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Abstract

This paper addresses some concerns, and describes some proposals, on the
ellusive concept of envelope of an algebraic family of varieties, and on its
automatic computation.

We describe how to use the recently developed Gröbner Cover algorithm
to study envelopes of families of algebraic curves, and we give a protocol to-
wards its implementation in dynamic geometry environments. The proposal
is illustrated through some examples. A beta version of GeoGebra is used to
highlight new envelope abilities in interactive environments, and limitations
of our approach are discussed, since the computations are performed in an
algebraically closed field.
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1. Introduction

This paper addresses some concerns, and describes some proposals, on
the ellusive concept of envelope of an algebraic family of varieties, and on its
automatic computation.
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We will deal with these issues by restricting our framework to

• families of algebraic plane curves;

• in the context of dynamic geometry software (DGS).

Yet, as we will show below (see examples in this Section), even in this
restricted setting we will need to reflect about the very basic concept of
envelope, in order to be able to propose some sound algorithmic protocols
for its computation.

1.1. The manifold concept of envelope

It is clear that the idea of envelope of a familiy of curves is an elemen-
tary differential geometry notion. Despite this elementary character, it is a
definition that does not seem to generate a unanimous consensus on its basic
terms. For instance, let us consider a familiy of curves {Cα : F (x, y, α) = 0},
where for each value α of the parameter we assume F (x, y, α) = 0 to be the
implicit polynomial equation of the curve Cα. In Wikipedia1, the envelope
of this familiy of curves is introduced as a certain curve which is tangent to
each one of the Cα’s in the family. But, immediately after, four definitions
are proposed and discussed concerning the very same concept:

1. the envelope as the set of all points (x, y) such that there is an α

verifying {F (x, y, α) = 0, ∂F (x,y,α)
∂α

= 0}, i.e., as the projection over the
(x, y)-plane of the points, in the (x, y, α)-3 dimensional space, belonging
to the surface F (x, y, α) = 0 and having tangent plane parallel to the
α-axis (or being singular points and, thus, not having tangent plane,
properly speaking),

2. the envelope as the set of limit points of intersections of nearby curves
Cα,

3. (as previously introduced) the envelope as a curve tangent to all the
given curves,

4. the envelope as the curve that bounds the planar region described by
the points belonging to the curves in the family.

1https://en.wikipedia.org/wiki/Envelope (mathematics)

2



Finally, the Wikipedia points out that these four definitions are not, in
general, coincident; and that they yield to different envelope sets, Ei, for
each definition i = 1, 2, 3, 4. But this situation is, by no means, a problem
with the Wikipedia only. In a previous paper [4] we have reviewed different
reputed sources, some classical and some very modern, all of them expressing
the existence of a plurality of approaches to the concept of envelope, as
well as describing the many subtle and difficult aspects involved in handling
this apparently elementary notion. We also have summarily described in
the same paper [4] the limitations for computing a specific envelope with
general purpose and well–known DGS, such as Sketchpad, Cabri, Cinderella
or GeoGebra. See Section 2 for a discussion of the state of the art. A rough
and immediate conclusion from that survey is the need for improvement in
different directions:

• extending the computation of envelopes to families of curves of much
more general type (i.e. not limited to lines or circles, etc.);

• identifying the resulting envelope curve as an element of DGS (so that
the system is able to do further operations with this curve) and not as
a mere graphical display;

• improving the reliability and accuracy of the envelope computation
(currently merely conjectural in most DGS, often erroneously including
some extra components or omitting some true components with respect
to the correct envelope).

1.2. On some difficulties when computing envelopes

As mentioned above, some of the main difficulties dealing with envelopes
do not dissapear even if we restrict ourselves to working in the frame of
computing with families of planar curves build up by manipulating with
DGS. Thus, in order to justify the use in this context of very powerful tools
from computational algebraic geometry (such as Gröbner Cover, see Section
3), let us start by discussing the following simple examples, which can provide
the reader an idea of the involved subtleties.

Example 1. The first example is about computing the envelope of a very
simple family of lines in the (x, y)-plane. Here we consider the family of all
lines parallel to the x-axis, say, described by y = t, for a single parameter t.
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Then its envelope is –according to one of the classical definitions, but choos-
ing any of them will yield here the same output– the result of eliminating t
from y − t, ∂(y − t)/∂t. Since ∂(y − t)/∂t is −1, the system has no solution.
There is no envelope.

