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Abstract. We show how appropriate rewiring with the aid of Metropolis Monte Carlo 

computational experiments can be exploited to create network topologies possessing prescribed 

values of the average path length (APL) while keeping the same connectivity degree and clustering 

coefficient distributions. Using the proposed rewiring rules, we illustrate how the emergent 

dynamics of the celebrated majority-rule model are shaped by the distinct impact of the APL 

attesting the need for developing efficient algorithms for tuning such network characteristics. 
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1. Introduction. 

 

The strong interplay between the emergent complex dynamics of many real-world systems and 

the underlying topology of the networks that pertain to their structure has been illustrated by many 

studies: the dynamics of electrical power transmission systems including cascade failures leading 

to blackouts [54], the evolution of the world wide web, various social phenomena such as mimesis 

and herding [55], brain cognitive, neurological disorders and motor functions [8, 11, 54] are 

typical paradigms of such cases. 

Thus, the modelling and the systematic investigation of the topological properties of complex 

networks are of great importance. Towards this aim, various algorithms for generating networks 

aspiring to approximate the actual ones have been proposed [2, 46, 57]. 

In order to approximate such real-world network structures, Watts and Strogatz [57] (WS) 

constructed a network model with a variable connectivity degree possessing “small-world” 

properties interpolating between regular ring lattices and random regular networks (RRN). Small-

world networks are highly clustered with small path lengths. The most famous experiment which 

describes the concept of “small-worldness'' was conducted by the physiologist Milgram [44]. He 

sent 160 letters to residents of the city Omaha in Nebraska asking them to post a letter to a friend. 
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The shipment had only one term: “do not try to send the mail directly if you don't know the 

recipient; instead, post the mail to one friend of yours who you believe knows the recipient”. The 

letters, which were finally received, had been posted about six times on average. This phenomenon 

is also known as six degrees of separation (also known as “six degrees of Kevin Bacon” [57]). 

Other networks, such as the Internet, include nodes with overwhelmingly more connections 

compared to other nodes (for instance yahoo, google and amazon are nodes with a huge number of 

connections). This type of networks is usually characterized by a power-law distribution of 

degrees i.e. ( )P k ck
−= γ

 and are called scale-free. Barabasi and Albert [6] in their seminal paper 

proposed an algorithm for generating networks with power-law degree distributions. These 

networks can capture the power-law characteristic which pertains to the structure of many real-

world networks, yet the clustering coefficient decays very fast with network size; therefore, failing 

to approximate larger clusters as these are observed in many real life structures [35]. Furthermore, 

there are many social networks whose structure deviates from the power-law degree distribution or 

small-worldness (most often exhibiting skewed degree distributions [12]). In addition, the 

topological characteristics of many networks may change over time. For example in [49], it is 

shown that in the contact social network of a disease transmission at an American high school the 

clustering coefficient remained almost constant over a wide range of contact durations while the 

average path length doubles. 

In order to generate networks structures that can capture the empirically observed ones, 

research efforts have been focused on developing algorithms for generating network topologies 

with prescribed characteristics. In [28], the authors propose a network-growing algorithm 

combining the properties of both scale-free networks and small-world networks. The value of the 

clustering coefficient is driven by manipulating the formation of triades. Serrano and Boguna [50] 

present a network-growing algorithm for controlling both the degree distribution and the clustering 

coefficient. Their algorithm is based on the so-called configuration model which is used to 

generate pre-assigned degree distributions. The most typical representative of this category is the 

celebrated Erdòs-Rényi algorithm [20]. Volz [56] uses a Markov chain Monte Carlo technique to 

generate both a given degree distribution and a clustering coefficient. Maslov and Sneppen [41] 

use a rewiring technique to produce random networks, with a given connectivity degree, in the 

case of the interactions of nuclear proteins. Kim [33] introduces an algorithm based on a Monte 

Carlo simulation at both zero and finite temperatures to control the clustering coefficient of a given 

network. In [24], the authors propose an algorithm for generating small-world networks with 

tunable assortative coefficient. Leary et al. [38] present an algorithm for controlling the degree 

distribution by altering the preferential attachment step in the Barabàsi and Albert algorithm. 

