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Abstract

The correct computation of orbits of discrete dynamical systems on the inter-
val is considered. Therefore, an arbitrary-precision floating-point approach
based on automatic error analysis is chosen and a general algorithm is pre-
sented. The correctness of the algorithm is shown and the computational
complexity is analyzed. There are two main results. First, the computational
complexity measure considered here is related to the Lyapunov exponent of
the dynamical system under consideration. Second, the presented algorithm
is optimal with regard to that complexity measure.
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1. Introduction

Consider a discrete dynamical system (D, f) on some compact interval
D ⊆ R, called the phase space, given by a function f : D → D, a recursion
relation xn+1 = f(xn) and an initial value x0 ∈ D. The sequence (xn)n of
iterates is called the orbit of the dynamical system in phase space corre-
sponding to the initial value x0. If such a dynamical system is implemented,
that is a computer program is written for calculating a finite initial segment
of the orbit for given x0, care has to be taken in choosing the appropri-
ate data structure for representing real numbers. Traditionally, IEEE 754
double floating-point numbers [14, 9] are used. However, if the dynamical
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system shows chaotic behavior, a problem arises. The finite and constant
length of the significand of a double variable causes rounding errors which
are magnified after each iteration step. Already after a few iterations, the
error is so big that the computed values are actually useless. For example in
[17, 21] this phenomenon is examined for the dynamical system (D, f) with
D = [0, 1], f(x) = 3.75 · x · (1 − x) and the initial value x0 = 0.5. To put
things right, a rigorous method for computations with real numbers has to
be used. There already exist some rigorous numerical methods in the field
of dynamical systems and chaos [11, 10, 30, 23, 25, 20].

In the next section, a rigorous method based on arbitrary-precision float-
ing point arithmetic is presented and used to investigate the iteration of a
generalization of the above mentioned function. Correctness of the results
are obtained by using a method called running error analysis. The method
and the numerics are compared to interval arithmetic. In Section 3, the algo-
rithm is generalized to arbitrary functions f . The aim of the present paper
is to give bounds on some kind of space complexity of the algorithm. To be
more precise, the behavior of the the length of the significand in arbitrary-
precision arithmetic is analyzed in the task of iterates of discrete dynamical
systems. The minimal length of the significand needed for floating-point
numbers such that any computed point of an initial segment of the orbit has
a specified and guaranteed accuracy is examined. This minimal length will
be related to the length of the initial segment of the orbit. To cope with
this task, a precise mathematical framework for floating-point computations
is applied. This framework should be suited to computability concepts over
the reals. Finally, a complexity measure for describing the computational
effort on arbitrary-precision floating-point numbers is introduced. Roughly
speaking, it is the ratio of the length of the significand to the number of it-
erations in the limit of number of iterations to infinity. The first main result
shows that this complexity measure is related to the Lyapunov exponent.
The second main result proves that the presented algorithm to compute the
orbit up to any given accuracy is optimal with respect to that complexity
measure. As a consequence, these results give some advice for economically
designing reliable algorithms simulating one-dimensional discrete dynamical
systems.
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2. Dynamic behavior of the logistic equation and rounding error

In this section, the discrete dynamical system (D, fµ) with D = [0, 1] and
fµ : D → D, fµ(x) := µx(1 − x) for some control parameter µ ∈ (0, 4] is
investigated. In the literature, the recursion relation xn+1 = fµ(xn) is called
the logistic equation [5]. When implementing the logistic equation on a real
computer and demanding to obtain true values for the orbit (xn)n, some
rigorous method is needed. Since for some values of µ the dynamics is highly
chaotic, inaccuracies are magnified exponentially in time [6, 13]. Therefore,
it is clear that using floating-point numbers with a predefined, fixed precision
makes sense only if the maximum iteration time N also is a predefined, fixed
number. If the algorithm should work for any N , a more elaborate approach
is needed. First one can work with arbitrarily high precision floating-point
numbers, the precision dynamically set and the error control implemented
in the algorithm separately. A software package for doing this task is for
example MPFR [8]. Second, there are methods with automatic error control,
for example interval arithmetic [19, 1], the Feasible Real RAM model [4] or
significance arithmetic [18]. Implementations are for example MPFI [28], the
iRRAM [21] and Mathematica [31] respectively.

All these methods have the same theoretical background. They are all
practical instances of the model of Computable Analysis [34, 24, 16] used in
computer science. While the Feasible Real RAM model directly implements
the theory of Computable Analysis, the other mentioned methods all have
their background in scientific computing. Looking closer at the various vali-
dated methods in use, they all have in common implementing some kind of
intervals for representing real numbers numerically. Therefore, the starting
point here is looking at interval arithmetic for computing orbits (xn)n. For
any time step n, let the phase point xn together with its computational er-
ror be represented by two floating-point numbers xl

n and xu
n (xu

n ≥ xl
n) with

given length mn of the significand, called the precision, forming an interval
[xl

n, x
u
n]. The interval is an enclosure of the real value xn, that is xn ∈ [xl

n, x
u
n]

for all n. The interval length dn := xu
n−xl

n gives a measure of the uncertainty
about xn and is therefore a kind of error. Interval arithmetic often models
quantities which are not known exactly. But here, the true orbit (xn)n can
be, in principle, calculated to any given accuracy. Thus, in the present set-
ting, the true object of interest is not an interval, but an approximation x̂n

of xn together with an absolute error en. The interval is only used for math-
ematical convenience. To transform the interval to a floating point value x̂n
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of precision mn, just do

x̂n := rd

(
xl
n + xu

n

2
, mn

)
(1)

where rd(x,m) performs a rounding to some floating-point number of pre-
cision m nearest to x. Note that rounding to nearest is not unique if x
is equidistant from two floating-point numbers. The absolute error en :=
|x̂n − xn| of x̂n can be estimated via the interval length dn by

en ≤
1

2
dn + rn (2)

where rn is an error caused by the rounding operation rd(., .) in Equation
(1). An upper bound on rn will be discussed later, for now it suffices to say
that in general it is small compared to dn.

The aim now is to calculate, for given initial value x = x0, N ∈ N and
p ∈ Z the orbit up to time N with relative error at most 10−p. That is, for
(x̂n)0≤n≤N it should hold

en = |x̂n − xn| ≤ 10−pxn ≤ 10−p. (3)

Why using here and in the following the relative error and not the absolute
error is discussed in some detail at the end of Subsection 3.2. The minimal
m, fulfilling the precision requirement (3) on the relative error of xn, which
depends on x, N and p, is denoted by mmin(x,N, p). Now, a central quantity
of this work is introduced, which is some complexity measure. Consider the
growth rate of mmin(x,N, p),

σ(x, p) = lim sup
N→∞

mmin(x,N, p)

N
.

The loss of significance rate σ(x), which may depend on the initial value x
is given by

σ(x) = lim
p→∞

σ(x, p).

This quantity describes the limiting amount of significant precision being
lost at each iteration step in the limit of infinite output precision. Significant
means here the part of the digits being correct. A general treatment of
this complexity measure is given in the next section. Roughly speaking,
⌈σ(x0, p)N + p · ld(10)⌉ is the precision for any floating-point number needed
in an algorithm doing the iteration starting with x0 and calculating to xN , if
the output should be precise to at least p decimal places. Here, ld(.) is the
logarithm to base 2.
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2.1. Dynamic behavior of the logistic equation

Before analyzing the different numerical behavior, it is worth having an
analytical look at the dynamical behavior of the system. Despite the fact
that these results are well known [13, 7], they are reviewed here for the sake
of self containment.