Now let us make the following consideration. It is easy to imagine that
someone working with a DGS could be making a construction, attempting
to build up a certain family of curves, but –unfortunately– it could happen
that the performed construction it is not necessarily the simplest possible
one yielding the same family.

Bearing this remark in mind, let us discuss here an absurd, toy example,
about such situation. For this purpose let us consider, again, a family of lines
in the plane, each one going through a point of the curve t31 + t22 = 1 and
so that they are all parallel to the x-axis. Each point (t1, t2) parametrizes
the family of lines y = t2. Geometrically, the fact that t2 is the second
coordinate of an arbitrary point in the curve does not play any special role,
since the family of lines is identical to that previously introduced, described
as y = t for a single parameter t. Thus, it could happen that a naive dynamic
geometry user could end up considering that computing the envelope for the
constructed family y = t2, where t

3
1+t22−1 = 0, will output the same envelope

as for the family y = t, for a single parameter t.
But, what is the envelope of y = t2, t

3
1 + t22 − 1 = 0? These two equations

define an algebraic variety V (a surface, indeed) in the (x, y, t1, t2)-affine
space and we would like –following the classical definition number 4, as in
1.1– to compute the boundary of its projection onto the (x, y)-plane. That
is, the points in this plane that lift up to points of V such that either they are
singular or they have tangent plane parallel to the (t1, t2)-plane. Namely, we
should consider the projection of the set of points in V where the Jacobian
of y = t2, t

3
1+ t22− 1 = 0, with respect to (t1, t2), vanishes, i.e. where 3t

2
1 = 0.

The result of the elimination procedure is the couple of lines y = 1, y = −1,
namely, the envelope curve for the same family of lines presented in this other
way!

Obviously, this result can also be obtained and explained in a simpler way
by considering y = t2, t

3
1+ t22−1 = 0 as y =

√
1− t3 for a single, independent

parameter and then applying the classical elimination of t from the couple
of equations y =

√
1− t3, ∂(

√
1− t3/∂t), yielding, again, the pair of lines

y = ±1.
The lesson here (more or less well–known, see [6, p. 104] for the same

kind of example, playing with a family of lines parallel to an axis, defined
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as y = f(t) for a certain function f(t) different from t or from
√
1− t3) is

that computing the envelope of a family of curves strongly depends on the
“algebraic” presentation of the family; the envelope is not about a geometric
object, but about a dynamic one, related to the function that describes the
family of lines and not only related to the geometric image of such function.

The lesson learnt, for dynamic geometry users, is that in the context of
DGS, building up the “algebraic” presentation of the curve family is closely
related to the construction protocol. In other words, one does not really
compute the envelope of a tracer (an element of the family) determined by a
point (as it would be the case in Cinderella or Cabri), but rather the envelope
of the constructed tracer parametrized by the constructed point.

The following example exploits further the situation previously presented.

Example 2. Let us assume that we build up a family of lines parallel to the
x-axis by a very redundant construction, namely,

• collecting all lines parallel to the x-axis and parametrized by points in
the unit circle, i.e. y = t2, t

2
1 + t22 − 1 = 0;

• moreover, we choose another point (t3, t4) in each line (so t4 = t2) and
we construct –redundantly– the line going through (t1, t2) and (t3, t4),
that is (t2 − t4)(x− t1)− (t1 − t3)(y − t2) = 0.

The result, given through the equation system,

y = t2, t
2
1 + t22 − 1 = 0, t4 = t2, (t2 − t4)(x− t1)− (t1 − t3)(y − t2) = 0,

describes a 3-dimensional variety in the (x, y, t1, t2, t3, t4)-six dimensional
space. This is, somehow, surprising: four equations in six variables should
yield –if the equations were independent– a dimension 2 variety, but here it
is not, because the last equation is a combination of y = t2, t4 = t2, and can
be removed and thus the dimension of the resulting variety should be 6-3=3.

As a complementary argument in this direction we could consider that
only two –say, t2, t3– of the four parameters (t1, t2, t3, t4) are independent and
that for each value of the pair (t2, t3) we are building an one dimensional ob-
ject (a line). Thus, we could conclude the whole construction has dimension
3, since we have 2 (the degrees of freedom of the parameter space)+1 (the
dimension of the geometric object built up for each parameter value) = 3.
Obviously, this specific way of reasoning is hard to generalize or to implement
as an algorithm over DGS.

