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Localized forms of the LBB condition and a

posteriori estimates for incompressible media

problems

S. Repin

St. Petersburg Department of V.A.Steklov Institute of Mathematics, 191023,
Fontanka 27, Sankt–Petersburg, Russia

and University of Jyväskylä, P.O.Box 35, FI-40014, Jyväskylä, Finland

Abstract

The inf-sup (or LBB) condition plays a crucial role in analysis of viscous flow prob-
lems and other problems related to incompressible media. In this paper, we deduce
localized forms of this condition that contain a collection of local constants associ-
ated with subdomains instead of one global constant for the whole domain. Localized
forms of the LBB inequality imply estimates of the distance to the set of divergence
free fields. We use them and deduce fully computable bounds of the distance be-
tween approximate and exact solutions of boundary value problems arising in the
theory of viscous incompressible fluids. The estimates are valid for approximations,
which satisfy the incompressibility condition only in a very weak (integral) form.
Another important question considered in the paper is how to select a proper mea-
sures that should be used in error analysis. We show that such a measure is dictated
by the respective error identity and discuss properties of the measure for the Stokes,
Oseen, and Navier–Stokes problems.

Key words: Incompressible viscous fluids, LBB condition, a posteriori error
estimates. 65N15, 76D07, 35Q30.

1 Introduction

Evolution of an incompressible fluid occupying a bounded Lipschitz domain
Ω ∈ Rd (d = 2, 3) is described by the system
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∂u

∂t
+ ui

∂u

∂xi
−Divσ = f, (x, t) ∈ QT := Ω× (0, T ) , (1)

div u = 0, (2)

σ = −pI + σd, (3)

where u(x, t), p(x, t), and σ(x, t) are the velocity (vector function), pressure
(scalar function), and stress (tensor function), respectively. Next, I is the unit
element of the space Md×d

s containing symmetric d × d matrices, the symbol
Div is used to denote the divergence of tensor functions, and div denotes the
divergence of vector fields. We assume that (1)–(3) describes a media with a
constant density (for simplicity the density is set to one). The deviatoric part
of the stress is subject to a potential type relation

σd ∈ ∂W (ε) , (4)

where W is a convex functional (dissipative potential). Bingham type poten-
tials W (ε) = µ |ε|α + k∗ |ε| describe a wide spectrum of viscous fluids. Here
µ and k∗ are positive constants related to viscous and plastic properties of
fluids, respectively, and α > 1 is the energy growth parameter.

The equations (1)–(3) represent the balance law, the incompressibility condi-
tion, and the material (constitutive) law, respectively, and the potential W is
usually presented in terms of the small strain tensor ε. The system is supplied
with initial and boundary conditions

u (x, t) = g (x, t) ∈ ∂1Ω× (0,+∞) , (5)

σn = F (x, t) ∈ ∂2Ω× (0,+∞) , (6)

u (x, 0) = ϕ (x) x ∈ Ω. (7)

It is assumed that g and ϕ are sufficiently regular for a proper definition of
the respective traces and satisfy the divergence free condition.

An important class of Newtonian fluids is related to the parameters α = 2
and k∗ = 0. In this case, σd = µ

2
(∇u + (∇u)T ) and (1) is presented by the

Navier–Stokes system

∂u

∂t
+ Div(u⊗ u)− µ4u = f +∇p. (8)

It is known that for sufficiently regular solenoidal ϕ(x) there exists a weak
Leray-Hopf solution. For d = 2, existence of a unique solution has been proved
by O. Ladyzhenskaya (see (18)) but similar result for the case d = 3 is not yet
proved (see, e.g., discussions in (14; 16; 35)). However, discrete (semidiscrete)
analogs of the Navie–Stokes equation are actively used in the mathematical
modeling.

From the computational point of view, exact satisfaction of the divergence
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free (incompressibility) condition (2) may lead to serious difficulties. Typically,
numerical methods are based on variational or minimax settings and mixed
velocity–pressure or velocity-stress-pressure settings and use finite dimensional
spaces subject to discrete inf–sup conditions (see, e.g., (3; 11; 15; 35)) and in
the majority of cases numerical solutions satisfy (2) only approximately. In this
paper, we suggest a method of measuring errors that arise due to violation of
the incompressibility condition. These results yield computable majorants of
the distance to the exact solution for a wide set of viscous flow problems.