Exploiting the algorithm of Holme and Kim, they were able to produce different degree 

distributions with different clustering coefficients. Badham and Stocker [5] propose an algorithm 

for adjusting three properties of networks, namely the degree distribution, the clustering 

coefficient and the assortativity. In [21], the authors propose an optimization method for 

constructing a network with prescribed degree-dependent clustering.  

In this work, we propose appropriately chosen rewiring rules that can be used to 

systematically construct consistent to APL network structures at will, yet maintaining the degree 
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and clustering distributions untouched. To demonstrate the approach, we constructed networks 

(starting from small-world networks which served as our initial configurations derived using the 

WS algorithm [57]), with prescribed values of APLs. At this point we should note that upon the 

construction of a small-world or a scale-free network using an algorithm such as the one proposed 

in [57] or in [2], the APL cannot be in principle prescribed. 

Furthermore, we show how different topologies as these are obtained by adjusting the 

value of the APL can dramatically shape the emergent dynamics of network-based models. For our 

illustrations, we chose a significant representative of such cases: the majority-rule model. 

Majority-rule models have been extensively used to simulate and gain a better understanding of 

the behaviour of many complex systems ranging from epidemic spread dynamics [9,10, 31, 42] 

and opinion formation and voter/election dynamics [14, 27, 37, 53] to culture and language 

dynamics [4, 16, 18, 19, 40], crowd flow design and management [25, 26, 29, 48], diffusion of 

news and innovations [23, 39, 58] ecology and neuroscience [36, 51].  

 

 

2. Tuning the Average Path Length of a Complex Network. 

 

The clustering coefficient and the APL of a network are two attributes that contain 

significant information concerning its topological structure. The APL, say L, is a global property 

indicating the average number of steps required to reach any two nodes. It is defined as the mean 

value of all shortest paths between any two nodes, i.e. (((( ))))1

2

i jd
L

N N

↔↔↔↔∑∑∑∑
====

−−−− , where jid ↔↔↔↔  is the 

shortest path between the nodes i  and j  and N  is the number of nodes in the network. On the 

other hand, the clustering coefficient expresses a “local” characteristic of a node regarding the 

formation of cliques among its neighbors. In other words, as in the case of social networks, it 

measures the fact that “friends of my friends are also likely to be friends with each others” [46]. 

The clustering coefficient ic  of a node i  is defined as follows: let ik  be the degree of node i , i.e. 

the number of edges connected to node i . If the number of possible edges between the ik  

neighbours (or the total number of possible triangles) of node i  is 
(((( ))))

2

1−−−−ii kk
 and the number of 

edges that really exist is iE  (i.e. the number of existing triangles), then the clustering coefficient 

ic  is defined as: (((( ))))1
2

−−−−
====

ii

i
i

kk

E
c . The clustering coefficient, say C , of the whole network is defined 

as the mean value of the clustering coefficients ic  of every node, i.e. ∑∑∑∑====
====

N

i
ic

N
C

1

1
, where N  is the 

number of nodes in the network. 

Here, we present an algorithm, which can be used to change the structure of a certain 

network by tuning the APL without altering the underlying degree distribution and the clustering 

coefficient of any node, i.e. keeping the clustering distribution untouched. The approach is based 
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on appropriately chosen rewiring and generally can be applied to (i) simple networks, where 

multiple edges or self-loops among the nodes are not permitted, (ii) undirected nodes, where if 

node i  has node j  as a neighbor, then j  has i  as a neighbor and (iii) one-component networks, 

in which starting from a node, one can find a path to visit all the other nodes. Although this last 

condition is not vital for the rewiring process and can be excluded, it ensures the calculation of the 

average path length over the whole network. 