5



The observation that one of the equations –say E(x, y, t1, t2, t3, t4) = 0–
is a combination of the other ones is the key point we would like to analyze
here. In fact,

• noticing such combination means that we have, in some sense, discov-
ered a statement that automatically holds in our construction, while
we were thinking of E(x, y, t1, t2, t3, t4) = 0 as imposing a new, extra
constraint;

• it is not possible, currently, to expect DGS to detect such facts auto-
matically in most cases, or to require such detection as a previous step
for envelope computation. Thus, we should not consider to have such
information ready when aiming to compute an envelope;

• yet, it is crucial to clarify the global dimension of the involved variety
of variables and parameters in order to obtain a correct envelope for
the constructed family.

In fact, if we (wrongly) consider the four given equations, the vanishing
of the Jacobian (with respect to the four parameters) is −2t1(y−t2) = 0, and
the elimination of the system described by the equations and the Jacobian
is 0, that is, the envelope in the (x, y)-plane turns to be the whole plane.

On the other hand, if we consider just the three independent equations
and we impose the condition that the Jacobian of the three equations with
respect to the four parameters is of rank 2, i.e., the new condition −2t1 = 0,
the elimination of the parameters in the system

y = t2, t
2
1 + t22 − 1 = 0, t4 = t2,−2t1 = 0,

yields the equation y2 = 1, that is, the previously obtained couple of lines,
as the true envelope of the given family.

As a final remark about this example, notice that, even after deleting
the depending equation, our family of lines is described by four parameters
t1, t2, t3, t4 linked by two equations

t21 + t22 − 1 = 0, t4 = t2,

so that the whole family is defined by the 3-dimensional variety

y = t2, t
2
1 + t22 − 1 = 0, t4 = t2.
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It is quite clear that we can take, say, t2, t3, x as independent variables ruling
this 3-dimensional variety. On the other hand, the role of t3 is null, it does not
appear in any of the considered constraints. Thus, we could avoid including
such parameter in our computations and, if considered in this way, the family
of lines

y = t2, t
2
1 + t22 − 1 = 0, t4 = t2

over the (x, y, t1, t2, t4)-space would have dimension 2 (one degree of freedom
for the parameters t1, t2, t4, represented by the parameter t2, plus one degree
of freedom for each line y = t2 for each value of t2), which is closer to
our intuition than the dimension 3 obtained above. Moreover, eliminating
this fake parameter t3 would lead to easier envelope computations, since
then we would have just to compute the vanishing of the Jacobian of three
equations with respect to the three remaining parameters, and then to some
elimination, yielding to the same result y2 = 1. Of course, the problem here
is how to automatize the discovery of such “fake” parameters. . .

As a conclusion, in the previous example the message was “computing
envelopes in DGS depends on the construction protocol and not just on
the geometric object”. Here, in this last example, the message could be
summarized as stating that “it is crucial to control the algebraic data related
to the construction protocol in order to correctly fix the settings for the
envelope computation”.

The precedent example, one that includes some unnecessary parameters
or equations, could be thought as artificial (in the dynamic geometry con-
text). But we think it is not so.

Example 3. Consider the computation of the envelope of a family of parallel
rays reflecting on the unit circle C, a caustic. At some point one needs to
construct the symmetrical of a line L with respect to the axis S described
by the center of C (the origin) and the point of intersection C ∩ L.

Now, if such construction is not included as a macro in the DGS we
could be using, one would need to make an auxiliary construction for the
symmetrical of a line L with respecto to some axis S. One possibility is to
take a point P ∈ L and then the perpendicular line, T , to S through P . Now
compute the intersection M of the lines T and S. Then the symmetrical of

P will be point Q such that Q = M +
−−→
PM . Finally one constructs, as the

symmetrical of L, the line LL going through L ∩ S and Q.
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Next, we remark that this procedure for obtaining the symmetrical of
some given line L with respect to some given axis S should yield a unique
result. But it is clear that the above method includes one irrelevant degree
of freedom (namely, from choosing point P ∈ L). Obviously, the fact that
dragging point P along the line L yields, in the above construction, always
the same line LL, is an interesting (and well known) geometric property. But
it can illustrate our claim that, in general, a user does not have to be aware
of such facts when using some construction for envelope computations.