The main idea can be explained with the paradigm of the stationary Stokes
problem: find u and p such that u = 0 on ∂Ω and in Ω

divu = 0, (9)

−Divσ = f, (10)

σ = µ∇u− p I. (11)

First, let us fix notation. Henceforth, W 1,α denotes the standard Sobolev
space of scalar and vector valued functions having first generalized derivatives
summable with the power α. The respective norms are denoted by ‖ · ‖1,α. If
α = 2, then we use a simplified notation ‖·‖ for L2 norms of scalar, vector, and
tensor valued functions. W 1,α

0 denotes the subspace of W 1,α containing func-
tions vanishing on the boundary and S1,2

0 (Ω,Rd) denotes the closure (with
respect to W 1,2 – norm) of smooth divergence free fields with compact sup-

ports in Ω. Test functions in S1,2
0 (Ω,Rd) are denoted by

◦
v (or

◦
w). Also, we use

the spaces

L̃2(Ω) :=



q ∈ L

2(Ω) | {q}Ω := (meas Ω)−1
∫

Ω

q dx = 0





and
H(Ω,Div) :=

{
τ ∈ L2(Ω,M d×d),Divτ ∈ L2(Ω,Rd)

}
.

First, we recall the following result (see (26; 27)).

Theorem 1 Let (u, p) be a weak solution to the Stokes problem (9)–(11). For
any v ∈ S1,2

0 (Ω,Rd), q ∈ L̃2(Ω), τ ∈ H(Ω,Div),

‖µ∇(u− v)‖ ≤ ‖τ − µ∇v + qI‖+ CFΩ‖Divτ + f‖ =: M(v, q, τ), (12)

where CFΩ is a constant in the Friedrichs inequality ‖ψ‖ ≤ CFΩ‖∇ψ‖ for
any ψ ∈ W 1,2

0 (Ω). Moreover, the majorant M(v, q, τ) vanishes if and only if
v = u, q = p, and τ = σ.

Similar estimates have been derived for the generalized Stokes problem (32),
Stokes problem in the velocity–vorticity formulation (21), NonNewtonian flu-
ids (12; 13), Oseen and generalized Oseen problems (28; 30).
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Theorem 1 shows that the Stokes problem is equivalent to the following vari-
ational Problem: find u ∈ S1,2

0 (Ω,Rd), p ∈ L̃2(Ω), and σ ∈ H(Ω,Div) such
that

inf
v∈S1,2

0
(Ω,Rd),

τ∈H(Ω,Div), q∈L̃2(Ω)

M(v, q, τ) = M(u, p, σ) = 0. (13)

In principle, this problem can be used for finding u, p, and σ by means of
direct minimization of the majorant M(v, q, τ). However, this method requires
approximations of the velocity in S1,2

0 what generates well known technical
difficulties (especially in 3D case). Therefore, we wish to extend the space
S1,2

0 (Ω,Rd) in Problem (13) to a wider space W 1,2
0 (Ω,Rd). For this purpose,

we need a projection type estimate

inf
◦
v∈S1,2

0 (Ω,Rd)

‖∇(v− ◦v)‖ ≤ ΠS1,2
0

(v), (14)

where ΠS1,2
0

(v) is a computable functional. By (12) and (14), we obtain

µ ‖∇(u−v)‖≤ µ
∥∥∥∇(u−◦v)

∥∥∥+ µ
∥∥∥∇(

◦
v−v)

∥∥∥ (15)

≤ ‖µ∇ ◦v−τ−qI‖+CFΩ‖divτ+f‖+ µ
∥∥∥∇(

◦
v−v)

∥∥∥

≤ ‖µ∇v−τ−qI‖+CFΩ‖divτ+f‖+ 2µ
∥∥∥∇(

◦
v−v)

∥∥∥
≤ ‖µ∇v−τ−qI‖+CFΩ‖divτ+f‖+ 2µΠS1,2

0
(v),

where v ∈ W 1,2
0 (Ω,Rd), τ ∈ H(Ω,Div), and q ∈ L̃2(Ω). We see that the right

hand side of (15) contains three terms associated with the equations (9), (10),
and (11). In other words, being supplied with proper weights the least squares
type complex in the right hand side majorates the error and vanishes if and
only if v, τ, q coincide with the exact velocity, stress, and pressure. It is known
that ΠS1,2

0
(v) can be expressed via ‖divv‖ (see (26; 27); similar results also

hold for Lα based spaces (31)).

