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Abstract. We consider the volume of the largest axis-parallel box in the d-dimensional torus

that contains no point of a given point set Pn with n elements. We prove that, for all natural

numbers d, n and every point set Pn, this volume is bounded from below by min{1, d/n}. This

implies the same lower bound for the discrepancy on the torus.

1. Introduction

The study of uniform distribution properties of n-element point sets Pn in the d-dimensional

unit cube has attracted a lot of attention in past decades, in particular because of its strong

connection to worst case errors of numerical integration using cubature rules, see e.g. [5, 13, 16].

There is a vast body of articles and books considering the problem of bounding the discrepancy

of point sets. That is, given a probability space (X,µ) and a set B of measurable subsets of

X, which we call ranges, we want to find the maximal difference between the measure of a set

B ∈ B and the empirical measure induced by the finite set Pn, i.e.

D(Pn,B) := sup
B∈B

∣∣∣∣#(Pn ∩B)

n
− µ(B)

∣∣∣∣ ,
where Pn ⊂ X, n ∈ N, with #Pn = n. In what follows we only consider X = [0, 1]d, d ≥ 1, and

the Lebesgue measure µ; we write |B| := µ(B). The number D(Pn,B) is called the discrepancy

of the point set Pn with respect to the ranges B. See e.g. the monographs/surveys [4, 5, 6, 13,

14, 16] for the state of the art, open problems and further literature on this topic.

Here, we are interested in lower bounds for this quantity that hold for every point set Pn.

In fact, we are going to bound the apparently smaller quantity

disp(Pn,B) := sup
B∈B :
Pn∩B=∅

|B|,

which we call the dispersion of the point set Pn with respect to the ranges B. Clearly, this is

a lower bound for the discrepancy.

The notion of the dispersion was introduced by Hlawka [9] as the radius of the largest empty

ball (for a given metric). In this setting there are some applications including the approximation

of extreme values (Niederreiter [12]) or stochastic optimization (Yakowitz et al. [19]). The

present definition was introduced by Rote and Tichy [17] together with a treatment of its value

for some specific point sets and ranges. Only recently an application to the approximation

of high-dimensional rank one tensors was discussed in Bachmayr et al. [3] and Novak and

Rudolf [15], where the ranges are all axis-parallel boxes in [0, 1]d. A polynomial-time algorithm

for finding the largest empty axis-parallel box in dimension 2 was considered by Naamad, Lee

and Hsu [11].

Our main interest is the complexity of the problem of finding point sets with small dis-

persion/discrepancy; especially the dependence on the dimension. That is, given some ε > 0
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and d ∈ N, we want to know how many points are necessary to achieve disp(Pn,B) ≤ ε or

D(Pn,B) ≤ ε for some Pn ⊂ [0, 1]d and B ⊂ 2[0,1]
d
. For this we define the inverse functions

N0(ε,B) := min {n : disp(P,B) ≤ ε for some P with #P = n}

and

N(ε,B) := min {n : D(P,B) ≤ ε for some P with #P = n} .
We have N0(ε,B) ≤ N(ε,B) for every ε, B.

For example, if B = Bdex is the set of all axis-parallel boxes contained in [0, 1]d, then it is

easily seen that for every point set there exists an empty box with volume larger than 1/(n+1);

simply split the cube in n+ 1 equal parts, one of which must be empty. Moreover, it is known

that with respect to the dependence on n this estimate is asymptotically optimal, i.e. there

exists a sequence of point sets (Pn)n∈N such that disp(Pn,Bdex) ≤ Cd/n for some Cd <∞, see

e.g. [17].1.

However, if one considers increasing values of the dimension the situation is less clear: The

best bounds to date are

log2 d

4(n+ log2 d)
≤ inf
P : #P=n

disp(P,Bdex) ≤ Cd

n

for some constant C <∞, see Aistleitner et al. [2] for the lower bound and Larcher [10] for the

upper bound. For a proof of an super-exponential upper bound see also Rote and Tichy [17,

Prop. 3.1]. This can be rewritten as

(1/4− ε) log2 d

ε
≤ N0(ε,Bdex) ≤ Cd

ε
,

Clearly, there is a huge difference in the behavior in d for the upper and the lower bound.

