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Abstract

This paper presents a numerical investigation into the pattern formation mechanism in the

Brusselator model focusing on the interplay between the Hopf and Turing bifurcations. The

dynamics of a coupled Brusselator model is studied in terms of wavelength and diffusion, thus

providing insight into the generation of stationary and oscillatory patterns. The expected

asymptotic behaviour is confirmed by numerical simulations. The observed patterns include

inverse labyrinth oscillations, inverse hexagonal oscillations, dot hexagons and parallel lines.
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1. Introduction

Models involving termolecular reaction steps exhibit interesting properties and pose chal-

lenging mathematical problems regarding the asymptotic behaviour of the solutions. It is

well-known that models of reaction sequences with two intermediates and only uni- and bi-

molecular steps do not admit limit cycles [3, Section 7.1]. Therefore, for instability to occur

in the thermodynamic branch (the solution in equilibrium) one needs to use cubic reaction

rates [1], [8], [3].

The following reaction sequence was studied by Prigogine and Lefever in 1968 [5]:
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We note that the third step in the sequence involves a cubic nonlinear reaction term.

Under the assumptions that

(i) D and E are removed from the reaction domain the instant they are produced (or

equivalently, k−2 = k−4 = 0),

(ii) the nonlinear reaction is irreversible (k−3 = 0),

(iii) A is in sufficient abundance,

the dynamics of the reaction sequence is represented in [5] by two rate equations:

∂U

∂t̂
= k1A− (k2B + k4)U + k3U

2V + D̂u∇2U

∂V

∂t̂
= k2BU − k3U

2V + D̂v∇2V (1)

By scaling of the variables,
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)
1
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1
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k4

(2)

the model (1) is simplified to the following model involving only two parameters.

∂u

∂t
= a− (b+ 1)u+ u2v +Du∇2u

∂v

∂t
= bu− u2v +Dv∇2v (3)
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The system (3) of reaction diffusion partial differential equations is known as the tri-

molecular model or the Brusselator model, the latter term coined by Tyson in 1973 [7].

This model has been widely used to illustrate and study basic features of chemical reaction

models involving trimolecular steps. In some sense it plays in the settings of these models

a pivotal role similar to the role the harmonic oscillator and the Heisenberg model play in

ferromagnetism [3].

This paper presents a numerical investigation into the pattern formation mechanism in

the Brusselator model. The next section (Section 2) is devoted to studying the interplay

between the two bifurcations in the model, namely the Hopf bifurcation and the Turing

bifurcation. This investigation is largely motivated by the observations in [11] that Turing

patterns eventually (for sufficiently small ratio of the diffusion coefficients) dominate the

Hopf bifurcation induced oscillations. The numerical simulations yield a hyperbola-like

shaped boundary between the two regions. Oscillatory patterns are observed only in a

small area near the horizontal part of curve. Based on these results, Section 3 deals with

pattern formation in a coupled Brusselator model, that is, two systems of the form (3)

linked via linear interaction terms. The study of the dynamics of this model in terms

of wavelength and diffusion provides insight into generation of stationary and oscillatory

patterns. The expected asymptotic behaviour is confirmed by numerical simulations. The

observed patterns include inverse labyrinth oscillations, inverse hexagonal oscillations, dot

hexagons and parallel lines. In Section 4 we provide some concluding remarks and directions

for future work. For completeness of the exposition, details on the numerical method used

for the simulations are presented in the Appendix.

2. Turing and Hopf bifurcations in the Brusselator model

The system (3) has one spatially homogeneous steady state, u∗ = a, v∗ = b
a
. Its stability

is influenced by two factors: the appearance of spatially homogeneous limit cycle (Hopf

bifurcation) and the ratio of the diffusion coefficients (Turing instability). We recall them

briefly.
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The spatially homogeneous solutions of (3) satisfy the system of ODEs

du

dt
= a− (b+ 1)u+ u2v,

dv

dt
= bu− u2v. (4)

Linear stability analysis yields that (u∗, v∗) is an asymptotically stable equilibrium of (4) if

b < a2 +1 with Hopf bifurcation at b = a2 +1. This means that for b > a2 +1 the equilibrium

is unstable and all nonequilibrium solutions approach a stable limit cycle.