The relations (13) and (15) suggest least square type functionals (with the
weight factors that provide proper scaling of different terms) that should be
used for getting numerical approximations of the Stokes problem. For example,
we can minimize the functional

F (vh, τh) := ‖(µ∇vh−τh)D‖2+C2
FΩ‖divτh+f‖2 + 4µ2Π2

S1,2
0

(vh) (16)

over vh ∈ Vh and τh ∈ Zh, where Vh and Zh are certain finite dimensional
subspaces of W 1,2

0 (Ω,Rd) and H(Ω,Div), respectively, which are generated by
a mesh having cells of the size h. To obtain (16), we set qh = 1

d
(µdivvh− trτh).
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The the first term of the majorant (15) contains only deviatoric part of the
tensor µ∇vh−τh. From (15) and the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2),
it follows that

F (vh, τh) ≥
µ2

3
‖∇(u− vh)‖2.

Hence global minimisation of F (vh, τh) is a stable process, which generates
monotonically decreasing values of the functional and explicitly controls the
errors. It can be performed by different methods (direct minimisation of re-
duction to a system of algebraic equations and using techniques developed for
the least squares mixed finite element methods, see, e.g., (4)). Optimisation
of minimization procedures leads to interesting algebraic problems, which are
beyond the framework of our analysis. We only mention that for simpler dif-
fusion type equations they are discussed in, e.g., (36), where a version of the
multigrid method was suggested for efficient minimization of similar function-
als.

The outline of the paper is as follows. In Section 2, we present a unified ap-
proach to a posteriori error estimation for models of viscous incompressible
fluids. In the first part 2.1, we establish the error identity (21), which holds for
the quantities available in computations and a proper error measure (in gen-
eral, a nonlinear pseudometric). This identity shows that the measure cannot
be selected arbitrary and is foreordained by the nature of the problem.

The part 2.2, is devoted to fully computable bounds of the distance between
exact solutions and approximations of the considered class of problems (which
includes the Stokes, Oseen, and Navier–Stokes equations as particular cases).
These estimates can be useful not only for the error control. They generate
nonnegative least squares type functionals, which vanish if and only if the ap-
proximations entering the functional coincide with the exact stress, pressure,
and velocity fields. The structure of the functionals is such that exact satis-
faction of the divergence free condition is not required. Instead the majorant
contains the term κ‖divv‖ with the finite penalty multiplier κ, which depends
on Ω only.

In Section 3, we show that κ(Ω) coincides with the constant in the Babuška-
Aziz-Ladyzhenskaya-Solonnikov inequality and discuss some cases where bounds
of this constant are known. Regrettably, the amount of these cases is very lim-
ited (e.g., for polyhedral domains in R3 up to now it is not known how to find
κ(Ω) or sharp majorants of this constant). Results exposed in Section 4 shows
a way to bypass these difficulties. If Ω is decomposed into a collection of ”sim-
ple” subdomains Ωi (for which κ(Ωi) or the respective majorants are known),
then the distance to the set of divergence free fields can be estimated. Using
this result, we obtain a fully computable majorant of the distance between u
and v, which is valid for non divergence free fields. This majorant and can be
used for guaranteed error control and also for various numerical minimization
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procedures generating approximations of solutions to incompressible media
problems.

2 Estimates of the distance to the exact solution

2.1 Measure of the distance

First, we introduce and justify a measure to be used for estimating the accu-
racy of approximate solutions to (1)–(3). In order to simplify the discussion
and present the conception in the most transparent way, we begin with the
stationary version of (1)–(3) supplied with the Dirichlet boundary condition
u(x) = g on the boundary ∂Ω (we assume that divg = 0). Generalizations are
discussed in section 2.4. We define the tensor

π(u) := σd(u)−$(u). (17)

By selecting $(u) in deferent ways, we can analyse various models of viscous
fluids within the framework of a unified scheme. At this point we do not confine
ourselves with a particular choice of $(u) assuming only that it is defined such
that the integrand in the left hand side of (18) is a summable function for any

test function
◦
w. Concrete forms of $(u) are considered in Section 2.3.