If we consider the discrepancy instead, then even the order in ε−1 differs in the upper and

the lower bounds, i.e. for small enough ε ≤ ε0 and all d ∈ N we have

c d ε−1 ≤ N(ε,Bdex) ≤ C d ε−2

with some constants 0 < c,C < ∞.2 The lower bound is due to Hinrichs [8] and the up-

per bound was proven by Heinrich et al. [7]. To narrow the gap in the ε-behavior while

keeping a polynomial behavior in d is a long-standing open problem, see also Novak and

Woźniakowski [16] for more results/problems in this area.

Nevertheless, for fixed, small ε > 0 the d-dependence of N(ε,Bdex) is known to be linear.

This motivates us to study the same problem for the dispersion. Unfortunately, we were not

able to this problem for the ranges Bdex. Instead, we consider the “periodic” version of this

problem, i.e., we regard the unit cube as the torus and consider all axis-parallel boxes that

respect this geometry. More precisely, we consider the ranges Bdper, see (2) and Figure 1, and

we prove the following theorem.

Theorem 1. For every n, d ∈ N and every point set Pn ⊂ [0, 1]d with #Pn = n we have

disp(Pn,Bdper) ≥ min{1, d/n},

or equivalently,

N0(ε,Bdper) ≥ d/ε for 0 < ε < 1.

1Note that for the discrepancy such an inequality cannot hold for any sequence of point sets, see Roth [18].
2If one considers only boxes that are anchored at the origin, i.e. the star-discrepancy, then one can choose

c = ε0 = 1/(32e2) ≈ 0.00423 [8] and C = 100 [1].
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Clearly, this implies the following.

Corollary 2. For every n, d ∈ N and every point set Pn ⊂ [0, 1]d with #Pn = n we have

D(Pn,Bdper) ≥ min{1, d/n}

or equivalently,

N(ε,Bdper) ≥ d/ε for 0 < ε < 1.

As far as we know, the largest lower bound on the inverse of the periodic discrepancy that

was known before is due to Hinrichs [8] and states that

N(ε,Bdper) ≥ N(ε,B∗) ≥ c d/ε for 0 < ε < c,

where B∗ is the set of all axis parallel boxes that are anchored at the origin and c > 0 can be

chosen as c = 1/(32e2) ≥ 0.004229. For the proof of this note that Bdper ⊃ B∗.

2. Preliminaries

For the dispersion on the torus, we consider ranges B1(x, y) ⊂ [0, 1]d of the form

(1) B1(x, y) := (0, y) + x mod 1

for x, y ∈ [0, 1]d. Note that B1(x, y) is simply (x, x + y) iff x + y ≤ 1. In all other cases one

has to respect the geometry of the torus, cf. Figure 1.

We define the periodic ranges by

(2) Bdper :=
{
B1(x, y) : x, y ∈ [0, 1]d

}
.

Figure 1. Two sample test sets from B2per

The main tool for the proof will be the following lemma, which provides a lower bound for

the d-dimensional dispersion in terms of the dispersion of certain projections of the point set.

For a set A ⊂ [0, 1]d we define the projections

(3) A(k) :=
{

(x1, . . . , xk) ∈ [0, 1]k : (x1, . . . , xd) ∈ A
}
, 1 ≤ k ≤ d,

i.e. we consider every element from A without the last d− k coordinates. For a family of sets

B ⊂ 2[0,1]
d

we define B(k) = {B(k) : B ∈ B} ⊂ 2[0,1]
k
.
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Note that, if the ranges satisfy B ⊃ B(k) × [0, 1]d−k = {B × [0, 1]d−k : B ∈ B(k)} (as Bdper or

the set of all axis-parallel boxes), then it is obvious that

disp(Pn,B) ≥ sup
B∈B(k) :

Pn∩(B×[0,1]d−k)=∅

|B| = sup
B∈B(k) :
P(k)
n ∩B=∅

|B| = disp(P(k)
n ,B(k))

for every point set Pn. The same holds for the discrepancy.