1.3. Our goal

A general conclusion, from the precedent section, is the presence of many,
unexpected difficulties for envelope computation when attempting to imple-
ment such features in DGS. In fact, users in such context are prone to identify
what they visualize to what they have actually computed. . . Here the chal-
lenge is to be able, through the inclusion of automatic reasoning features,
to open a dialog window with the user, warning him/her about the different
subtleties of his/her perfomed construction, if an envelope command is used
in this setting. Although we have been working for some time in this direc-
tion ([7, 13, 14]), there remain many pending issues for the full performing
inclusion of reasoning features in DGS.

For all these reasons, in this paper we focus on a very specific part of the
envelope computation problem. Namely, we will assume the algebraic setting
correctly represents what the user wants to compute, and we will concentrate
on another difficult problem: how to proceed with the envelope computation
as the projection of a given algebraic variety in the space of variables and
parameters.

2. Envelope computation in current dynamic geometry environ-
ments

There is a wide consensus on requiring abilities related to the determina-
tion of geometric loci for an interactive geometric environment to be consid-
ered as a standard one. See, for instance, [8]. For example, the locus item is
a distinguished one in the Wikipedia article2 listing 36 computer programs
cathegorized as plane DGS. Nevertheless, envelopes are not mentioned as a

2http://en.wikipedia.org/wiki/List of interactive geometry software
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relevant topic in such article, and most DGS lack a specific command to deal
with.

Figure 1: An envelope as displayed by tracing an element of the family.

A common approach to present envelopes consists of mimicking the tradi-
tional dynamic geometry way to plot loci. A member of the family of curves
is traced while the user moves the point which determines the elements of
the family. A minor improvement in some DGS automates this procedure
by sampling the path of the parametric point and plotting the corresponding
curve for each sample. Both strategies just return a graphic object in the
screen, without any knowledge about its algebraic description. This special
character obstructs treating envelopes as ordinary objects in the interactive
environment (placing points on them, computing intersections with other
elements, drawing tangents, . . . ). Even when considered as mere graphic
objects, users can experience difficulties to visualize them. Consider, for in-
stance, a circle centered at A(4, 2) and passing through B(4, 4), a point C
moving on it, and the line BC. Since the envelope of the family of perpen-
dicular lines to lines BC passing through C sweeps the whole plane (Figure
1), a naive user will find difficult to state that the sought envelope reduces
to just a point ((4, 0) for the shown construction). Note that this envelope
could be easily obtained if considering it as the locus of points which are
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limit of intersections of nearby curves of the family (i.e., using the defini-
tion E2). Although the objects computed through this definition determine
only partially the true envelope (see Section 1), this non–automatic approach
can be used with DGS lacking a specific command, as has been suggested3

by the The Geometer’s Sketchpad developers. However, it should be noted
that these points of intersection are not always the limits of real intersection
points. This would be the case when computing a curve as the envelope of
its osculating circles, since these circles have no real intersection for infinitely
close curve points [9, p. 37]. Furthermore, selecting the intersection points
is not always an easy task and can be out of scope for unexperienced users,
as can be checked trying selected examples [2].

As said above, some DGS automate the computation of envelopes sam-
pling the parameter path and plotting elements of the family. Although
not reported, it seems that Cabri and Cinderella combine this strategy with
tracing the locus of limit intersection points in order to return the envelope
as a curve. Furthermore, Cabri claims that envelope equations can also be
computed, numerically approaching a curve up to degree six to a hundred
intersection points. This procedure is not robust for geometric loci [3], and
also returns incorrect results even for simple envelopes, as can be checked if
asking for the equation of the envelope in Figure 1, where Cabri returns a
line instead of the point. Cinderella, more successully, constrains its com-
putations to families of straight lines, being able to plot the envelope curve
in a correct way. Moreover, if the envelope is at most a conic enveloping
lines, Cinderella also computes the equation, similarly to the process used
for computing simple loci equations [10].

3. Envelope computation with Gröbner covers

As stated above, we assume that the algebraic construction for envelopes
is correct, and, following the definition E1 (see Section 1), we will com-
pute envelopes as projections of varieties. Thus, computing the envelope
of a family F (x, y, α) = 0 can be seen as solving the parametric poly-
nomial system {F = 0, ∂F/∂α = 0}. Note that if the construction is
parametrized by more than one α, we assume extra conditions are also spec-
ified in such a way that no fake parameters exist. That is, if the family is

3http://www.dynamicgeometry.com/Technical Support/FAQ/Constructions and Use
/Envelope Constructions.html
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described by F (x, y, α1, . . . , αn) = 0, there are given n − 1 extra equations
g1 = 0, . . . , gn−1 = 0 such that the Jacobian of F, g1, . . . , gn−1 with respect to
α1, . . . , αn can be computed.