First have a look at the fixed points of the logistic equation and their
stability. In the range D = [0, 1], the equation possesses exactly one fixed
point xo = 0 if µ ∈ (0, 1] and exactly two fixed points xo = 0 and x(µ) = 1− 1

µ

if µ ∈ (1, 4]. Looking at the derivatives f ′
µ(x

o) = µ and f ′
µ(x

(µ)) = 2 − µ
gives the stability of the fixed points. Since |f ′

µ(x
o)| < 1 for µ ∈ (0, 1) and

|f ′
µ(x

o)| > 1 for µ ∈ (1, 4], xo is a stable fixed point, an attractor for µ ∈ (0, 1)
and an unstable fixed point, a repeller for µ ∈ (1, 4]. If µ = 1, the only fixed
point xo is hyperbolic, that is |f ′

1(x
o)| = 1. At µ = 1, a bifurcation occurs.

If µ ∈ (1, 3), xo becomes unstable and the newly occurring fixed point x(µ) is
stable. At µ = 3 a second bifurcation occurs and for µ > 3 both fixed points
are unstable.

Second, examine the basin of attraction of the stable fixed point. If µ ∈
(0, 1), the contraction mapping principle directly gives limn→∞ fn

µ (x) = xo

for all x ∈ [0, 1]. If µ = 1, observe that f1(x) < x holds for all x ∈ (0, 1).
Hence, any sequence (fn

1 (x))n, x ∈ (0, 1), is strictly decreasing and bounded
from below. So, also limn→∞ fn

1 (x) = xo holds for all x ∈ [0, 1]. Finally,
in the case µ ∈ (1, 3), limn→∞ fn

µ (x) = x(µ) holds for all x ∈ [0, 1]. For a
proof, the interested reader is referred to the literature:[7], Proposition 5.3
in Section 1.5.

Finally, for µ > 3 the system goes into a region showing periodic behavior
with period doubling bifurcations. Finally, for some µ < 4, chaotic behavior
is reached.

This analysis shows that in the parameter range µ ∈ (0, 3), the orbit
tends to the stable fixed point for any initial value x ∈ [0, 1]. Furthermore,
there exists some closed interval I ⊆ D, which depends on µ, containing the
stable fixed point such that fµ(I) ⊆ I holds and fµ is a contraction on I.
Next have a look at the computational effort in the various control parameter
ranges.

2.2. Numerical analysis of the computational complexity

The logistic equation is implemented in various forms using an arbitrary-
precision interval library. For that purpose, the already mentioned interval

5



library MPFI based on the arbitrary-precision floating-point number library
MPFR, both written in C, is used. For each control parameter µ ranging
from 0.005 to 4 and a step size of 0.005, the orbit for initial value x = 0.22
is calculated up to N = 2000. For each µ, the minimum precision mmin

needed to guarantee en ≤ 10−6xn for n = 0, . . . , N is searched. Then, σest :=
mmin/N is calculated. First, fµ is implemented using a natural interval
extension based on the expressions µx(1− x), µ(x− x2) and µ

4
− µ(x− 1

2
)2.

The natural interval extension is obtained by replacing any occurrence of the
variable x in the expression by an interval x [26]. The results are shown in
Figures 1, 2 and 3 respectively. Second, the logistic equation is implemented
using a centered form, actually the mean value form [26, 17]: T1,µ(x) =
fµ(mid(x)) + f ′

µ(x)(x − mid(x)) where x is an interval and mid(x) is the
midpoint of x. The result is shown in Figure 4. In the following, these 4
calculations are referred to as 1 to 4 respectively.

The interval computation is in agreement with the dynamical picture only
in Calculation 4. While for µ ∈ (0, 1), the results shown in Calculations 1, 2
and 4 are in agreement with the dynamical analysis, 3 is not since it would
suggest an exponential divergence of initially nearby orbits which is not true
in reality. A similar situation occurs for µ ∈ (1, 3). Here, the Calculations
3 and 4 are in agreement with the dynamical picture, 1 and 2 on the other
hand not. The picture does not change if µ ≥ 3 and hence it can be said
that in the range µ ∈ (1, 4], the Calculations 3 and 4 are in agreement with
the dynamic picture, while 1 and 2 are not. How can this be explained?

2.3. Investigating Calculation 1

This subsection deals with the explanation of the curve obtained by Cal-
culation 1. For doing an error analysis of the logistic equation analytically,
some idealizing assumptions have to be made. Generally, executing the it-
eration in interval arithmetic, two types of error are present. First, error
propagation solely due to the iteration and second the newly added rounding
error caused by the calculation of fµ. In the following, only the error prop-
agation is regarded. This means that there is only one primary made error
caused by rounding the initial value x = x0 to some floating-point number
of some specified precision m. The next idealization is that the value of µ
is assumed to be given with such a high precision that no interval represen-
tation is needed. Finally, the value of rn in Equation (2) is neglected. The
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recursion relation then reads

xl
n+1 = µxl

n(1− xu
n)

xu
n+1 = µxu

n(1− xl
n)

with the interval length dn given by the recursion relation

dn+1 = xu
n+1 − xl

n+1 = µ(xu
n − xu

nx
l
n − xl

n + xu
nx

l
n)

= µdn

with the obvious solution dn = µnd0. The absolute error en of x̂n according
to Equation (1) can be bounded from above by

en ≤
1

2
dn =

1

2
µnd0. (4)

The ideal assumptions require the somewhat unreal setting that the precision
has to be set to some finite, but big enough value m for representing x0

and a virtually infinite value m∞ for doing the iteration. To get a relation
connecting m and the output precision p in (3), some upper bound on d0 is
needed. The value of d0 is given as the rounding error by representing x0 as
a floating-point number of precision m. For that, the well known estimate

d0 ≤ 2−m+1x0 ≤ 2−m+1 (5)

exists. Combining (3), (4) and (5) gives as a sufficient condition

µn · 2−m ≤ 10−p

for n = 0, . . . , N . So, the sufficient condition gives an upper bound on
mmin(x,N, p) by

mmin(x,N, p) ≤ ⌈p · ld(10) +N ·max(0, ld(µ))⌉.

This finally leads to an upper bound for the loss of significance rate,

σ(x, p) ≤ σ(x) ≤ max(0, ld(µ)).

The curve in Figure 1 shows that σest exceeds the estimated bound
max(0, ld(µ)) only slightly. So, the above made ideal assumptions seem to
be valid. In [21], the logistic equation was also investigated for µ = 3.75
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using the exact real arithmetic package iRRAM. In the paper, the maxi-
mum bounding precision needed to guarantee the correctness of the first 6
decimal places are reported up to N = 100000. Relating this quantity to
mmin shows full agreement with the simulation results performed here. So,
for µ > 1, the interval length dn increases exponentially in time n which is
in contrast to the dynamic behavior for µ ∈ (1, 3). The reason is that the
natural interval approach implicitly, due to the dependency problem, takes
account only of the global behavior of fµ in the form of a global Lipschitz
constant max{|f ′

µ(x)| : x ∈ D} = µ. However, a local Lipschitz constant
max{|f ′

µ(x)| : x ∈ [xl
n, x

u
n]} governs the real error propagation at time step n

and also describes the dynamic behavior.
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Figure 1: Estimated loss of significance rate for the logistic equation, formula µx(1 − x).
The crosses indicate the theoretical curve from error analysis.
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2.4. Investigating Calculation 2

Calculation 2 is similar to Calculation 1. An analogous analytic approach
as in Calculation 1 gives the recursion relation

xl
n+1 = µ(xl

n − (xu
n)

2)

xu
n+1 = µ(xu

n − (xl
n)

2)

and hence

dn+1 = µdn + µ((xu
n)

2 − (xl
n)

2) = µdn(1 + xu
n + xl

n).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

σ
e
s
t

µ

+
+
+
+
+
+
+
++

++
++

++
++

++
+++

+++
+++

+++
++++

++++
+++

++
++

++
++

++
++

+++
+++

+++
+++

++++
++++

++++
+

Figure 2: Estimated loss of significance rate for the logistic equation, formula µ(x − x
2).

The crosses indicate the theoretical curves from error analysis.