To obtain the desired values for the average path length of a given network, the proposed 

algorithm combines appropriate rewiring with Simulated Annealing (SA) [1, 13, 34]. For the APL, 

the objective function at the step k  of the SA algorithm may be defined as: 
targetk k

E L L= − , 

where 
targetL  is the target value. The proposed algorithm can be summarized as follows (see also 

Figure 1): 

 

Step 0) Set the initial system’s pseudo-temperature, say Temp  and select the annealing 

scheme, i.e. the way the pseudo-temperature will decrease. 

 

Do until convergence { 

Step 1) Evaluate the pseudo-energy (objective function) 
target

( )E L L L= −  of the 

network. 

 

Implement the following rewiring rules { 

Step 2) Select randomly two nodes i  and j  which  

(2a) do not have any common neighbors and  

(2b) each of them has at least one neighbor (say, 1i  and 1j  respectively) 

that does not form any triangle with any other neighbor of i  and j  nor 

do any common neighbors exist between 1i  and 1j   (see Figure 1a). 

 

Step 3) Rewire the edges to connect i  with j  and 1i  with 1j  (Figure 1b). At this 

point the rewiring process may produce multiple components in the network and if it 

does the new configuration should be rejected and the algorithm returns to step 2.  

} 

Step 4) Evaluate the new mean path length of the network, say 'L  and the 

corresponding objective function )'(LE . 

 

Step 5) Accept or reject the new configuration using the Metropolis procedure [48]: 

          5a)  Accept the new configuration if )()'( LELE <<<< , 

 5b) Accept the new configuration if )()'( LELE >>>>  with a probability 

(((( ))))




 −−−−−−−−

Temp
LELE )()'(

exp  ;otherwise reject it. 
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5) Reduce the system pseudo-temperature according to the annealing schedule. 

 

} End do. 

In order to test the efficiency of the proposed scheme, we initially constructed “small-world” 

networks using the Watts and Strogatz (WS) algorithm [57]: starting from a ring structure, i.e. a 

one-dimensional lattice of N  nodes, each of them connected with its k  nearest neighbours on 

both sides (i.e. each node has a connectivity degree of 2k ), links are rewired with a probability p . 

For a ring lattice (i.e. when 0p ==== ), ( , )L N p  scales as ( ,0)
4

N
L N N

k
≈≈≈≈ ∼  and its structure is 

characterized by a flat distribution of distances (shortest path lengths) between nodes (Figure 2). 

For completely random graphs (i.e. when 1p →→→→ ), the average path length scales as 

ln( )
( , )

ln(2 )

N
L N p

k
∼ and the resulting structure is characterized by a very narrow distribution of 

shortest path lengths.  For intermediate values of p  it has been shown [7, 45, 57], that there is a 

certain regime in which networks exhibit small-world properties characterized by narrowed-

peaked distributions of shortest path lengths (Figure 2). 

In our simulations, the initial system’s pseudo-temperature was set to Temp=10, while the 

pseudo-temperature decreased 10% every 200 steps.  

Here, we used two different network sizes, namely, 1000N ====  and 10000N ==== , as well as 

different initial connections 2 6k ====  and 2 8k ==== . When the probability is 0p ==== , there are no edges 

to be rewired without destroying the clustering formation of the network (step 2 of the algorithm), 

thus, the proposed algorithm cannot be implemented (Figure 3a). For values of the probability 

0 1p< ≤< ≤< ≤< ≤  the proposed algorithm can find edges to rewire without changing the clustering 

coefficient and the connectivity degree of any node (Figure 3b).  