Henceforth, S0(Ω,Rd) denotes a space of solenoidal functions, which properties
are induced by the energy space V0(Ω,Rd) containing S0(Ω,Rd) (e.g., for prob-
lems with Bingham type dissipative potentials, V0(Ω,Rd) is the Sobolev space
W 1,α

0 (Ω,Rd) (α > 1) and for problems with Newtonian potentials S0(Ω,Rd) =
S1,2

0 (Ω,Rd)). The norm of S0 is denoted by ‖ · ‖S0 .

The generalized solution u ∈ S0(Ω,Rd) + g is defined by the integral identity

∫

Ω

π(u) : ∇ ◦
w dx =

∫

Ω

f · ◦w dx ∀ ◦w∈ S0(Ω,Rd). (18)

In general, the source term f is an element of the space S∗0 conjugate to S0.
However, for the sake of simplicity we henceforth assume that it is a function
integrable with some power greater than 1.

For v ∈ S0(Ω,Rd) + g, we introduce the functional

Lv(
◦
w) :=

∫

Ω

(
f · ◦w −π(v) : ∇ ◦

w
)
dx,

which is the residual of (18) generated by v and computed on a test function
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◦
w. The value of

sup
◦
w∈S0

Lv(
◦
w)

‖ ◦w ‖S0

=: |Lv| (19)

characterises the quality of v considered as an approximation of the generalised
solution u. For any ũ ∈ V0 + g, we define the quantity

Mπ(ũ, u) := sup
◦
w∈S0

∫

Ω

(π(u)− π(ũ)) : ∇ ◦
w dx

‖ ◦w ‖S0

. (20)

It is easy to see thatMπ(ũ, u) is nonnegative, symmetric, satisfies the triangle
inequality, and vanishes if ũ = u. Therefore, Mπ(ũ, u) can be viewed as a
certain measure of the distance between ũ and the exact solution u.

In view of (18), we have

Mπ(v, u) = |Lv|. (21)

Here |Lv| is a natural norm of the residual functional that contains all avail-
able information on the quality of the approximate solution v. Therefore, the
error identity (21) shows that the conception of minimization of |Lv| (which
is explicitly or implicitly adopted by all numerical methods) automatically
induces a local topology at the neighbourhood of u (which is defined by the
pseudometric (20)). Substantially, this means that Mπ(v, u) is the measure to
be used in quantitative analysis of the considered class of problems (see also
(29; 30) for a discussion of close questions related to proper selection of error
measures for various nonlinear models).

2.2 Majorant of Mπ(v, u)

Now, we are concerned with the functional Lv. It can be decomposed into two
physically meaningful parts by means of a suitable integral identity (see (28)
for a consequent exposition).

Let Y := ∇S0(Ω,Rd) (i.e., Y contains the tensor valued functions, which are
gradients of all vector functions in S0). Y ∗ denotes the corresponding dual
space. We introduce another pair of mutually conjugate Banach spaces V and
V∗ such that V0 ⊂ V , V∗ ⊂ S∗0 . Let τ ∈ HDiv(Ω) := {τ ∈ Y ∗ | Divτ ∈ V∗}.
Since ∫

Ω

(τ : ∇ ◦
w +Divτ · ◦w)dx = 0 ∀ ◦w∈ S0(Ω,Rd),
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we represent Lv(
◦
w) in the form

Lv(
◦
w) =

∫

Ω

(f + Divτ)· ◦w dx+
∫

Ω

(τ − π(v) + qI) : ∇ ◦
w dx,

where q is any scalar valued function such that qI ∈ Y ∗. In view of (19), we
have

|Lv| ≤ C1(Ω)‖f + Divτ‖V∗ + C2(Ω)‖τ − π(v) + qI‖Y ∗ ,
where C1(Ω) and C2(Ω) are positive constants in the embedding type inequal-
ities

‖ ◦w ‖V ≤ C1(Ω)‖ ◦w ‖S0 ∀ ◦w∈ S0(Ω,Rd), (22)

‖∇ ◦
w ‖Y ≤ C2(Ω)‖ ◦w ‖S0 . (23)

We recall (21) and arrive at the following general estimate:

Mπ(v, u) ≤ C1(Ω)‖f + Divτ‖V∗ + C2(Ω)‖τ − π(v) + qI‖Y ∗ . (24)

The right hand side of (24) is the error majorant. For any v ∈ S0(Ω,Rd) + g
and τ ∈ HDiv(Ω) it majorates the measure Mπ(v, u).