The recursion relation fulfills therefore dn+1 ≥ µdn and dn+1 ≤ 3µdn. As
a consequence the bounds µnd0 ≤ dn ≤ (3µ)nd0 are obtained. In analogy to
Calculation 1, an upper bound for mmin(x,N, p),

mmin(x,N, p) ≤ ⌈p · ld(10) +N ·max(0, ld(3µ))⌉
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and hence
σ(x, p) ≤ σ(x) ≤ max(0, ld(3µ))

is calculated. A brief look at Figure 2 shows that this upper bound is too
rough. On the other hand, dn ≥ µd0 suggests that the bound derived in
Calculation 1 is a lower bound, hence max(0, ld(µ)) ≤ σ(x) ≤ max(0, ld(3µ)).
This is actually verified by numerical evidence.

2.5. Investigating Calculation 3

Calculation 3 is explained here in the parameter range µ ∈ (0, 1), where
it is not in agreement with the dynamic picture. Nevertheless it should be
mentioned that the natural interval extension used here seems to be in full
agreement with the dynamic picture in the parameter range µ ∈ [1, 4] as is
suggested by Figure 3. The curve seems to be identical to Figure 4 in the
range µ ∈ [1, 4].
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Figure 3: Estimated loss of significance rate for the logistic equation, formula µ

4
−µ(x− 1

2
)2.

The crosses indicate the theoretical curve from error analysis.

To explain the observed behavior, first note that for µ < 1, fµ(x) ≤ µx
follows for all x ∈ [0, 1]. Hence, xn ≤ µnx0 holds for all n ∈ N and the
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orbit (xn)n tends exponentially fast to zero. A brief look at the expression
of fµ(x), fµ(xn) =

µ

4
− µ(xn − 1

2
)2, shows that the value of the second term

in the difference tends exponentially fast in n to the value of the first term.
Hence, the big values of the loss of significance rate for small values of µ can
be explained by cancellation. So, the behavior may be explained solely by a
typical phenomenon of floating-point arithmetic and not an effect due to the
dependency problem in interval arithmetic. To give an analytical description
of the problem, it is easier now to chance from interval notation to classical
error analysis notation.

First note that even x̂0 may differ from the initial value x since the con-
version to a floating-point number may cause the very first rounding error.
Next, already mentioned, in calculating the orbit (x̂n)n, two types of error are
present. First, error propagation due to the iteration scheme and second the
rounding error caused by the calculation of fµ. Now, let x̂n for some n ∈ N

be given. Then the true error after one iteration step is x̂n+1 − xn+1. Since
in reality not fµ(x̂n) is calculated but some erroneous approximation f̂µ(x̂n),

the true error can be written as x̂n+1 − xn+1 = f̂µ(x̂n)− fµ(xn). Inserting a
constructive zero gives a sum

x̂n+1 − xn+1 = (fµ(x̂n)− fµ(xn)) + (f̂µ(x̂n)− fµ(x̂n)) (6)

of two terms. The first term describes solely the error propagation while the
second term gives exactly the newly produced error due to the approximate
calculation of fµ.

Let us fix some n ∈ N and consider the absolute error of x̂n+1. To get the
formulas more compact, set gµ(x) := µ(x− 1

2
)2. Then,

|x̂n+1 − xn+1| = |
̂

((̂µ
4
)− ĝµ(x̂n))− (µ

4
− gµ(xn))|

≤ | ̂
((̂µ

4
)− ĝµ(x̂n))− ((̂µ

4
)− ĝµ(x̂n))|+ |(̂µ4 )−

µ

4
|

+ |ĝµ(x̂n)− gµ(xn)|

≤ | ̂
((̂µ

4
)− ĝµ(x̂n))− ((̂µ

4
)− ĝµ(x̂n))|+ |(̂µ4 )−

µ

4
|

+ |ĝµ(x̂n)− gµ(x̂n)|+ |gµ(x̂n)− gµ(xn)|

follows. Let m be assumed to be the actual precision under calculation at
time n. The last term in the previous inequality can be estimated the fol-
lowing way. As discussed in [35], the rounding error produced in calculating
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gµ can be estimated by

|ĝµ(x̂n)− gµ(x̂n)| ≤ 1.06K2−m|gµ(x̂n)| (7)

whereK is the number of rounding operations performed in computing ĝµ. In
the case considered here, K = 4 follows. It is further crucial to mention that
the factor 1.06 is only valid if K ≤ 0.1 · 2m holds so that the precision must
not be chosen too small. Furthermore, with |gµ(x̂n) − gµ(xn)| ≤ µ|x̂n − xn|
it follows

|x̂n+1 − xn+1| ≤ 2−m|(̂µ
4
)− ĝµ(x̂n)|+ 2−m · µ

4
+ 1.06K2−m|gµ(x̂n)|

+ µ|x̂n − xn|
≤ 2−m(|(̂µ

4
)|+ |ĝµ(x̂n)|+ µ

4
+ 1.06K|gµ(x̂n)|) + µ|x̂n − xn|

≤ 2−m((1 + 2−m)µ
4
+ (1 + 1.06K2−m)|gµ(x̂n)|+ µ

4

+ 1.06K|gµ(x̂n)|) + µ|x̂n − xn|
≤ 2−mµ

4
(1 + 2−m + 1 + 1.06K2−m + 1 + 1.06K)

+ µ|x̂n − xn|
≤ Cµ2−m + µ|x̂n − xn|

where C > 0 holds. In other words, one obtains the recursion relation
en+1 ≤ µen+Cµ2−m. Iterating the recursion gives en+1 ≤ Cµ2−m

∑n

k=0 µ
k+

µn+1e0 ≤ C µ

1−µ
2−m + µn+12−mx0.

As already mentioned, xn is bounded from above by xn ≤ µnx0. To come
to a sufficient condition for the precision, also a lower bound is needed. First
observe that fµ(x) ≥ µx(1 − a) holds for all x ≤ a, a, x ∈ [0, 1]. Hence, for
µ < 1, xn+k ≥ µnxk(1− xk)

n follows. This gives the sufficient condition

C µ

1−µ
2−m + µn+12−mx0 ≤ 10−pµn+1−kxk(1− xk)

n+1−k ≤ 10−pxn+1

on the precision. Note that n + 1 ≥ k ≥ 0. Then, an upper bound on
mmin(x0, N, p) is given by

mmin(x,N, p) ≤ ⌈p · ld(10) + (N − k)(ld( 1
µ
)− ld(1− xk)) + C ′⌉

with C ′ = ld(C µ

1−µ
+ µNx0) − ld(xk). This leads to an upper bound on the

loss of significance rate given by σ(x, p) ≤ ld( 1
µ
) − ld(1 − xk) for all k ∈ N.

Since xk → 0 follows for k → ∞, the final result on the loss of significance
rate is

σ(x, p) ≤ σ(x) ≤ ld( 1
µ
).

The curve in Figure 2 shows that this upper bound is in full agreement with
the numeric result.
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2.6. Investigating Calculation 4

The observation at the end of the subsection describing Calculation 1
directly leads to the already introduced mean value form. The calculation is
shown in Figure 4. This calculation is the optimum of both, Calculation 1
and 3. The curve reflects in the parameter range µ ∈ (0, 3) well the dynamic
behavior.
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σ
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Figure 4: Estimated loss of significance rate for the logistic equation, meanvalue form.

Furthermore, in the range µ ∈ [3, 4], the curve suggests a relation between
the loss of significance rate and the Lyapunov exponent λ(x) for the logistic
map:

σ(x) =
1

ln(2)
max(0, λ(x))

for all µ ∈ (0, 4]. For a curve of the Lyapunov exponent of the logistic map
see [5]. This relation will be shown in the next section for general dynamical
systems on the interval. Furthermore, it will be shown that the algorithm
based on Calculation 4 is optimal in some sense.
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But before, some crucial reflections governing the analysis in the next
section. The mean value form representation, on which the calculation is
based, can also be seen from a different viewpoint. Have again a look at
Equation (6). The true error is the sum of the error propagation (first term)
according to the iteration and the rounding error due to the computation
of fµ (second term). The first term of Equation (6) can be handled using
the mean value theorem, |fµ(x̂n) − fµ(xn)| = |f ′

µ(yn)| · |x̂n − xn| with yn ∈
[x̂n − en, x̂n + en]. This gives directly the bound

|fµ(x̂n)− fµ(xn)| ≤ sup(|f ′
µ([x̂n − en, x̂n + en])|)en.