Many methods have been developed to obtain such projections (Gröbner
bases, characteristic sets, discriminant varieties,. . . ). For example, a proce-
dure for automatic computing envelopes within an interactive graphic envi-
ronment used elimination through Gröbner bases [5]. As it is well-known,
such elimination returns not only the sought projection but its closure, thus
perhaps introducing spurious elements. Here we propose the use of the re-
cently developed GröbnerCover (GC) algorithm [12]. What follows is a sum-
mary of the main properties of the GC algorithm. Note that we refer to
parameters αi as variables, and to variables x, y as parameters, according to
standard terminology in parametric polynomial systems solving.

Let I =< {F, g1, . . . , gn−1, |∂(F,g1,...,gn−1)
∂(α1,...,αn)

|} >⊂ Q[x, y][α] be a polynomial
ideal in the parameters x, y and the variables α = α1, . . . , αn, and consider
V(I) the solution set of the system given by I:

V(I) = {(x, y,α) ∈ C2+n : ∀f ∈ I, f(x, y,α) = 0}

Given the ideal I ⊂ Q[x, y][α] (and a monomial order in the variables),
its Gröbner cover provides a set of pairs {(Si, Bi) : 1 ≤ i ≤ s} describing
segments Si of the parameter space C2, that classify points (x, y) according
to the different number of solutions of the specialized system f(x, y,α) = 0
in the α variables.

1. The segments Si are disjoint.

2. The segments Si are locally closed subsets of the parameter space C2,
expressed in the canonical P-representation

{(pij, (pijk : 1 ≤ k ≤ sij)) : 1 ≤ j ≤ si}.

A segment is

Si =
⋃
j

(
V(pij) \

(⋃
k

V(pijk)

))
.

3. There is a basis Bi associated to each segment Si. Bi specializes to the
reduced Gröbner basis of I for every point (x, y) ∈ Si of the segment.

4. The kind of solution in the variables is given by the set of leading power
products (lpp’s) of the bases Bi, that are fixed on each GC segment Si
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(and is also explicitly given by the algorithm). Thus, for all points in
the segment, the ideal I has the same type of solutions (finite, infinite
or no solution).

5. Moreover, if the ideal I is homogeneous, then the lpp’s sets are different
on each segment. (The lpp’s of the homogenized ideal are also explicitly
given by the algorithm for each segment of Si as they characterize the
segments).

Thus, the algorithm can be used to find the projection of the surface
F (x, y,α) = 0 into the (x, y)-plane. Note that, following 3., the union of
segments with basis different from {1} is exactly the sought projection. Fur-
thermore, this set, being the union of constructible sets, is also constructible.

Denoting by π1 and π2 the projections onto the parameters and variables
space, respectively:

π1 : C2+n −→ C2 π2 : C2+n −→ Cn

(x, y,α) 7→ (x, y) (x, y,α) 7→ α
,

we define the generic complex envelope E associated to the system given by
I as the set E = π1(V(I)) ⊂ C2. A taxonomy for computing geometric loci
has been recently proposed [1]. There, a locus problem is seen as the solution
of a parametric polynomial system, and the complete solution is analysed in
order to return just the faithful parts of the locus. Here, this taxonomy can
be rephrased as follows. A complex envelope point (x, y) ∈ C2 is normal if

dim(π2(V(I) ∩ π−1
1 (x, y))) = 0,

and it is non–normal if

dim(π2(V(I) ∩ π−1
1 (x, y))) > 0.

The normal points of an envelope are thus located into the GC segments
with a finite number of solutions in the variables. Nevertheless, it could hap-
pen that a segment having infinite points stems from a finite set of variable
values. While the locus taxonomy drops the segment out, this one could
be an admissible case for envelopes. Consider, for instance, the envelope of
horizontal lines through a point on the unit circle, y = ±1 (see Section 1).
There is exactly a segment with basis different from {1}, namely,

(V(y + 1) \ V(1)) ∪ (V(y − 1) \ V(1)),

12



coming from α1 = ±1, α2 = 0, respectively. So, both lines y = ±1 consist
of normal points, despite they are 1–dimensional. On the contrary, consider
the unit circle, a point A(α1, α2) on it, and the line l through A and (0, 1)
(see Figure 1 for an instance of this construction). While the envelope of the
family of perpendicular lines to l through A reduces to the point (0,−1), the
GC segments are