Turing instability refers to the fact that the steady state (u∗, v∗) is unstable when the

ratio of the diffusion coefficients is sufficiently small/large. Following the standard approach,

e.g. as presented in [2], we obtain the Turing instability conditions in the form,

b < bH := a2 + 1 (5)

b > bT :=

(
1 + a

√
Du

Dv

)2

(6)

We note that (5) and (6) hold simultaneously only if Du

Dv
< 1, which implies that the activator,

u, diffuses slower than the inhibitor, v. Further, for any fixed values of a and b > 1, stable

patterns are formed when Du

Dv
is sufficiently small so that b > bT . Therefore, in the subcritical

Hopf parameter domain given by (5) we have two qualitatively different options for the

dynamics of the model (3): (i) stable spatially homogenous steady state (u∗, v∗) and (ii)

formation of stable spatial patterns, with the respective parameter subdomains separated

by the bifurcation line b = bT .

Our main interest is in the asymptotic properties of the model (3) in the supercritical

Hopf domain b > bH . In this parameter domain the model (3) has a spatially homogeneous

limit cycle, so called bulk oscillations, corresponding to the limit cycle of (4). We investigate

numerically the asymptotic behavior of the solutions of (3) with a focus on the disappearing

of oscillations and formation of stable patterns when Du

Dv
is sufficiently small. The numerical

method used for the simulations is presented in the Appendix. The system (3) is considered
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for x ∈ [0, 200]× [0, 200] with periodic boundary conditions

u|x1=0 = u|x1=200, u|x2=0 = u|x2=200, (7)

v|x1=0 = u|x1=200, v|x2=0 = u|x2=200. (8)

Following the approach in [11], we fix the values of Dv and a and vary b and Du. More

precisely, we consider b ∈ [7.2, 13.2], Du ∈ [3, 10] with independent increments of 0.25 each,

while keeping Dv = 10 and a = 3. The system (3) is solved with initial conditions which are

random perturbations of the spatially homogeneous steady state. The points of the param-

eter grid are given in Figure 1. At any parameter point, irrespective of the initial condition,

the computed solution eventually settles in one of the following stable states: spatially ho-

mogeneous steady state, bulk oscillations, oscillating patterns or stationary Turing patterns.

Different markers in the Figure 1 indicate which one of these asymptotic behaviors is ob-

served (see Legend). Interactive form of this figure is available on [6]. Clicking a marker on

the diagram plays a video of a typical evolution of the solution for the respective values of

the parameters b and Du.

Below the Hopf bifurcation line b = bH , and as expected, the line b = bT separates a

stable steady state region and a Turing patterns region. Interestingly, above the line b = bH ,

there is a very well pronounced separation line b = bT ∗ between the bulk oscillations region

and the pattern formation region. Mostly, the patterns are stationary. The exception is

a narrow area between the lines b = bH and b = bT ∗ , where oscillating patterns occur.

Schematically the different regions and dividing lines are presented in Figure 2. The line

b = bT ∗ which separates the bulk oscillations region and the pattern formation region has

a hyperbola-like shape. This implies that for any fixed b > bH , a stable stationary pattern

is formed provided the fraction Du

Dv
is sufficiently small. Further, the simulations indicate a

possible vertical asymptote at a value of, Du in (3.4, 3.6), that is for Du smaller than this

value a stable pattern is formed irrespective of the value of b.
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Figure 1: Classification of the numerical simulations of the Brusselator model into the following

classes: SS - Stable stationary state, O - Bulk Oscillations, OP - Oscillating patterns, TP - Turing

patterns. Interactive form of the figure is available in [6]

3. The coupled Brusselator model

The coupled Brusselator model comprises two systems of the form (3) coupled via linear

reaction terms. Its general form is

∂ui
∂t

= Dui
∇2ui + α(uj − ui) + f(ui, vi)

∂vi
∂t

= Dvi∇2vi + β(vj − vi) + g(ui, vi) (9)

with i, j = 1, 2, i 6= j. The reactions f and g are as in (3), namely f(u, v) = a−(1+b)u+u2v

and g(u, v) = bu−u2v. The system (9) can be considered as a model of the reaction sequences

in two thin layers of gel that meet at an interface. Each layer contains the same set of

6

http://linus.up.ac.za/academic/maths/ND/Index.html


..