The second term can be estimated in a similar way as was done in (7) by

|f̂µ(x̂n)− fµ(x̂n)| ≤ 1.06K2−m|fµ(x̂n)|

where K = 4 because there are 3 arithmetic operations and the rounding of
µ. Using the fact that fµ(x) ≤ µ

4
holds and fµ(x) < x if µ ≤ 1, the unknown

value |fµ(x̂n)| can be estimated from above. This calculation shows that
there exists a recursive equation on an upper bound en on en for all n:

en+1 = L(x̂n, en)en + 1.06K2−mEµ(x̂n), e0 = 2−m (8)

with L(x, e) := sup(|f ′
µ([x− e, x+ e])|) and

Eµ(x) :=

{
x if µ ≤ 1
µ

4
if µ > 1

.

This description, which is in line with the analysis of Calculation 3, is equiv-
alent to the interval description using the mean value form. Instead of using
intervals, pairs of the form value x̂n and corresponding guaranteed error
bound en is used. This approach is an automated error analysis called run-
ning error analysis [12]. From a technical point of view, the representation as
value and error has the advantage that the rounded values x̂n are calculated
as usual in floating-point arithmetic except that arbitrary-precision floats are
used. The guaranteed error bounds may be calculated using interval arith-
metic according to (8), to really guarantee a validated bound. Only a fixed
precision is needed for calculating the error bounds. Similar results as in
Figure 4 are reported in [2] by using a method analog to the one presented
here [3]. However, the connection to the Lyapunov exponent is not made in
[2].
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Before continuing, three remarks. First, interval libraries are primarily di-
vided int two types concerning their representation of an interval [29]: There
exist libraries using the infimum-supremum representation of intervals, like
MPFI, and there exist libraries using the midpoint-radius representation of
intervals. If arbitrary precision is needed, the inf-sup libraries have the dis-
advantage that two floating-point variables with high precision are needed to
represent an interval. Contrary to that, like the value and error description,
in mid-rad libraries only the midpoint of the interval needs a high precision
floating-point variable. The radius can be stored in a floating-point variable
which need not have a high precision. Clearly, the mid-rad concept has an
computational advantage in the case considered here over the inf-sup con-
cept. But the dependency problem of interval arithmetic persists. Second,
also the iRRAM package implements mid-rad intervals and has therefore to
cope with the dependency problem. However, it also permits an optimized
way for computing the iteration based on a similar algorithm as described
above [22]. Third it should be mentioned that, executing the first three pre-
sented calculations in Mathemathica using significance arithmetic, exactly
the same results are obtained. This shows that also significance arithmetic
suffers from the dependency problem as interval arithmetic does. This is
already noted in [32].

3. The general algorithm and its complexity

Let D be a compact real interval and f : D → D a self mapping. In
the following, f is assumed to be continuous on D, two times continuously
differentiable on D and f ′′ is bounded. Furthermore, f and f ′ are assumed
to be computable in the sense of Computable Analysis. The definition of a
computable real function is given below.

In this section, a general algorithm for computing the iteration

xn+1 = f(xn), x0 ∈ D (9)

is presented. To be more precise, for given x ∈ Q, N ∈ N and p ∈ Z, this
algorithm computes a finite part (x̂n)0≤n≤N of length N of the true orbit
(xn)n∈N with initial value x0 = x. Each computed value x̂n of this finite
trajectory has a relative error of at most 10−p: |x̂n − xn| ≤ 10−p|xn| for
all n = 0, 1, . . . , N . The correctness of the algorithm and its relation to
Computable Analysis is shown. Finally, its complexity is examined.

15



3.1. Computability issues and specifying the algorithm
The set of all computationally accessible real numbers are the floating-

point numbers of arbitrary precision and arbitrary exponent range denoted
by R̂. A floating-point number is a real number of the form x̂ = s ·2e−t where
t ∈ N is the precision, e ∈ Z the scale and s ∈ Z where |s| ∈ {0, 1, . . . , 2t−1}
is called the significand. To get a unique representation of x̂ for given t,
|s| ≥ 2t−1 is assumed if x̂ 6= 0 and e = 0 if x̂ = 0. Since actually no bound is
assumed on the precision and the scale, the set R̂ ⊆ R is the set of the dyadic
real numbers and therefore countable infinite. Thus, R̂ forms a natural basis
for computability considerations over finite objects. Consider some floating-
point number x̂ ∈ R̂, then the scale and the precision are two properties
of different type. While the scale is a direct function of the value of x̂, the
precision is clearly not. Reversely, let x ∈ R be some real number and x̂ ∈ R̂

a floating-point number representing x. Then the scale of x̂ is generally
determined by x while the precision can be chosen arbitrary. Regarding x̂ as
a data structure, then x̂ has as its essential property the precision. In object
oriented notation, the precision of x̂ can be written as x̂.t.

Any real number x is represented in an algorithm concerning numerical
computation by a pair x consisting of a floating point number x.f l ∈ R̂

of arbitrary precision x.f l.t approximating x and a floating-point number
x.err ∈ R̂ of fixed precision giving an upper bound on the absolute error,
|x.f l − x| ≤ x.err. Reversely, any such pair x ∈ R̂2 can be seen as the real
interval [x.f l−x.err,x.f l+x.err]. If x ∈ [x.f l−x.err,x.f l+x.err] holds for
some x ∈ R, then x is called an approximation of x. To represent a single real
number, a sequence (xn)n∈N of such pairs x are needed. A sequence (xn)n∈N
is called a floating-point name of a real number x, if any xn approximates
x, limn→∞xn.f l = x, limn→∞ xn.f l.t = ∞ and limn→∞ xn.err = 0 holds.
Clearly any real number has a floating-point name.

As already indicated, it is a straightforward task to define what a com-
putable function f̂ : R̂ → R̂ is by using classical computability theory
over finite objects. Additionally, computability over integers, computabil-
ity of functions with mixed arguments and computable predicates are de-
fined in the same manner [33]. Consider a function f : D → D, D ⊆ R

and a pair f of two functions f .f l : R̂ → R̂ and f .erf : R̂2 → R̂ hav-
ing the following property. For any approximation x of some real num-
ber x ∈ D, the pair f(x) = (f .f l(x.f l), f .erf(x)) is an approximation of
f(x). Thus, f .erf gives an upper bound on the absolute error of f .f l(x.f l),
|f .f l(x.f l) − f(x)| ≤ f .erf(x). Considering f as an interval function, the
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above property is just the fundamental property of interval arithmetic, [27]
Property 2.12. Then, f is called an approximation function for f . Now
consider an approximation function f for f such that for all x ∈ D and
any floating point name (xn)n∈N of x, (f(xn))n∈N is a floating-point name
of f(x). Such an approximation function is called approximation-continuous.
Additionally, if the two functions f .f l and f .erf of an approximation func-
tion f are computable, then f is called a computable approximation function.
Finally, f : D → D is called computable, if there exists a computable approx-
imation function f for f which is approximation-continuous.