Now our goal is to modify (24) and deduce a guaranteed upper bound of
Mπ(v, u) valid for any v ∈ V0 + g. First, we note that

Mπ(v, u) ≤Mπ(w, u) +Mπ(v, w)

for any w ∈ S0(Ω,Rd) + g. Since

Mπ(v, w) := sup
◦
w∈S0

∫
Ω

(π(w)− π(v)) : ∇ ◦
w dx

‖ ◦w ‖S0

≤ C2(Ω)‖π(v)− π(w)‖Y ∗ ,

we find that

Mπ(v, u) ≤ Mπ(w, u) + inf
w∈S0(Ω,Rd)+g

C2(Ω)‖π(v)− π(w)‖Y ∗ (25)

≤ C1(Ω)‖f + Divτ‖V∗ + C2(Ω)‖τ − π(v) + qI‖Y ∗
+2 inf

w∈S0(Ω,Rd)+g
C2(Ω)‖π(v)− π(w)‖Y ∗ .

For problems associated with Newtonian fluids, the last term in the right hand
side of (25) is estimated from above by ΠS1,2

0
(v).

8



2.3 Particular cases

2.3.1 The Stokes problem.

In this case, S0(Ω,Rd) = S1,2
0 (Ω,Rd), σd(v) = π(v) = µ∇v, the norm ‖w‖S0

can be identified with ‖∇w‖, Y = Y ∗ = L2(Ω,M d×d), and

Mπ(u, v) = ‖µ∇(u− v)‖.

We set V = L2(Ω,Rd),V0(Ω,Rd) = W 1,2
0 (Ω,Rd), HDiv(Ω) = H(Ω,Div) and

assume that q ∈ L̃2(Ω) (since q is defined up to a constant we use this standard
reduction of the admissible space for the pressure). Then, (22) and (23) hold
with C1(Ω) = CFΩ (Friedrihs’ constant), C2(Ω) = 1. If v ∈ S0(Ω,Rd)+g, then
(24) yields the estimate

µ‖∇(u− v)‖ ≤ CFΩ‖f + Divτ‖+ ‖τ − µ∇v + qI‖,

which coincides with (22).

Let v ∈ W 1,2
0 (Ω,Rd) and w ∈ S1,2

0 (Ω,Rd) + g. These functions can be rep-

resented in the form v = g + v0 and w = g+
◦
w, where

◦
w∈ S1,2

0 (Ω,Rd) and

v0 ∈ W 1,2
0 (Ω,Rd). Therefore, ‖π(v)− π(w)‖ = µ‖∇(v0−

◦
w)‖ and

µ‖∇(u− v)‖≤ ‖τ −µ∇v + qI‖+ CFΩ‖Divτ+f‖+ 2µΠS1,2
0

(v0).

In view of (35), ΠS1,2
0

(v0) = κΩ‖divv0‖ = κΩ‖divv‖, and we arrive at the

estimate (cf. (26; 28))

µ‖∇(u− v)‖≤ ‖τ −µ∇v + qI‖+ CFΩ‖Divτ+f‖+ 2κΩ‖divv‖. (26)

2.3.2 The Oseen problem.

For this problem, the spaces S0, V , and Y are the same and (17) has the form
π(v) = µ∇v − a⊗ v (i.e., ς = a⊗ v). For any w ∈ S1,2

0 we have

∫

Ω

$(w) : ∇w dx = −1

2

∫

Ω

a · ∇(|w|2) dx = 0.