In figure 4a, we present the implementation of the proposed approach starting from a 

network with 1000N ====  nodes, 2 8k ====  constructed using the WS algorithm with a probability 

0.01p ====  of rewiring edges. We tried to adjust the value of the APL to lower as well as to higher 

values with respect to the WS network’s values. As it can be seen, the algorithm reaches a 

maximum and minimum plateau. The proximity of the minimum plateau to the initial value of the 

APL is due to the fact that there are not many choices left in changing long-range interactions in 

order to lower the APL which at the same time leaves the degree and clustering distribution 

untouched. On the other hand, there are more choices for generating, by rewiring, connections that 

drive the APL in significantly higher values. Figure 4b illustrates the evolution of the probability 

distribution of the distance ijd  between two nodes i  and j  as the average path length of the 

network increases. For comparison purposes, we also show the flat probability distribution of the 

ring network. It is obvious that, as the value of the APL gets higher, the resulting distribution of 

shortest path lengths gets flatter deviating as expected from the small-worldness. 

Figure 5 depicts the APL (open circles) and clustering coefficient (open squares) of 

“small-world” networks with 1000N ====  nodes, 2 6k ==== , along with the maximum and minimum 

values of the average path lengths that the algorithm could reach for networks initially constructed 
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with probabilities {{{{ }}}}0.005,  0.01,  0.2,  0.5,  0.9p ====  of rewiring edges. All other intermediate 

values of the APL could be successfully reached by the algorithm. It is worth mentioning that, 

while the networks constructed with probabilities 0.2p ≥≥≥≥  have an APL of 

( , ) / ( ,0) 0.06L N p L N ≤≤≤≤ , meaning that ( , ) ln( )L N p N∼ , the algorithm succeeds to increase it up 

to / ( ,0) 0.45L L N ≥≥≥≥ , meaning that ( , )L N p N∼ . Hence the algorithm can create networks 

ranging from “small-world” to “large-world” structures while keeping the clustering and degree 

distributions constant.  

Figure 6(a) presents the implementation of the algorithm in the case of a network 

with 10000N ====  nodes, 2 6k ====  initially constructed with the WS algorithm with a probability 

0.5p ====  of rewiring edges. Figure 6(b) depicts the evolution of the probability distribution of ijd  

between two nodes i  and j . As in the previous case, when 1000N ==== , the demand for higher 

values of the APL of the network results to the generation of longer distances and flatter 

distributions of shortest paths.  

The above simulations were obtained using an Intel(R) Core(TM) i5-3320M CPU @ 2.60 

GHz CPU and 16 GB installed memory (RAM). Indicatively we note that for an increment of 10% 

of the APL of a network with N=10000 nodes and 30000 edges, the computational time was 12 

hours on average. In the case of networks initially constructed with a rewiring probability p=0.25 

the required computational time was approximately 150 hours (for the construction of 50 network 

configurations). In the case of the networks initially constructed with a rewiring probability p=0.5 

the required computational time was approximately 187 hours (for the construction of 50 network 

configurations). 

 

 

 

3. The majority-rule model. 

 

Let us assume N individuals interacting on a complex network. Each individual is 

labelled as i ( Ni ,...,2,1= ), and its state takes two values: one (denoting activation) and zero 

(denoting deactivation). Hence, the state of the 
thi  in time t  can be described by the function 

( ) { }1,0∈tai  [43]. Let us denote by ( )iΛ  the set of the neighbors (i.e. the individuals connected to 

thi  individual, with self loop included). Let us also consider the summation ( ) ( )
( )

∑
Λ∈

=
ij

ii tatσ , 

which gives the number of active neighbors of the 
thi  individual. Then at each time step, each 

individual interacts with its neighbors and changes its state-value according to the following 

stochastic model [36, 51]: 
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1. An inactive individual becomes active with probability ε , if (((( )))) 






 ++++
≤≤≤≤

2

1i
i

k
tσ  (where ik  

is the degree of the 
thi  individual) and at least one of its links is active . If  

(((( )))) 






 ++++
>>>>

2

1i
i

k
tσ , the individual becomes active with probability 1 ε−−−− . 