The algorithm with the specification described at the beginning of this
section reads

1 Input parameter: x, N , p
2 Initialize precision m← 1
3 do

4 Initialize value and error x← rd(x,m)
5 for n = 0 to N do

6 If prec(x, p) = true then

7 If not printed print n, x.f l, x.err
8 else break

9 x← f(x)
10 end for

11 m← m+ 1
12 while prec(x, p) = false

where f is an approximation-continuous approximation function for f spec-
ified below. To initialize x, a rounding function rd : Q × N → R̂2 is needed
where rd(x,m).f l is a floating-point number of precision m being the exactly
rounded value of x for some rounding convention, in the following nearest.
Clearly, the value rd(x,m).err is an upper bound on the absolute rounding
error, rd(x,m).err = 1

2
ulp(x) if the rounding mode is nearest. The predicate

prec : R̂2 × Z → {true, false} is a test whether the relative error of x.f l is
bounded by 10−p. The semantics reads:

If x ∈ R̂2 approximates x ∈ R and prec(x, p) = true holds,

then |x.f l − x| ≤ 10−p|x| follows.
(10)

While the object oriented notation is convenient for a compact and in-
structive description of the algorithm, in the following analytical analysis an
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abbreviation for this notation is sometimes more handsome. As in the line
of the preceding section, floating-point numbers and functions are indicated
by a hat: x̂ := x.f l and f̂ := f .f l. An over-bar indicates an error bound:
e := x.err and erf := f .erf . Hence, x is equivalent to (x̂, e) and f is
equivalent to (f̂ , erf).

Finally a remark on optimization. The algorithm is not optimized in
performance. Including performance issues, in Line 11 something like m ←
a ·m+ b can be used where a > 1 and c ∈ N are constants. Here, the aim is
to find the minimal m to guarantee some given upper bound on the relative
error of xn.

3.2. Computability and correctness

It is clear that the rounding function rd is computable. So let us begin
with the predicate prec.

Proposition 3.1. The predicate

prec(x, p) :=

{
true if x.err ≤ 10−p

1+10−p |x.f l|
false otherwise

(11)

is computable and satisfies (10).

Proof. Let x be an approximation of x. If x.err ≤ 10−p

1+10−p |x.f l| holds, then
x.err ≤ 10−p(|x.f l| − x.err) follows. Using |x.f l| ≤ |x.f l − x| + |x| ≤
x.err + |x|, |x.f l − x| ≤ x.err ≤ 10−p(|x.f l| − x.err) ≤ 10−p|x| follows.

The predicate (11) only uses the approximation x, basic arithmetic and
finite tests. Hence, this formula is computable.

Note that the definition of the predicate also gives true in the singular
case where x.f l = 0 and x.err = 0 and hence x = 0.

An algorithm for computing f .f l is possible by assumption. To derive
an algorithm for computing f .erf on the absolute error, return to Equations
(6) and (8).

Proposition 3.2. Let x ∈ D be given and x an approximation of x with
x.f l ∈ D. Assume that f .f l(x.f l) computes the value f(x.f l) up to a cor-
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rectly rounded last bit in the significand.1 Furthermore assume f .f l(x.f l).t =
x.f l.t. Then the absolute error of f (x) is bounded from above by

L(x) · x.err + 2−x.fl.t · |f .f l(x.f l)|. (12)

Here, L(x) = sup(|f ′([x.f l − x.err,x.f l + x.err] ∩D)|).

Proof. Equation (6) gives |f̂(x̂)−f(x)| ≤ |f(x̂)−f(x)|+ |f̂(x̂)−f(x̂)|. Using
the mean value theorem, |f(x̂) − f(x)| ≤ sup(|f ′([x̂ − e, x̂ + e])|)e follows.
According to the assumption on f̂ and Theorem 2.3 of [12], |f̂(x̂)− f(x̂)| ≤
2−m|f̂(x̂)| holds where m is the precision of x̂.

Corollary 3.1. Let f be as specified in the beginning of this section, f .f l
and L(x) specified as in Proposition 3.2. Then there exists a function L(x)
with L(x) ≤ L(x) ≤ Lmax for some Lmax ≥ 0 such that f with f .erf(x) =
L(x)·x.err+2−x.fl.t·|f .f l(x.f l)| is an approximation-continuous, computable
approximation function of f .

Proof. Let L(x) be some computable upper bound of L(x). L(x) can be
computed by global optimization, for example by using interval arithmetic.
Since f ′ is continuous and D compact, L(x) is bounded. So, L(x) ≤ Lmax

for some Lmax ≥ 0. Also, f is computable. Using Proposition 3.2, it follows
that f is also an approximation function of f . Remains to show that f is
approximation-continuous. Let (xn)n be some floating-point name of x ∈ D.
Clearly limn→∞ f .f l(xn.f l).t = ∞ holds. Since limn→∞xn.err = 0 and the
sequences (L(xn))n and (|f .f l(xn.f l)|)n are bounded, limn→∞ f .erf(xn) = 0
follows. Furthermore, by this result and the statement of Proposition 3.2,
also limn→∞ f .f l(xn) = x holds.

To summarize, the iteration (9) is performed in the algorithm by iterating
a value x̂n approximating xn with an upper bound on its absolute error en

1This assumption is pragmatic. The already mentioned software package MPFR
implements this specification. The problem of achieving this task for transcenden-
tal functions may be of unknown cost and is known as The Table Maker’s Dilemma,
see http://perso.ens-lyon.fr/jean-michel.muller/Intro-to-TMD.htm. Addition-
ally note that this assumption can be weakened without abandoning the main statements
of this work.
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according to

x̂n+1 = f̂(x̂n) x̂0 = rd(x,m) (13)

en+1 = L(x̂n, en)en + 2−m|x̂n+1| e0 = 2−m|x̂0| (14)

where L(x̂n, en) is a computable upper bound on L(x̂n, en) as described in the
preceding corollary andm the precision of any floating-point number involved
at that stage. This is Line 9 in the inner for-loop of the algorithm which
is executed with successively increasing precision m, controlled by the outer
do-while-loop. Finally, it has to be shown that this outer loop eventually
terminates.

Proposition 3.3. Let x ∈ D with x 6= 0 be given and (xm)m≥1 a floating-
point name of x obeying xm.f l.t = m. Then limm→∞ prec(xm, p) = true

follows for all p ∈ Z.

Proof. Since x 6= 0 and limm→∞ xm.err = 0, there exists some M ∈ N such
that for all m ≥ M , 1

2
|x| ≤ |xm.f l| and xm.err ≤ 10−p

2(1+10−p)
|x| holds for all

m ≥M . Then prec(xm, p) = true for all m ≥M .

The next proposition makes the link to Line 9 in the algorithm.

Proposition 3.4. Let xn be the n-th element of the orbit of the recursion (9)
and ((xn)m)m≥1 a sequence given according to the recursion equations (13)
and (14) with increasing precision (xn)m.f l.t = m. Then ((xn)m)m≥1 is a
floating-point name of xn.

Proof. Let Lmax according to Corollary 3.1 and M ≥ sup{|x| : x ∈ D} such
that |x̂n| ≤M holds for all n. Then Equation (14) leads to en+1 ≤ Lmaxen +

2−mM . Iteration gives en ≤ L
n

maxe0+2−mM
∑n−1

k=0 L
k

max ≤ 2−mM
∑n

k=0L
k

max.
Hence, for n fixed, limm→∞(xn)m.err = 0 follows and consequently also
limm→∞(xn)m.f l = xn.

These two propositions finish the correctness proof of the algorithm. They
show that, if xn 6= 0 for n = 0, . . . , N , the outer loop eventually terminates
for any p ∈ Z.

The drawback of the algorithm is, that in the case xn = 0 for some
n ≤ N , the computation does not terminate. This is only due to the fact
that the relative error controls the outer do-while-loop. If the absolute error
would be used instead, this drawback is eliminated. However, controlling the
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relative error is more general. Consider for example a dynamics with positive
phase space, the concentration of a substance for example. If the value varies
in time over a wide range in scale, it is fortunate to illustrate the orbit in
a logarithmic plot. If the relative error is controlled, the error bars in the
plot are constant, in contrast to large varying error bars in the case where
absolute errors are used.