Therefore,
Mπ(ũ, u) ≥ µ‖∇(u− ũ)‖ (27)

and for any v ∈ S1,2
0 (Ω,Rd) + g we obtain

µ‖∇(u− v)‖ ≤ CFΩ‖f + Divτ‖+ ‖τ − µ∇v + a⊗ v + qI‖.
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If v = v0 + g and v0 does not belong to S1,2
0 (Ω,Rd), then we use (25) and the

estimate

‖π(v)− π(w)‖ ≤ K(a)‖∇(v − w)‖ = K(a)‖∇(v0−
◦
w)‖,

where K(a) = CFΩ‖a‖∞,Ω + µ. Then, the estimate reads

µ‖∇(u− v)‖ (28)

≤ CFΩ‖f + Divτ‖+ ‖τ − µ∇v + a⊗ v + qI‖+ 2K(a)ΠS1,2
0

(v).

2.3.3 The Navier–Stokes problem.

Let v ∈ S1,2
0 (Ω,Rd) + g. For the Navier–Stokes problem π(v) = µ∇v − v ⊗ v.

In this case, the estimate (24) has the form

Mπ(v, u) ≤ CFΩ‖f + Divτ‖+ ‖τ − µ∇v + v ⊗ v + qI‖. (29)

Such a simple lower bound of Mπ(v, u) as in (27) does not take place. We can
only prove (see (28)) that Mπ(v, u) is bounded from below by c‖∇(v − u)‖
(where c is a positive multiplier) provided that ∇v is sufficiently small. More-
over, may be in general Mπ(v, u) is not a metric (actually, this question is
related to the uniqueness of a weak solution to the Navier–Stokes equation).

Consider the estimate (25). It is easy to see that

‖π(v)− π(w)‖ ≤ µ‖∇(v − w)‖+ ‖v ⊗ v − w ⊗ w‖

and v⊗v−w⊗w == (v0−
◦
w)⊗v+v⊗(v0−

◦
w)−(v0−

◦
w)⊗(v0−

◦
w). Therefore,

‖π(v)− π(w)‖

≤ µ‖∇(v0−
◦
w)‖+ 2



∫

Ω

|v|2|v0−
◦
w |2dx




1/2

+ ‖(v0−
◦
w)2‖

≤ µ‖∇(v0−
◦
w)‖+ 2‖v‖4,Ω‖v0−

◦
w ‖4,Ω + ‖v0−

◦
w ‖2

4,Ω.

Since W 1,2(Ω) is embedded in L4(Ω), there exists a constant ς(Ω) such that

‖ψ‖4,Ω ≤ ς(Ω)‖∇ψ‖ ∀ψ ∈ ◦W 1,2(Ω).

For d = 2 we have the estimate ‖w‖4,Ω ≤
√

2‖w‖1/2‖∇w‖1/2 and for d = 3

‖w‖4,Ω ≤ δ‖w‖1/4‖∇w‖3/4 (where δ =
(

4
3

)3/8
) (see (18), Chapter 1). These
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estimates show that

ς(Ω) ≤ (2CF )1/2 for d = 2 and ς(Ω) ≤ δ(CF )1/4 for d = 3.

Hence ‖v0−
◦
w ‖4,Ω ≤ ς(Ω)‖∇(v0−

◦
w)‖ and

inf
w∈S1,2

0 (Ω,Rd)+g
‖π(v)− π(w)‖ ≤ ΠS1,2

0
(v0)

(
µ+ 2ς(Ω)‖v‖2

4,Ω + ς2(Ω)ΠS1,2
0

(v0)
)
.

Since ΠS1,2
0

(v0) = κΩ‖divv‖, we conclude that

inf
w∈S1,2

0 (Ω,Rd)+g
‖π(v)− π(w)‖ ≤ κΩK(v)‖divv‖,

where K(v) =
(
µ+ 2ς(Ω)‖v‖2

4,Ω + ς2(Ω)κΩ‖divv‖
)
. By (28) and (29), we ob-

tain

Mπ(v, u) ≤ CFΩ‖f + Divτ‖+ ‖τ − µ∇v + v ⊗ v + qI‖+ 2K(v)κΩ‖divv‖.
(30)

Mπ(v, u) measures the distance between v and a vector valued function u
that satisfy (in a weak sense) the Navier–Stokes equation and the prescribed
boundary condition. Hence if the respective solution is not unique, then (30)
shows that the measure Mπ induced by Lv cannot be a metric. The same
conclusion is true for the general estimate (25).