Du

.

b

..

3

.

5

.

7

.

8

.

10

.

12

.

T

.

T

.

SS

.

Osc

.

bT

.

bT ⋆

.

bH

Figure 2: Schematic representation of the regions in Figure 1: T - stable Turing patterns, Osc -

bulk oscillations, SS: stable steady state

reactants with the same kinetics but with different diffusion parameters. The difference

in diffusion can be owed to either physical (viscosity or density of the gel) or chemical

(complex formation) factors. We note that the model represents two diffusion processes,

referred to as horizontal and vertical diffusion. Horizontal diffusion is the diffusion in the

two dimensional spatial domain of one layer and is described by the Laplacian term in each

equation of (9). The vertical diffusion is the interaction between the two layers represented

by the linear terms α(uj − ui) and β(vj − vi), i, j = 1, 2, i 6= j. Yang et al. [10] studied

the stable spatial resonance and superposition patterns in this coupled system. The spatial

resonance of two wavelengths in the interacting layers produce stationary patterns, known

as ”black/white-eyes”. Whereas the superposition patterns combines stripes and/or spots

of varying size layered on top of each other. They also report a three-phase oscillatory
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Figure a b α Du1 Dv1 Du2 Dv2 k1 k2

3a 3 10.2 0.1 4 10 10 10 0.83 0.1

3b 3 10.2 0.1 5 10 10 10 0.68 0.1

3c 3 13.2 0.1 3 10 10 10 1.25 0.4

4bI 3 10.2 1 6 10 30 100 0.56 0.33

4bII 3 10.2 1 6 10 37 100 0.56 0.28

4bIII 3 10.2 1 6 10 41 100 0.56 0.26

4bIV 3 10.2 1 6 10 44 100 0.56 0.24

Table 1: Parameters used in simulations of coupled Brusselator model (α = β)

interlacing hexagonal lattice pattern,known as ”twinkling-eye” pattern, which occurs due to

resonance between a Turing mode and its subharmonic.

Here we show a mechanism of generating oscillating patterns in the coupled model which

is based on the asymptotic properties of a single layer model as presented in Figure 2. More

precisely, oscillating patterns are obtained by coupling a layer with bulk oscillations and a

layer with a Turing pattern. Roughly speaking, the one layer provides patterns while the

other one drives the oscillations. It is important to observe that due to the shape of the

curve b = bT ∗ in Figure 2 one can indeed obtain two layers of such different properties by

just varying Du. This property is essential since the two coupled layers in (9) differ only in

their diffusion coefficients.

The parameters used in our simulations are given in Table 1. In the first set of simulations

we varied the diffusion Du1 in the first layer while keeping the rest of the parameters fixed.

We observe an oscillating pattern when we couple a strong bulk oscillating layer with a

Turing pattern layer, see Figure 3a and Figure 3b. Typical Turing patterns observed in a

single layer Brusselator model (Figure 4a) oscillate through inverting the concentration of

each previous time step. Increasing b leads to a temporal separation of the Turing patterns

and the bulk oscillations with the system spending longer periods in a set pattern.
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(a)

(b)

Figure 3: Oscillating pattern in a coupled Brusselator model (a) Honeycomb-inverse pattern

oscillations (b) Labrynth-inverse pattern oscillations

The second set of simulations shows deviation from the typical Turing patterns of a single

layer, Figure 4b, due to the interacting Turing modes on different scales. The wavenumber

was derived from the linearized system in the form

ki =

√
1

2

(
fu
Du

+
gv
Dv

)
=

√
1

2

(
b− 1

Du

− a2

Dv

)
.

We kept the short wavelengths fixed (wavenumber k1 = 0.56) while varying the long wave-

lengths. The long wavelength was achieved by increasing both diffusion coefficients Du2 and

Dv2), thus providing for the layer to remain in the Turing domain. The stationary patterns

progress from Labyrinth patterns through to Dot Hexagonal patterns with Parallel lines

occurring when the wavelength ratio k1
k2

= 2. Hexagons first appear when the wavelength

ratio k1
k2
> 2. When k1

k2
> 2.3, we observe a clear dot hexagonal pattern, as seen in Figure
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(a)

(b)

Figure 4: Stationary patterns in the coupled Brusselator model: (a) typical patterns observed in

a single layer Brusselator model; (b) patterns that occur due to interaction of two Turing modes

with various wavelengths

4bIII.