2. An activate individual becomes inactive with probability ε , if the (((( )))) 






 ++++
>>>>

2

1i
i

k
tσ  . If 

(((( )))) 






 ++++
≤≤≤≤

2

1i
i

k
tσ , the individual becomes inactive with probability 1 ε−−−− , 

where the range of the parameter ε  is the interval ( )0,0.5 .  

 

 

 

 

4. Simulation Results. 

 

For our simulations we used networks of 10000N ====  individuals.  The initial one-

dimensional ring was constructed with 2 6k ====  neighbours for every node and small world 

structures were constructed using the WS algorithm for values of the rewiring probability 

0.25,0.7p ==== . The parameter ε  of the majority rule model was set equal to 0.1. In each case, we 

used the proposed algorithm to test the “distinct” impact of the APL on the emergent dynamics of 

the majority-rule model by adjusting its value at prescribed values. 

Figure 7(a) depicts the time evolution of the density of active individuals, say d , in the 

case of a small-world network constructed using the WS algorithm with a probability 0.25p ==== . 

The resulting network exhibits high clustering equal to 0.2603C ====  and an APL equal to 

6.5984L ====  (averaged over 50 network configurations). As it is seen, for the specific value of the 

APL there are two stable stationary states, one corresponding to an “all-off” state, in which all the 

individuals are inactive, and the other one to a partially active network. Figure 7(b) depicts the 

time evolution of the density of active individuals when the APL was set to a slightly different 

value 6.702L ====  while keeping the degree and clustering distribution the same. In this case, the 

second stationary solution loses stability and the network converges to the “all-off” state which is 

the only possible one. The temporal simulations dictate that there is a critical value of the APL that 

marks this phase transition. Hence, a slight change in the APL of the network influences 

significantly the emergent dynamics of the model. 

Figure 8(a) shows the time evolution of the density of active individuals, d , in the case of 

a small-world network constructed using the WS algorithm with a probability 0.7p ====  of rewiring 

edges. In this case the network has a low clustering coefficient 0.0168C ==== , and an APL equal to 

5.5149L ====  (averaged over 50 network configurations). As in the previous case, there are two 

stable stationary states, one corresponding to the “all-off” state and the other to a partially 

activated network. Implementing the proposed algorithm and increasing the APL to 6.1588L ==== , 
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the non-zero steady state loses stability and the network converges to the “all-off” state revealing 

again a “critical” value for the APL (Figure 8(b)). 

In Figure 9 we present the coarse-grained bifurcation diagram of d  with respect to the 

APL. The diagram was obtained by brute-force temporal simulations averaging over 50 different 

consistent realizations of networks. The resulting networks with the prescribed APL were created 

starting from small-world networks constructed with an initial probability 0.25p ====  of rewiring 

edges. A critical threshold was found around 6.69crL ≅≅≅≅ . The inset of Figure 9 depicts the stable 

stationary state which corresponds to the non-zero steady state. Figure 10 depicts the coarse-

grained bifurcation diagram of d  with respect to the APL as obtained over 50 consistent network 

realizations.  Here the resulting networks with the prescribed APL were created starting from 

small-world networks constructed with an initial probability 0.7p ====  of rewiring edges. A critical 

threshold was found around 6.13crL ≅≅≅≅ ; the inset figure depicts the stable stationary state which 

corresponds to the partially activated network. 

 

 

 

 

5. Conclusions and Discussion 

 

Networks play an important role in many scientific areas ranging from chemistry to ecology and 

from biology to social sciences. The investigation of the interplay between topology and emergent 

dynamics of complex systems has been the focus of many studies. Through these studies has been 

made clear that the network topology, on which the interaction of the individuals/particles evolves, 

can shape the emergent macroscopic dynamics. However, it is less clear how one can quantify in a 

systematic manner the dependence of the emergent dynamics with respect to specific network 

characteristics. Due to the nonlinear, stochastic nature of such models and their coupling to 

complex network structures, the emergent behavior cannot be-most of the times-accurately 

modeled and analyzed in a straightforward manner.  