2.4 Evolutionary problems

We conclude this section with comments that extend above presented concep-
tion to evolutionary equations (1)–(3) considered in the space–time cylinder
QT with the initial and boundary conditions (5), (6), and (7). Let v(x, t) be
an approximation of u(x, t) which belongs to the same functional class as
u(x, t) and satisfies the prescribed boundary conditions. The function v(x, t)
generates the functional

Lv(
◦
w) :=

∫

QT

(
f · ◦w −π(v) : ∇ ◦

w −vt·
◦
w
)
dtdx. (31)

Here vt denotes the time derivative and it is assumed that v(x, t) and the

test function
◦
w (x, t) is divergence free for any t ∈ [0, T ]. Let ‖ ◦w ‖S0(QT ) be

the norm in S0(QT ) := Lγ((0, T ), S0(Ω,Rd)) (suitable value of γ depends on
properties of π). Similarly to (19), the quantity

|Lv| := sup
◦
w∈S0(QT )

Lv(
◦
w)

‖ ◦w ‖S0(QT )

11



characterises the quality of v(x, t) as an approximation of (1)–(4). It uses all
the information available in numerical experiments. The basic error identity

Mπ(v, u) = |Lv| (32)

holds if the distance is defined by the measure

Mπ(v, u) := sup
◦
w∈S0(QT )

∫

QT

(
(π(u)− π(v)) : ∇ ◦

w +(ut − vt)·
◦
w
)
dtdx

‖ ◦w ‖S0(QT )

.

We know that under some natural assumptions the Navier–Stokes equation
(8) has a weak (Leray–Hopf) solution with a bounded energy norm. Moreover,
it is known (see, e.g., (18)) that ut belongs to L5/4. Hence, we can always select
S0(QT ) such that all integrals entering Mπ(v, u) are defined provided that v
(approximation) has the same (minimal) differentiability properties as u. In
view of (32), any numerical method which is based (explicitly or implicitly)
on minimization of the residual functional (31) approximates u in terms of
the measure Mπ(v, u). If the problem has only one solution u, then |Lv| > 0
if v 6= u and (32) shows that Mπ(v, u) vanishes if and only if v = u. However,
in general uniqueness is not proved and, therefore, we cannot guarantee that
this measure of the distance between v and u is a metric.

3 Finding ΠS1,α
0

(v) for α ∈ (1,∞)

Now we discuss computable bounds of the projection operator ΠS1,α
0

(v). In

some cases, such a bound is easy to obtain. Let v be an approximate solution
vh ∈ Vh defined of a certain mesh Th. Assume that we have a suitable post–
processing operator Ph : Vh → S1,2

0 (Ω,Rd). In view of (14), we can set

ΠS1,2
0

(vh) := ‖∇(vh − Phvh)‖.

For some finite element approximations in 2D, such type operators can be con-
structed by means of stream functions and equilibrated approximations. Then,
the estimates (26), (28), and (30) can be directly used. However, in other cases
such type methods based on explicit reconstruction of a divergence free field
may be inefficient and/or too complicated. Below we discuss another method
and deduce estimates of the distance between a function v̂ ∈ W 1,α

0 (Ω,Rd) and
the respective subspace S1,α

0 (Ω,Rd) containing divergence free fields. We begin
with the most simple (and most interesting) case α = 2.

12



3.1 Finding ΠS1,2
0

(v) by the LBB condition

We can deduce ΠS1,2
0

(v) using the inf–sup (or LBB) condition (see I. Babuška

(1) and F. Brezzi (7)), which reads: there exists a positive constant cΩ such
that

inf
φ∈L̃2(Ω)
φ 6=0

sup
w∈V0
w 6=0

∫
Ω φ divw dx

‖φ ‖ ‖∇w‖ ≥ cΩ, (33)

where V0 := W 1,2
0 (Ω,Rd). This condition was introduced, proved, and used in

order to justify stability of the Stokes problem and to guarantee convergence
of approximations (e.g., see (8) for a consequent discussion). Also, (33) can
be justified due to the J. Nečas inequality (see (22) and (6)). Conditions
analogous to (33) for various pairs of finite dimensional spaces are necessary
to prove stability and convergence of numerical methods developed for viscous
incompressible fluids (e.g., see (8; 11; 15; 20; 35)).