1. Segment with lpp = {1} Generic segment
Segment: C2 \ V(x))
Basis: B1 = {1} (no solution over the segment)

2. Segment with lpp = {α1, α2}
Segment: V(x) \ V(y + 1, x)
Basis: B2 = {α1, α2 − 1}

3. Segment with lpp = {α2
2}

Segment: V(y + 1, x) \ V(1)
Basis: B3 = {α2

2 + α2
1 − 1}

While segment 2, the vertical axis, consists of normal points, this line
cannot be declared as part of the envelope since it derives from a degeneracy
in the construction (when the point A is (0, 1)). The difference with the
preceding case lies on this degeneration. And since degeneracies can happen
at most for a finite number of cases, testing the existence of the represen-
tative of the family of lines for such variable values helps to decide about
the segment membership to the envelope. As an illustration, note that point
(0,−1), i.e. segment 3, is an envelope non-normal point.

4. Examples and limitations

We illustrate our proposal with the following examples. Some of them are
also used to highlight its limitations towards an effective implementation in
DGS: the field where solutions are found and time constraints. As said above,
GC works on an algebraically closed field (C in our case), so we will not try
to discover semialgebraic knowledge about envelopes. Regarding the time
complexity, it is well-known that Gröbner bases have the double exponential
cost [11]. So, there will be some constructions where our approach will not
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answer in a reasonable time lapse, where reasonable must be understood as
few seconds. Although most envelope constructions in dynamic geometry will
be efficiently solved, there are cases when interactivity will be lost. For such
cases, we think that a smart combination of graphic methods (see Section
2) with simpler elimination techniques could make a sound framework for
interactive geometry developers. While the above complex issue could be
relaxed by using semialgebraic tools as Cylindrical Algebraic Decomposition
and analogues, the current state of such tools is not enough mature to be
incorporated as automatic helpers inside these environments.

We also want to remark that the only current implementation of the GC
algorithm is in Singular, while other alternative packages exist under Maple,
Mathematica,. . . Nevertheless, the open source character of GC and Singular
and the deployment of a web service allowing remote access to Singular4

could mark the difference for including sophisticated proposals as the one
here described in widespread geometric software. Let us cite, for instance,
the Envelope command5, available in the forthcoming GeoGebra 5.0 beta
version. This command incorporates a preliminary version of our proposal
and it is, to the best of our knowledge, the first attempt to enhance DGS
with efficient envelope abilities.

4.1. The offset of a parabola

Envelopes can be used, for instance, in geometrical optics to define caus-
tics and in Computer–Aided Design to define offset curves. The family of
circles with fixed radii d, centered at a point moving in a parabola, envelopes
a sextic curve, the d-offset to the parabola. The equation of such offset can
be easily obtained in DGS incorporating the GC algorithm. Figure 2 shows
the 3-offset to the parabola 4y = x2 as computed by GeoGebra 5.0 beta.
Note that no other current DGS is able to return both an accurate plot and
the equation of the offset.

Since the radius of circle d is defined as the distance between E and F ,
one could ask for the 0-offset, i.e., the original parabola, just making both
points coincident. GeoGebra would plot the offset exactly as the parabola,
but the equation would be x4 + x2y2 − 6x2y + x2 − 4y3 + 8y2 − 4y = 0, and
not just 4y = x2. The reason behind such behavior contradicts our initial

4http://code.google.com/p/singularws
5http://wiki.geogebra.org/en/Envelope Command
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Figure 2: An offset to 4y = x2 computed in GeoGebra.

guess: the envelope is declared to be the parabola plus the extra point (0, 1),
as it can be checked inspecting the GC output.