Towards this direction, various algorithms for generating complex networks with specific 

topological characteristics ranging from completely random graphs with homogeneous degree 

distributions to small-world and scale-free structures, have been proposed. Furthermore, over the 

last years researchers have focused their efforts on developing algorithms for prescribing certain 

topological network properties such as the degree distribution, clustering and assortativity aspiring 

to approximate real-world observed networking.  

Here we presented a framework that builds on earlier work on combining Monte Carlo 

simulations with rewiring that can be used to adjust at will the value of the average path length of a 

given network. The proposed rewiring rules and scheme allow the “at will” tuning of the APL 

leaving at the same time the degree and clustering coefficient distribution unchanged. For 

illustrative purposes, we created topologies with prescribed values of the APL coefficients starting 

from small world networks constructed using the Watts and Strogatz algorithm.  



9 

Exploiting the algorithm we were able to investigate the impact of the APL to the 

emergent dynamics of the celebrated majority-rule individualistic model pertaining to the 

dynamics of many real-world responses including herding under panic [3], the emergence of 

cooperation [47] and public opinion formation [30]. Our analysis revealed that even small changes 

in the APL (while keeping the other two important statistical topological characteristics, namely 

the degree and the clustering distributions untouched) can result in big changes in the system's 

behaviour.  To our knowledge this is the first time that such an analysis is provided and 

demonstrates the scope of the tasks that one can attempt using the proposed framework, and how it 

may be used to draw more general conclusions about the distinct impact of this topological 

characteristic.  

This interplay of the APL and majority-rule dynamics is of particular interest in processes 

like the spread of epidemics and information exchange, as one can ultimately use such an analysis 

to effectively control or stabilizes the spread rate (see for example [15]). Another aspect that it is 

worth pointing out is that the average path length is also directly associated to the so called weak 

links whose significance in many problems ranging from social to biological phenomena has been 

raised by many studies [17, 22]. Hence the proposed algorithm can be also used to shed more light 

on the influence of the weak links on the evolution of complex systems evolving on heterogeneous 

networks. At this point we should note that while our algorithm keeps the degree and clustering 

distributions untouched we should expect that other properties such as the assortativity and higher 

order motifs will generally change. 

By employing the proposed algorithm, we constructed the bifurcation diagrams with 

brute-force temporal simulations. However, this is but the first task one would use to study the 

influence of the topology on the emergent dynamics: i.e. set up many initial network ensembles 

possessing the desired topological characteristics (here the APL); for each initial topology create a 

large enough number of consistent ensemble state realizations, and then run the detailed dynamics 

for a long time to investigate the system’s behaviour. Yet, this simple simulation is inadequate for 

the systematic analysis and the construction of the complete bifurcating diagrams (for example 

unstable solution branches cannot be traced in this way). Due to the complex interplay between 

topology and emergent model dynamics, and the intrinsic multiplicity of scales at which the 

relevant individuals/ objects interact, the systematic analysis at the macroscopic/emergent level 

becomes an overwhelmingly difficult task. Usually, good macroscopic evolution equations in 

closed form cannot or it is difficult to be written in a straightforward manner. This limits our 

ability to analyse the emergent dynamics using well established numerical bifurcation analysis 

tools. When this is the case, one can exploit the potential of the Equation-Free approach [32] 

which serves as an on-demand identification-based approach enabling individual-based stochastic 

models to perform system-level tasks bypassing the need of deriving explicit models in a closed 

form. In [52] Spiliotis and Siettos showed how this multi-scale framework can be used to construct 

bifurcation diagrams and perform rare-events analysis with respect to the degree distribution of the 

underlying networks.  An equivalent procedure can be applied in order to couple the proposed 

algorithm for the generation of network topologies with prescribed values of the APL with the 
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Equation-Free approach in order to construct the complete bifurcation diagrams and perform 

systematic stability analysis. 
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Figures 

 

 

Figure 1.The proposed algorithm for tuning the APL of a network at will: (a) Select two nodes 

i and j , having no mutual neighbors, each of whom having at least a neighbor, say 1i  and 1j  

respectively, which do not form any triangle with their other neighbors or they have any mutual 

neighbors. (b) Select the edges that connect the nodes 1i i⇔⇔⇔⇔  and 1j j⇔⇔⇔⇔ and rewire them to 

connect i j⇔⇔⇔⇔ and 1ii j⇔⇔⇔⇔ . 