However, such a bound is not sufficient to prove bounds on the dispersion that are growing

with the dimension. Hence, we prove a refinement of this inequality. In particular, we need the

fact that we can forget about (at least) one point whenever we project to lower dimensions,

loosing some specific constant. For this, we define

(4) κB(A) := sup
{
κ ≥ 0: ∀B̃ ∈ B(d−1) ∃B ∈ B : B̃ = B(d−1), A ∩B = ∅ and |B| ≥ κ|B̃|

}
for ranges B and a subset A ⊂ [0, 1]d.

Lemma 3. For every point set P ⊂ [0, 1]d and every A ⊂ [0, 1]d we have

disp(P,B) ≥ κB(A) disp
(

(P \A)(d−1) , B(d−1)
)
.

Proof. By the definition of κB we obtain for every B̃ ∈ B(d−1) and A ⊂ [0, 1]d that

sup
{
|B| : B ∈ B with B(d−1) = B̃ and A ∩B = ∅

}
≥ κB(A) |B̃|.

Now take the supremum over all sets B̃ with (P \A)(d−1)∩ B̃ = ∅. Clearly, the right hand side

then is κB(A) disp
(
(P \A)(d−1), B(d−1)

)
. The left hand side, after taking the supremum, is the

supremum of the volumes |B|, where B is such that A∩B = ∅ and (P \A)(d−1) ∩B(d−1) = ∅.

The second property implies that P ∩ B ⊂ A and hence, by the first property, P ∩ B = ∅.

This shows that the left hand side is bounded from above by disp(P,B), which proves the

statement.

�

3. Proof of Theorem 1

First we treat the case n ≤ d. Here, the advantage of the periodic test sets is most clearly

observed. For z ∈ [0, 1]d we consider the test boxes B1(z, 1), cf. (1), which consist of the

whole cube without the d hyperplanes {x : xi = zi}, i = 1, . . . , d. Given an arbitrary point

set Pn = {x(1), x(2), . . . , x(n)} ⊂ [0, 1]d we define zi = x
(i)
i for 1 ≤ i ≤ n and zi = x

(n)
i

for n + 1 ≤ i ≤ d. Clearly, we obtain Pn ∩ B1(z, 1) = ∅ and |B1(z, 1)| = 1. This proves

disp(Pn,Bdper) = 1 whenever n ≤ d.

We now turn to the case n > d. In this case we use Lemma 3. Hence, we have to bound

κ(A) := κBdper(A), cf. (4), for specific A ⊂ [0, 1]d. In fact, we only need A = {t} for some

t = (t1, . . . , td) ∈ Pn. Note that (Bdper)(d−1) is the set of all axis-parallel periodic boxes in

[0, 1]d−1, i.e. (Bdper)(d−1) = Bd−1per . For every B̃ ∈ Bd−1per , we have that

B = B̃ × (0, 1) + (0, . . . , 0, td) mod 1

is an element of Bdper that does not contain t, see Figure 2. Moreover, |B| = |B̃|. This shows

κ({t}) = 1 for every t ∈ [0, 1]d and, by Lemma 3,

disp(Pn,Bdper) ≥ disp
(

(Pn \ {t})(d−1),Bd−1per

)
.
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Iterating this procedure another d− 2 times we obtain

disp(Pn,Bper) ≥ disp
(

(Pn \A)(1),B1per
)

for every A ⊂ Pn with #A = d − 1. Clearly, B1per is the set of all periodic intervals in [0, 1].

After taking the maximum over all A, the latter is the maximal length of a periodic interval

that contains at most d − 1 elements of P(1)
n . This is obviously bounded from below by d/n.

This finishes the proof.

�

Figure 2. The set B = B̃ × (0, 1) + (0, . . . , 0, td) mod 1
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