Absolute errors are in the line with Computable Analysis. Replacing the
test prec(x, p) by the test on x.err ≤ 10−p in the algorithm would give a
segment (xn)0≤n≤N of the orbit with accuracy |x̂n − xn| ≤ 10−p. It is now
straightforward to see that the function g : D×N→ D with g(x, n) := fn(x)
is computable. Here, a function g : D × N → D is computable if there
exists a computable approximation function g : R̂2 × N→ R̂2 for g which is
approximation-continuous with respect to the first argument.

3.3. Computational complexity

After having presented the preliminary work, the main issue of the paper
is addressed - the computational complexity of the presented algorithm. The
complexity measure of interest here is the loss of significance rate already
introduced informally in the previous section. Here is the formal definition.

Definition 3.1. The minimal precision, for which the described algorithm
eventually halts is denoted by mmin(x,N, p), where x, N and p are the cor-
responding input parameters. The growth rate of mmin is given by

σ(x, p) := lim sup
N→∞

mmin(x,N, p)

N
. (15)

Then, the loss of significance rate σ : Q ∩D → R is defined by

σ(x) := lim
p→∞

σ(x, p). (16)

To achieve bounds on the loss of significance rate, the drawback of the
preceding subsection also makes problems here. If xn = 0 for some n ∈ N, the
loss of significance rate may be unbounded. Therefore, one more assumption
in addition to the ones on the dynamical system stated in the beginning of
this section has to be made.

Assumption 3.1. The dynamical system (D, f) is assumed to have the
properties already mentioned in the beginning of this section and further-
more, for any orbit (xn)n under consideration, xn 6= 0 holds for any n ∈ N
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as well as

lim
N→∞

ld(min{|xn| : n = 0, 1, . . . , N})
N

= 0.

If only a finite range in scale is relevant, the additional assumption is no
loss of generality. An example is the logistic equation where 0 ∈ D but 0 has
no distinguished role. Instead of considering (D, f), consider the following
dynamical system (D̃, f̃). Choose some M > −min(D) and set D̃ := {x +
M | x ∈ D} as well as f̃(x) := f(x −M) + M for all x ∈ D̃. Then (D̃, f̃)
fulfills the additional assumption. Furthermore f̃ ′(x) = f ′(x−M) holds and
therefore there is no substantial difference in the complexity analysis of the
algorithm between the original system and the modified system.

First, the boundedness of σ(x) is shown.

Proposition 3.5. Let (D, f) be as in Assumption 3.1 and mmin(x,N, p) as
in Definition 3.1. Then, for given p ∈ Z, there exists a constant C ≥ 0,
depending on f , such that mmin(x,N, p) ≤ C ·N + o(N) holds for all N ∈ N,
x ∈ Q ∩D.

Proof. According to the requirements made on (D, f), there are some con-
stants L > 1 and M > 0 such that en+1 ≤ Len + 2−mM holds for all
n ∈ N and all precisions m. Analogous to the treatment in the proof of
Proposition 3.4, iteration gives en ≤ 2−mM

∑n
k=0 L

k = 2−mM Ln+1−1
L−1

. Let
B(N) := min{|x̂n| : n = 0, 1, . . . , N} > 0. Then, for all n ≤ N , en/|x̂n| ≤
en/B(N) ≤ M

(L−1)g(N)
2−mLN+1 follows. If now M

(L−1)B(N)
2−mLN+1 ≤ 10−p

1+10−p

holds, prec((x̂n, en), p) = true for all n = 0, . . . , N . This leads to the bound
mmin(x,N, p) ≤ ld(L) ·N +max(1, ld( LM

L−1
)− ld(B(N)) + p · ld(10) + ld(1 +

10−p)).

Corollary 3.2. Let (D, f) be as in Assumption 3.1, σ(x, p) as in (15) and
σ(x) the loss of significance rate. Then, for given p ∈ Z, there exists some
constant C ≥ 0 such that σ(x, p) ≤ σ(x) ≤ C holds for all x ∈ Q ∩D.

In the following, the main statements of this paper are be formulated: A
lower and an upper bound for the loss of significance rate is given. Further-
more, the relation of these bounds to the Lyapunov exponent λ(x) is shown.
Before the theorem is stated, for sake of completeness, the definition of the
Lyapunov exponent and its basic properties are presented.
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Definition 3.2. Let (D, f) be a dynamical system, D ⊆ R compact and
f : D → D continuously differentiable on D. Then the Lyapunov exponent
at x ∈ D is defined by

λ(x) := lim
n→∞

1

n

n−1∑

k=0

ln(|f ′(fk(x))|) (17)

if the limit exists.

The Lyapunov exponent may depend on x. However, the following prop-
erties hold:

(a) If (D, f) has an invariant measure ρ, then the limit in Equation (17)
exists ρ-almost everywhere.

(b) Furthermore, if ρ is ergodic then λ(x) is ρ-almost everywhere constant
and equal to ∫

D

ln(|f ′(x)|) ρ(dx).

These properties are a direct consequence of the Birkhoff ergodic theorem,
see [15], Theorem 4.1.2 and Corollary 4.1.9. Now the first theorem.

Theorem 3.1. Let (D, f) be as in Assumption 3.1, σ(x, p) as in (15) and
λ(x) the Lyapunov exponent of (D, f). Then σ(x, p) ≥ max(0, λ(x))/ ln(2)
holds for all x ∈ Q ∩D, p ∈ Z if λ(x) exists.

Proof. Let N ∈ N be given and M > 0 a constant with |x̂n| ≤M for all n ∈
N. According to Equation (14) and Proposition 3.2, en+1 ≥ |f ′(xn)|en holds.

Iteration gives eN ≥ |x̂0|2−m
∏N−1

n=0 |f ′(xn)|. So, eN
|x̂N | ≥

|x̂0|2−m

M

∏N−1
n=0 |f ′(xn)|

follows. A necessary condition for the algorithm to terminate is therefore
|x̂0|
M

2−m
∏N−1

n=0 |f ′(xn)| ≤ 10−p

1+10−p . This gives the bound on mmin(x,N, p) ≥∑N−1
n=0 ld(|f ′(xk)|)+ld( |x̂0|

M
)+p·ld(10)+ld(1+10−p). Following the definitions

of σ(x, p) and the Lyapunov exponent, σ(x, p) ≥ λ(x)/ ln(2) follows.

Before a realistic upper bound on σ(x, p) can be presented, one more
definition is needed.

Definition 3.3. Let α > 0 then define a function ηα : (0,∞)→ R by

ηα(x) :=

{
ln(x) if x ≥ α
ln(α) if x < α

.
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Furthermore, for any α > 0 define

λα(x) := lim sup
n→∞

1

n

n−1∑

k=0

ηα(|f ′(fk(x))|)

Proposition 3.6. For all α > 0 there exists some constant C ≥ 0 such that
λα(x) ≤ C holds for all x ∈ D. Furthermore, if the Lyapunov exponent λ(x)
exists, λ(x) ≤ λα(x) holds.

Proof. According to the requirements made on (D, f), f is Lipschitz with a
Lipschitz constant L > 0. Furthermore, let α > 0 be given. Then for all
n ∈ N, 1

n

∑n−1
k=0 ηα(|f ′(fk(x))|) ≤ ln(max(α, L)) holds. Hence it follows the

upper bound on lim supn→∞
1
n

∑n−1
k=0 ηα(|f ′(fk(x))|) ≤ ln(max(α, L)). The

second assertion follows from the fact that ln(x) ≤ ηα(x) holds for all x > 0,
α > 0.

Proposition 3.7. Let x ∈ D be given. If λ(x) exists, then also the limit

lim
α→0
α>0

λα(x) =: λ(x) (18)

exists and λ(x) ≥ λ(x).

Proof. Since ln(x) ≤ ηα(x) ≤ ηβ(x) holds for all x > 0, 0 < α ≤ β, also
λ(x) ≤ λα(x) ≤ λβ(x) follows. Letting α → 0, α > 0, the assertion follows.

