2
ε = 1.359 and σ2

ζ = 1.359/1600. Applying

our method to this model yields the reduced form ARIMA model:

(1−B)2 log(GDPt)× 100 = (1− 1.777B + .799B2)ât, σ2
â = 1.699

Q(15) = 239.82; `∗(θ̂) = 174.8 (23)
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where the large value of the residual Q-statistic indicates that a strict Hodrick-

Prescott specification does not capture all the autocorrelation of this series. There-

fore, we may want to adjust a trend model with the dynamic structure of (22) so

that it realizes a previously fitted ARIMA model. This modeling strategy can be

implemented with the following process:

Step 1. Fit a VARMAX form to the dataset.

Step 2. Compute the SS model parameters that realize more closely the model

previously fitted. This requires a non-linear iterative procedure to minimize a

given loss function. In this example we specified this loss function as the squared

root of the approximation error, computed as the difference between the parame-

ters of: (a) the Step 1 model, and (b) those of the reduced-form corresponding to

the SS model.

Note that there are many valid specifications for the loss function employed

in Step 2. For example, one could minimize the squared sum of the difference

between: (a) the log-likelihood of both models, or (b) the residual series generated

by both models. These alternative functions would be particularly useful if the SS

model cannot realize exactly the reduced form model.

Table 4 summarizes the results of the bottom-up sequence applied to the GDP

data. In Step 1 we fitted an ARIMA model to zt = log(GDPt) × 100. Note that

its parameters are very different from those of model (23).

In Step (2.a) we estimated the two variances of an integrated random-walk

model by minimizing the loss function defined above and the corresponding reduced-

form model. Note that the latter is similar but not identical to the model in Step

1, so an exact equivalence between both models could not be achieved.

On the other hand, comparing the models in Steps (1) and (2.a) it is immediate
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to see that the latter is overidentified, as it only has two free parameters. In Step

(2.b) we freed the null constraint imposed on the model covariance, to improve

the fit between it and the reduced-form. The results indicate clearly that both are

now equivalent.

Therefore one can conclude that, without the overidentifying constraints, the

dynamic structure underlying the HP filter model could be flexible enough to cap-

ture most of the data autocorrelation.

[TABLE 4 SHOULD BE AROUND HERE]

5 Concluding remarks

The method described in this paper has several practical uses and some theoretical

implications that can be summarized in the following items.

First, it transforms a structural SS form into an equivalent canonical reduced

form, which identifiability is assured. Therefore, it provides the necessary con-

ditions for the SS structure to be identified. Moreover, our method allows one

to compute the derivatives of the VARMAX model parameters corresponding to

any structural SS specification, providing: i) a natural and easy method to detect

identifiability issues, and ii) the condition number of the transformation.

Second, obtaining the VARMAX form corresponding to a given SS specifica-

tion is useful for diagnostic checking in two specific ways. On one hand, if the SS

model is empirically adequate, its reduced form representation should be able to

filter the data to white noise residuals. On the other hand, if the structural model

is overidentified, unconstrained estimation of the reduced form provides an easy

way to test the overidentifying constraints through a LR test.

Third, for some applications (e.g., ARIMA-based seasonal adjustment or time

18



series disaggregation) one wants to obtain the structural model that more closely

realizes a given reduced form. As shown in the example 4.4, our method provides

the basic functionality required to do this by computing the numerical solution of

a simple optimization problem.

Fourth, the method avoids strictly non-invertible representations of the VAR-

MAX model, so the resulting models may be adequate for some specific uses requir-

ing this property such as, e.g., computing forecasts or performing the structural

decomposition proposed by Casals et al. (2002).

Last, if a general linear stochastic process can be written either in SS or in

VARMAX form, just assuming weak assumptions, this means that both represen-

tations are equally general in their ability to represent the data and, therefore,

choosing any of these representations is just a matter of convenience.

The procedures described in the paper are implemented in a MATLAB toolbox

for time series modeling called E4, which can be downloaded at www.ucm.es/info/icae/e4.

The source code for all the functions in the toolbox is freely provided under the

terms of the GNU General Public License. This site also includes a complete user

manual and other materials.
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Appendix A

Algorithm #1. Step 3.

Matrix T can be computed as follows:

1. Given the structure of Φ∗ and using partitioned matrices, one can see that

T 1:n−m = ΦTm+1:n, where T i:j is the matrix made up of the columns i, i +

1, ..., j of T . From this and C.1, we can write T as a function of its last m

columns:

T =
[
Φ

n
m
−1T n−m+1:n Φ

n
m
−2T n−m+1:n . . . ΦT n−m+1:n T n−m+1:n

]
(24)

2. Premultiplying T by matrix H , we obtain the system of linear equations:

I

0
...

0

0


=



HΦ
n
m
−1

HΦ
n
m
−2

...

HΦ

H


T n−m+1:n (25)

The left side of this equation corresponds to H∗ in (7) whereas the right

side is HT . The matrix of coefficients in this system of equations is the

observability matrix Opmax , and as C.1 holds, then system (25) has a single

unique solution. Further, the product OpmaxT returns an inferior triangular

matrix with ones in its main diagonal, so T is necessarily nonsingular.

Algorithm #2. Step 4.

Matrix T can be computed with the following procedure:

1. Invert matrix M , defined in (10), and select, for each component with a

nonzero observability index, the ik-th column of M−1, denoted as µk, with

ik =
∑k

l=1 pk.
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2. For each component with a nonzero observability index, build the matrix

T k =
[
Φpk−1µk Φpk−2µk ... µk

]′
.

3. Obtain T by sorting the rows in T k =
[
tpk,k tpk−1,k t1,k

]′
, with tpk−l,k =

Φpk−lµk, so that tpk−h,k precedes tpl−i,k if pk − h > pl − i, or if k < l and

pk − h = pl − i.
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Figure 1: Parameters of the ARMA model (17) and smallest singular value for
several values of in the AR(1)+error model.
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Table 3: Characterization of the identifiability of the SS model.

Rk(J) = PSS
PSS < PV The SS model parameters are overidentified
PSS = PV The SS model parameters are exactly identified
PSS > PV This combination is not possible

PSS and PV are, respectively, the number of parameters in the SS and VARMAX representation.
When Rk(J) < PSS , the SS model parameters are underidentified (or not identified) for PSS Q PV .
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=
.2

50
,

Q
(1

5)
=

16
.5

4,
`∗

( θ̂
)

=
75
.3

71

N
ot
es

:
T

he
fig

ur
e

in
pa

re
nt

he
si

s
is

th
e

st
an

da
rd

er
ro

r
of

th
e

es
ti

m
at

e.
T

he
va

lu
es
Q

(1
5)

an
d
`∗

(θ̂
)

re
pr

es
en

t,
re

sp
ec

ti
ve

ly
,

th
e

L
ju

ng
-B

ox
Q

st
at

is
ti

c
co

m
pu

te
d

w
it

h
15

la
gs

of
th

e
re

si
du

al
au

to
co

rr
el

at
io

n
fu

nc
ti

on
an

d
th

e
m

in
us

lo
g

(g
au

ss
ia

n)
lik

el
ih

oo
d

on
co

nv
er

ge
nc

e.
T

he
fig

ur
es

m
ar

ke
d

w
it

h
an

as
te

ri
sk

co
rr

es
po

nd
to

co
ns

tr
ai

ne
d

pa
ra

m
et

er
s.

28