1. Segment with lpp = {1} Generic segment
Segment: C2 \ (V(x2 − 4y) ∪ V(x2 + y2 − 2y + 1))
Basis: B1 = {1} (no solution over the segment)

2. Segment with lpp = {α1, α2}
Segment: (V(x2 − 4y) \ V(y + 1, x2 + 4)) ∪ (V(x2 + y2 − 2y + 1) \

(V(y − 1, x) ∪ V(y + 1, x2 + 4)))
Basis: B2 = {(y2 − 1)α1 + (−x3 − xy2 + 4xy + x), (y + 1)α2 + (−x2 −

y2 + 3y)}

3. Segment with lpp = {α2, α
2
1}

Segment: V(y − 1, x) ∪ V(y + 1, x2 + 4)
Basis: B3 = {(3y − 1)α2 + (2x)α1 + (−y + 3), (y)α2

1 + (2x)α1 + 4}

Despite the fact that GeoGebra does not plot the point (0, 1) as part of
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the envelope because isolated points are frequently beyond of its plotting
capabilities, the computed 0-offset equation is not the true envelope. The
third GC segment consists of a pair of complex points, (±2i,−1), discarded
by their complex character, and the real point (0, 1), which does not even
belong to the envelope since it corresponds to complex values of α1 and α2,
namely (±2i,−1). Recall that we are following E1 envelope definition [6, p.
102], where parameters x, y and variables αi are constrained to R. Thus,
although our protocol returns sound computations in C, spurious complex
parts can be introduced in the obtained envelopes.

Concerning the required computing time for this offset, it should be noted
that GeoGebra outsources GC computations to an external Singular web
service. Using the canonical server6, a virtualized machine with 1 GB and 1
CPU 3 GHz, the equation of the offset shown in Figure 2 is found in 1 second.
However, placing the basic points of the construction in arbitrary positions
can sometimes prevent getting a result, due to the growth of the involved
polynomials. In such cases the server kills the current computation after a
predefined lapse (default 30 s), and the envelope is declared as undefined. Of
course, this time could be optimized through a personal installation of the
web service at the user machine.

4.2. The envelope of a family of ellipses

Consider the family of ellipses with a fixed focus A(4, 0), major axis with
length 5 and the other focus moving on the vertical axis, B(0, α). Thus, the
uniparametric family F (x, y, α) is

4y2α2−4yα3−36x2−100y2+α4−32xyα+16xα2+164yα−82α2+144x+81,

and simple elimination in the system {F = 0, ∂F/∂α = 0} returns three
factors for the envelope:

(2x+ y2 − 9)(18x− y2 + 9)(x2 − 8x+ y2 + 16).

At a first glance, both parabolas seem to be coherent with the graphic
results if a user traces the family in a DGS (Figure 3). Although the parabolas
envelope more curves than the ellipses of the family, it is easy to notice that
the problem, as posed, is not algebraic, but semialgebraic. Since no constraint
on α has been imposed, F is a hyperbola whenever |α| > 3, and the found
parabolas also envelope these hyperbolas.

6http://singularws.idm.jku.at
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Figure 3: A trace of the family of ellipses in Cinderella (left) and GeoGebra (right).

The third factor of the envelope deserves special study. While in the
preceding example we concluded that point (0, 1) should be removed from
the envelope, this factor, that is exactly the fixed focus, cannot be excluded as
a real solution for complex values of α. The Gröbner cover of the parametric
system {F = 0, ∂F/∂α = 0}, with parameters x, y and variable α, includes
the segment

V(x2 − 8x+ y2 + 16) \ (V(y2 + 1, x− 5) ∪ V(y2 + 81, x+ 5)),

with basis {α2+(−2y)α+(8x−41)}. Thus, the real point (4, 0) corresponds
to x = 0, y = ±3, and it cannot be discarded from the envelope. The
envelope factor x2 − 8x + y2 + 16 is, if factored in C, a pair of complex
lines y = ±

√
−x2 + 8x− 16, whose projection on the real (x, y)-plane is

exactly the point (4, 0) [4]. Furthermore, note that this point can also be
considered as the limit of intersection points between ellipses with α close
to ±3 and the double line representing the family for α = ±3, respectively.
This point belongs to E2 envelope definition, and, thus, it is also included
into E1 definition.

5. Conclusions

We have described a protocol for the automatic computation of families
of algebraic plane curves. It is based on the Gröbner Cover algorithm and
the subsequent study and characterization of the returned segments. The
proposal is inscribed in our general goal of improving dynamic geometry
environments with new abilities related to automatic proof and discovery.
The overall goal of this improvement is to support the problem solving process
of users related to geometric proving and discovery.
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A preliminary version of the protocol is currently supported by the beta
version of GeoGebra 5.0. We discuss several examples illustrating our find-
ings, highlighting new capabilities for envelope computations in interactive
environments. Since the used framework works in the complex field, limita-
tions of the method when dealing with real issues are also specified.
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