Theorem 3.2. Let (D, f) be as in Assumption 3.1, σ(x, p) as in (15) and
λ(x) as in (18). Let x ∈ Q ∩ D be given, then for any ε > 0 there is some
p0 ∈ Z such that for all p ≥ p0,

σ(x, p) ≤ 1
ln(2)

max(0, λ(x)) + ε

holds if λ(x) exists.

So there is the following bound on the loss of significance rate.

Corollary 3.3. Let (D, f) be as in Assumption 3.1, σ(x, p) as in (15), σ(x)
the loss of significance rate, λ(x) as in (18) and λ(x) the Lyapunov exponent.
Then,

1
ln(2)

max(0, λ(x)) ≤ σ(x) ≤ 1
ln(2)

max(0, λ(x))

holds for all x ∈ Q ∩D if λ(x) exists.
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Before the proof of the theorem can be presented, the following lemma is
needed.

Lemma 3.1. Let ε ≥ 0 and α >
√
ε. Then for all x > 0,

ln(x+ ε) ≤ ηα(x) +
√
ε

holds.

Proof. There is nothing to prove in the case ε = 0. So let ε > 0. Two cases
are considered.

1st case: x ≥ α. Then the inequality reads ln(x+ ε) ≤ ln(x) +
√
ε which

is equivalent to x ≥ ε
exp(

√
ε)−1

. Since ε
exp(

√
ε)−1
≤ ε√

ε
< α ≤ x, the assertion

follows.
2nd case: x < α. Then the inequality reads ln(x + ε) ≤ ln(α) +

√
ε

which is equivalent to x ≤ α exp(
√
ε)− ε. A sufficient condition to prove the

assertion is α ≤ α exp(
√
ε) − ε which is equivalent to α ≥ ε

exp(
√
ε)−1

. This

was already proven in the first case.

Now everything is prepared to prove Theorem 3.2.

Proof of Theorem 3.2. Let N ∈ N, B(N) := min{|x̂n| : n = 0, 1, . . . , N} > 0
and M > 0 a constant with |x̂n| ≤ M for all n ∈ N. Starting with Equation
(14) and iterating gives

en = e0

n−1∏

l=0

L(x̂l, el) + 2−m

n∑

k=1

|x̂k|
n−1∏

l=k

L(x̂l, el)

= 2−m

n∑

k=0

|x̂k|
n−1∏

l=k

L(x̂l, el) ≤M2−m

n∑

k=0

n−1∏

l=k

L(x̂l, el).

Define

spn :=
n∑

k=0

n−1∏

l=k

L(x̂l, el)

and
SP (N) := max{spn : n = 0, 1, . . . , N}.

Then, en ≤ M2−mSP (N) follows for all n ≤ N . A sufficient condition for
the algorithm to terminate is given by M

B(N)
2−mSP (N) ≤ 10−p

1+10−p . Hence,

mmin(x,N, p) ≤ max(1, C − ld(B(N)) + ld(SP (N)))
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follows with C = ld(M) + p · ld(10) + ld(1 + 10−p). Using the Assumption
3.1 leads to

σ(x, p) ≤ 1

ln(2)
max

(
0, lim sup

N→∞

1

N
ln(SP (N))

)
.

By definition, lim supN→∞
ln(SP (N))

N
≤ lim supn→∞

ln(spn)
n

follows and hence

σ(x, p) ≤ 1

ln(2)
max

(
0, lim sup

n→∞

ln(spn)

n

)
.

Next let

pk,n :=
n−1∏

l=k

L(x̂l, el)

for n ∈ N and k ≤ n, and furthermore

Pn := max{pk,n : k = 0, 1, . . . , n},
then spn ≤ (n+ 1)Pn follows for all n ∈ N. This gives

σ(x, p) ≤ 1

ln(2)
max

(
0, lim sup

n→∞

ln(Pn)

n

)
.

Let K(n) ∈ {0, . . . , n} be the smallest number such that
∏n−1

l=K(n)L(x̂l, el) =

Pn. Then consider ln(Pn)
n

= 1
n

∑n−1
l=K(n) ln(L(x̂l, el)). Let L′ be a Lipschitz

constant of f ′, then L(x̂n, en) ≤ |f ′(xn)|+ L′2en holds for all n ∈ N. Conse-

quently, there exists some L
′ ≥ L′ such that L(x̂n, en) ≤ |f ′(xn)|+2L

′
en holds

for all n ∈ N. This inequality leads to L(x̂n, en) ≤ |f ′(xn)| + 2L
′
M 10−p

1+10−p ≤
|f ′(xn)|+ 2L

′
M · 10−p. Inserting gives

ln(Pn)

n
≤ 1

n

n−1∑

l=K(n)

ln(|f ′(xl)|+ 2L
′
M · 10−p).

Now let ε > 0 and 0 < α < 1 be given. Then choose p0 ∈ N such

that
√
2L

′
M · 10−p0 < min(α, ln(2) ε

2
) holds. Then for all p ≥ p0, the above

lemma gives

ln(Pn)

n
≤ 1

n

n−1∑

l=K(n)

(
ηα(|f ′(xl)|) + ln(2)

ε

2

)
(19)

≤ ln(2)
ε

2
+

1

n

n−1∑

l=K(n)

ηα(|f ′(xl)|). (20)
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Consider the sequence (K(n))n∈N. Observe that, first the sequence (K(n))n∈N
is increasing and second if K(n+1) > K(n) for some n ∈ N, then K(n+1) =
n or K(n+ 1) = n + 1. There are two cases.

1st case: (K(n))n∈N is bounded. Then, there exists some constant N0 ∈ N

such that K(n) = K(N0) holds for all n ≥ N0. Choose now α small enough
such that λα(x) ≤ λ(x) + ln(2) ε

2
holds. Then, compute the upper limit

to lim supn→∞
1
n

∑n−1
l=K(n) ηα(|f ′(xl)|) = lim supn→∞

1
n

∑n−1
l=K(N0)

ηα(|f ′(xl)|) =
lim supn→∞

1
n

∑n−1
l=0 ηα(|f ′(xl)|) = λα(x). By taking the upper limit of (20),

lim supn→∞
ln(Pn)

n
≤ ln(2) ε

2
+ λα(x) ≤ ln(2)ε+ λ(x) follows.

2nd case: (K(n))n∈N is not bounded. Then, for any δ > 0 and any

N0 ∈ N there is some n ≥ N0 with ln(Pn)
n

< δ. Since, by definition,∑n−1
l=0 ln(L(x̂l, el)) ≤ ln(Pn) holds as well as |f ′(xl)| ≤ L(x̂l, el), the inequality

1
n

∑n−1
l=0 ln(|f ′(xl)|) ≤ ln(Pn)

n
follows. This shows λ(x) ≤ 0.

Next it is stated that for all ε > 0 and p ≥ p0, lim supn→∞
ln(Pn)

n
≤ ln(2)ε

holds. This shows σ(x, p) ≤ ε = 1
ln(2)

max(0, λ(x))+ε ≤ 1
ln(2)

max(0, λ(x))+ε.

Assume otherwise. Then, for some ε > 0 and N ∈ N, first ln(PN )
N

> ln(2)ε

holds and second λ(x)−ln(2) ε
4
< 1

n

∑n−1
l=0 ln(|f ′(xl)|) < λ(x)+ln(2) ε

4
holds for

all n ≥ K(N). Using (20), the first expression gets 1
N

∑N−1
l=K(N) ηα(|f ′(xl)|) >

ln(2) ε
2
. Choose α small enough such that ηα(|f ′(xl)|) = ln(|f ′(xl)|) holds

for all l ≤ N . Then, for sufficiently high p, 1
N

∑N−1
l=K(N) ln(|f ′(xl)|) > ln(2) ε

2

follows. In the second statement, the sum can be split the following way:
1
N

∑K(N)−1
l=0 ln(|f ′(xl)|) + 1

N

∑N−1
l=K(N) ln(|f ′(xl)|) < λ(x) + ln(2) ε

4
. The first

addend on the left side is bounded form below by K(N)
N

(λ(x) − ln(2) ε
4
) ≥

λ(x) − ln(2) ε
4
, the second addend is bounded from below by ln(2) ε

2
. Hence,

λ(x) + ln(2) ε
4
< 1

N

∑N−1
l=0 ln(|f ′(xl)|) < λ(x) + ln(2) ε

4
follows, but this is a

contradiction.