 

 

Figure 2. The probability distribution of the distance ijd  between two nodes i  and j  of a network 

with 10000N ==== nodes, 2 8k ====  when 0p ==== (flat distribution, solid line), 
410p
−−−−==== (dotted line), 

310p
−−−−==== (dashed line) and 

210p
−−−−==== (dashed-dotted line). The rewiring of few edges creates “long-

range” connections resulting in more narrow-peaked distributions as the probability grows. 
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Figure 3. (a) The connections of a node, i , in the case of the ring, when the probability is 0p ==== . 

In this case, the proposed algorithm cannot find any possible edges to rewire, thus it cannot be 

implemented. (b) The connections of a node, i , in the case of the WS algorithm when 0p >>>> . The 

WS algorithm destroys the initial lattice formation and creates edges which can be selected by the 

proposed algorithm. 

 

 

Figure 4. (a) Implementation of the proposed algorithm to a network with 1000N ==== and 2 8k ==== , 

constructed initially with the WS algorithm and probability 0.01p ====  of rewiring edges. The APL 

reaches a maximum and minimum value. (b) Evolution of the probability distribution of the 

shortest distance between two nodes, comparing also with the uniform distribution of the ring 

network (dotted line) in the case of increasing the APL of the initial network. The, initially, peaked 

distribution changes to a more uniform one. 
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Figure 5. APL of “small-world” networks with 1000N ====  and 2 6k ==== (depicted with circles), 

Clustering Coefficient (depicted with squares) and the maximum and minimum values (depicted 

with stars) of the APL that the proposed algorithm reached for networks constructed with 

probabilities {{{{ }}}}0.005,  0.01,  0.05,  0.2,  0.5,  0.9p ====  of rewiring edges. The clustering coefficients 

of the initially constructed networks do not change.  

 

 

 

Figure 6. (a) Implementation of the proposed algorithm in the case of a network with 10000N ====  

nodes, 2 6k ==== initially constructed with a probability 0.5p ====  of rewiring edges. (b) Evolution of 

the probability distribution of the shortest distance between two nodes as the Average Path Length 

increases. 
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Figure 7. (a) Time evolution of the density of activated individuals, starting from different initial 

conditions, in the case of a small-world network initially constructed with a probability 0.25p ====  

of rewiring edges. (b) Time evolution of the density of activated individuals, starting from 

different initial conditions, in the case of a small-world network, initially constructed with a 

probability 0.25p ==== , in which the APL has been increased with the implementation of the 

proposed algorithm. 

 

 

Figure 8. (a) Time evolution of the density of activated individuals starting from different initial 

conditions, in the case of a small-world network initially constructed with a probability 0.7p ====  of 

rewiring edges. (b) Time evolution of the density of activated individuals, starting from different 

initial conditions, in the case of a small-world network, initially constructed with a probability 

0.7p ==== , in which the APL has been increased with the implementation of the proposed algorithm. 
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Figure 9.  The coarse-grained bifurcation diagram of the density of activated individuals ( d ), with 

respect to theAPL ( L ), in the case of the small-world network initially constructed with a 

probability 0.25p ====  of rewiring edges. 

 

Figure 10. The coarse-grained bifurcation diagram of the density of activated individuals ( d ), 

with respect to the APL ( L ), in the case of the small-world network initially constructed with a 

probability 0.7p ====  of rewiring edges. 