4. Conclusion

The numerical investigation in this paper provides insight into the asymptotic behavior of

the solutions of a single layer Brusselator model, characterizing the parameter region for each

of the three qualitatively different cases. Particular attention is given to the supercritical

Hopf bifurcation parameter domain where no substantial theory is available. The obtained

results are used further in revealing an essential mechanism generating oscillating patterns
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in the coupled Brusselator model. Future work is envisaged on the analysis of the single

and coupled model using a theoretical approach similiar to Rashkov’s [12], with the aim of

producing a more complete classification of the stationary and oscillating patterns as well

as their generating mechanisms.

5. Appendix

The Alternating-Direction Implicit method (ADI) uses the concept of operator splitting

or time splitting. The idea is to divide each timestep into two steps of size ∆t/2, where in

each substep, a different dimension is treated implicitly. This leads to a set of equations

for each substep similiar to the set of equations for the implicit one dimensional case. The

Peaceman-Rachford variant [4] of the ADI method consists of solving (9), with the prediction

substep (∆t/2) using the backward Euler method for the x derivative terms and the forward

Euler method for the y derivative terms. The correction substep (∆t) then proceeds to swap

the Euler methods around using the forward Euler method for x derivative terms and the

backward Euler method for the y derivative terms. We illustrate the substeps below,

u
n+ 1

2
l,m − unl,m

∆t/2
= Du(

u
n+ 1

2
l+1,m − 2u

n+ 1
2

l,m + u
n+ 1

2
l−1,m

∆x2 +
unl,m+1 − 2unl,m + unl,m+1

∆y2 ) + F (unl,m, v
n
l,m)

un+1
l,m − u

n+ 1
2

l,m

∆t/2
= Du(

u
n+ 1

2
l+1,m − 2u

t+ 1
2

l,m + u
n+ 1

2
l−1,m

∆x2 +
un+1
l,m+1 − 2un+1

l,m + un+1
l,m+1

∆y2 ) + F (u
n+ 1

2
l,m , v

n+ 1
2

l,m )

(10)

where F (u, v) = α(uj − ui) + f(ui, vi), we note that the same holds for v.

Using periodic boundary conditions for the system (9) the first step in (10) is reduced
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to solving for m = 1, 2, ...,M , a linear tridiagonal cyclic system of the form,

1 + 2r −r 0 ... −r

−r 1 + 2r −r ...

...

... −r 1 + 2r −r

−r ... 0 −r 1 + 2r


·



u
n+ 1

2
1,m

u
n+ 1

2
2,m

...

u
n+ 1

2
L−1,m

u
n+ 1

2
L,m


=



f1

f2

...

fL−1

fL


(11)

where r = Du∆t
2∆x2 , s = Du∆t

2∆y2
, fi = −sui−1,m + (1 + 2s)ui,m − sui+1,m + ∆t

2
F (uni,m, v

n
i,m), i =

1, 2, ..., L. The second step in (10) is implemented similarly by interchanging x and y. In

order to solve the systems efficiently we use the Sherman-Morrison formula [9, Section 2.7.1],

handling the coefficient matrix as a tridiagonal matrix plus a correction. This requires us

to define the following two vectors. Let P be the tridiagonal matrix in (11),

ϕ1 =



γ

0
...

0

pL,M


ϕ2 =



1

0
...

0

p1,1/γ


(12)

where γ = −p1,2. We can now solve the tridiagonal matrix with the following steps:

(i) Solve P ′ · u = f

(ii) Set up the vector ϕ1.

(iii) Solve P ′ · z = ϕ1.

(iv) Obtain the form, Ψ = ϕ2 · um/(1 + ϕ2 · z)

(v) Use the form Ψ to obtain the new values of um, i.e um = um −Ψ · z

where P ′ = P but with the following two terms modified.

p
′

1,2 = p1,2 − γ p
′

L,M = pL,M − pL,M
p1,1

γ
(13)
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