In the end, it is shown that, if λ(x) = λ(x) holds, the algorithm presented
here is optimal with respect to the loss of significance rate. This means that
no algorithm with the specification presented at the beginning of this section
has a lower loss of significance rate than the algorithm presented in this
section.

Proposition 3.8. Let (xn)n be an orbit of the dynamical system (D, f) and
λ(x0) > 0. Then, for any ε > 0 there exists an N0 ∈ N such that for any
N ≥ N0 there is some δ > 0 such that the following holds. Let an initial
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value y0 ∈ [x0 − δ, x0 + δ] ∩D be given and consider the corresponding orbit
(yn)n. Then,

|yN − xN | ≥ eN(λ(x0)−ε)|y0 − x0|
holds.

Proof. Let ε′ > 0 be given. Then there exists some N0 ∈ N such that
1
N

∑N−1
n=0 ln(|f ′(xn)|) ≥ λ(x0) − ε′ holds for all N ≥ N0. For given N ≥ N0

there is some δ′ > 0 with min{|f ′(xn)| : 0 ≤ n ≤ N} > δ′, otherwise λ(x0)
would not exist. Consider now an orbit (yn)n with |yn − xn| ≤ 2σ δ′

L′
for

n = 0, . . . , N where L′ is a Lipschitz constant of f ′ and 0 < σ < 1 arbitrary.
Then, for n = 1, . . . , N , the following estimation holds.

|yn − xn| = |f(yn−1)− f(xn−1)|

= |f ′(xn−1)(yn−1 − xn−1) +
1

2
f ′′(ξn−1)(yn−1 − xn−1)

2|

≥ (|f ′(xn−1)| −
1

2
|f ′′(ξn−1)| · |yn−1 − xn−1|)|yn−1 − xn−1|

≥ (|f ′(xn−1)| −
1

2
L′|yn−1 − xn−1|)|yn−1 − xn−1|

≥ (|f ′(xn−1)| − σδ′)|yn−1 − xn−1|

where ξn−1 ∈ [xn−1, yn−1] ∪ [yn−1, xn−1]. Iterating finally gives |yN − xN | ≥∏N−1
n=0 (|f ′(xn)| − σδ′)|y0 − x0|. Now determine some constant C > 0 such

that ln(|f ′(xn)| − σδ′) ≥ ln(|f ′(xn)|) − C holds for all n = 0, . . . , N the
following way. A short calculation shows that this is equivalent to C ≥
ln(1+ σδ′

|f ′(xn)|−σδ′
). Using ln(1+ σδ′

|f ′(xn)|−σδ′
) ≤ ln(1+ σδ′

δ′−σδ′
) = ln(1+ σ

1−σ
) ≤ σ

1−σ

finally gives C ≥ σ
1−σ

as a sufficient condition. Set C = σ
1−σ

. Let ε > 0 be
given. Set C = ε′ = ε/2, then

N−1∑

n=0

ln(|f ′(xn)| −
Cδ′

1 + C
) ≥

N−1∑

n=0

ln(|f ′(xn)|)−NC

≥ N(λ(x0)− ε′ − C)

and hence
|yN − xN | ≥ eN(λ(x0)−ε′−C)|y0 − x0|

follows.
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Proposition 3.9. Let (D, f) be as in Assumption 3.1 and x ∈ Q ∩D given
such that λ(x) exists and λ(x) > 0. Consider an algorithm computing an
initial segment (xn)0≤n≤N of the orbit of x with relative error ≤ 10−p for
some N ∈ N, p ∈ Z. Then the algorithm has a loss of significance rate
σ(x) ≥ 1

ln(2)
λ(x).

Proof. Let 0 < ε < λ(x) be given and N big enough such that the previous
proposition holds for some δ > 0. Choose some y ∈ [x− δ, x+ δ]∩D, y 6= x.
Let p0 be big enough such that

2M10−p0 < eN(λ(x)−ε)|y − x| (21)

holds, where M > 0 such that |x| ≤ M for all x ∈ D. Consider y as the
initial value of another orbit (yn)n. Then, with the above proposition,

|yN − xN | > 10−p0(|xN |+ |yN |) (22)

follows. Condition (21) can also be written as δ > 2M10−p0e−N(λ(x)−ε).
Consider now some precision m, the algorithm actually is working with.

Assume for simplicity further that for the initial value x = x̂0 holds and
assume without loss of generality δ < 1

2
ulp(x̂0). Then, first, ŷ0 = x̂0 holds.

Second, the above condition gives 2−(m+1) > 10−p0e−N(λ(x)−ε) since ulp(x̂0) ≤
2−m+1|x̂0| ≤ 2−m+1M holds. In other words, the above condition gives an
upper boundm < p0·ld(10)+N(λ(x)−ε)/ ln(2)−1 on the needed precisionm.
Assume furthermore that m is big enough such that x̂N and ŷN is computed
with the demanded precision, that is |x̂N −xN | ≤ 10−p0|xN | and |ŷN − yN | ≤
10−p0|yN | holds. Using (22) gives x̂N 6= ŷN . But this is a contradiction
since ŷ0 = x̂0. So the upper bound on m calculated above is still too small.
Hence, m ≥ p0 · ld(10) +N(λ(x)− ε)/ ln(2)− 1 must hold. Since Condition
(21) also holds for any N ′ > N and the same p0 as well as for any p ≥ p0,
σ(x, p) ≥ (λ(x) − ε)/ ln(2) follows for all p ≥ p0. Computing σ(x) finally
gives the assertion.

Furthermore, if λ(x) = λ(x) holds, then Corollary 3.3 gives σ(x) =
1

ln(2)
max(0, λ(x)) for the algorithm presented at the beginning of this sec-

tion. Using the above proposition then leads to the following theorem.

Theorem 3.3. Let (D, f) be as in Assumption 3.1 and x ∈ Q∩D given such
that λ(x) exists and λ(x) = λ(x) holds. Consider an algorithm computing an
initial segment (xn)0≤n≤N of the orbit of x with relative error ≤ 10−p. Then
this algorithm has a loss of significance rate greater or equal to that of the
algorithm specified by the recursion (13) and (14).
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4. Conclusions

In this paper, two main issues are addressed. First it is shown that a
mathematically rigorous treatment of the computability aspects of the itera-
tion of a real function in terms of arbitrary-precision floating-point arithmetic
including automated error analysis is straightforward. Also, this treatment
is in a manner which is familiar to people working in the field of numerical
analysis or scientific computing and also for theoretical computer scientists.
Furthermore, the approach does not only allow answers concerning the exis-
tence of an algorithm which meets the requirements of computability theory,
but it also allows a treatment of its space complexity in form of the loss
of significance rate (which is actually the lookahead in Computable Analy-
sis) and optimality as discussed in the preceding section. As a consequence,
the approach here enables a motivated reader the real implementation and
supports a practical performance analysis.

Second, the results show that the Lyapunov exponent, a central quantity
in dynamical systems theory, also finds its way into complexity theory, a
branch in theoretical computer science. In dynamical systems theory, the
Lyapunov exponent describes the rate of divergence in the course of time of
initially infinitesimal nearby states. For two states having a small but finite
initial separation, the Lyapunov exponent has only relevance for short time
scales [6]. The reason is that due to the boundedness of the phase space,
any two different orbits cannot separate arbitrarily far away. However, the
loss of significance rate shows that the Lyapunov exponent has on long time
scales not only an asymptotic significance but also a concrete practical one.
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