It is not difficult to show that (33) yields an upper bound of ΠS1,2
0

(v) (see also

(26)). Notice that

inf
◦
v∈S1,2

0

1

2
‖∇(

◦
v −v)‖2 = inf

w0∈V0

sup
φ∈L̃2(Ω)

∫

Ω

(
1

2
‖∇(w0 − v)‖2 − φ divw0

)
dx

= sup
φ∈L̃2(Ω)


 inf
w0∈V0

∫

Ω

(
1

2
|∇w0|2 − φ div(w0 + v)

)
dx


 .

Consider the term in the square brackets. Let w̄0 be a nonzero element of the
space V0. Obviously, tw̄0 ∈ V0 for any t ∈ R. Therefore,

inf
w0∈V0

∫

Ω

(
1

2
|∇w0|2 − φ div(w0 + v)

)
dx ≤

≤ 1

2
t2 ‖∇w̄0‖2 − t

∫

Ω

φ divw̄0 dx−
∫

Ω

φ divv dx. (34)

Setting t = t∗ :=

(
∫
Ω
φ divw̄0 dx

)
‖∇w̄0‖−2 , we minimize the right–hand side

of (34) and find that

inf
w0∈V0

∫

Ω

(
1

2
|∇w0|2 − φ div(w0 + v)

)
dx ≤ −



∫

Ω

φ divw̄0dx




2

2 ‖∇w̄0‖2 −
∫

Ω

φ divv dx.

Since w̄0 is an arbitrary function, we can take supremum over w̄0 in the right

13



hand side. In view of (33),

− sup
w̄0∈V0
w̄0 6=0

∫

Ω

φ divw̄0 dx

‖∇w̄0‖
≤ −cΩ ‖φ‖ ∀ φ ∈ L̃(Ω).

Hence

inf
w0∈V0

∫

Ω

(
1

2
|∇w0|2 − φ div(w0 + v)) dx ≤ −c

2
Ω

2
‖φ‖2 −

∫

Ω

φ divv dx ≤

≤ −c
2
Ω

2
‖φ‖2 + ‖φ‖ ‖divv‖ .

We take supremum over φ and conclude that

inf
◦
v∈S1,2

0

‖∇(v− ◦v)‖ ≤ c−1
Ω ‖divv‖ =: ΠS1,2

0
(v). (35)

3.2 Finding ΠS1,α
0

(v) by the stability theorem

A general method of finding ΠS1,2
0

(v) follows Theorem 2 (which was proved by

I. Babuška and A. K. Aziz (2) for d = 2 and by O. A. Ladyzhenskaya and V.
A. Solonnikov (19; 33) for d ≥ 2).

Theorem 2 For any f ∈ L2(Ω) with zero mean {f}Ω, there exists a function
wf ∈ W 1,2

0 (Ω,Rd) such that

divwf = f and ‖∇wf‖ ≤ κΩ‖f‖, (36)

where κΩ is a positive constant depending on Ω.

It is easy to see that (36) yields the inf–sup condition (33) with cΩ = (κΩ)−1.

Extension of Theorem 2 to Lα spaces is presented in M. Bogovskii (5) and K.
Piletskas (25).

Theorem 3 Let f ∈ Lα(Ω) and 1 < α < +∞. If {f}Ω = 0, then there exists
vf ∈ W 1,α

0 (Ω,Rd) such that

divvf = f and ‖∇vf‖α,Ω ≤ κΩ,α‖divvf‖α,Ω, (37)

where κΩ,α is a positive constant depending on α and Ω.

Theorems 2 and 3 imply the following result.
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Lemma 1 For any v0 ∈ W 1,α
0 (Ω,Rd)

inf
◦
v∈S1,α

0

‖∇(v0−
◦
v)‖α,Ω ≤ κΩ,α‖divv0‖α,Ω =: ΠS1,α

0
(v0). (38)

Proof. Let v0 be a function in W 1,α
0 (Ω,Rd). Since {divv0}Ω = 0, we can find

vf ∈ W 1,α
0 (Ω,Rd) such that

divvf = f := divv0.

Due to (37), the function
◦
v:= v − vf belongs to S1,α

0 (Ω,Rd) and

‖∇(v0−
◦
v)‖α,Ω = ‖∇vf‖α,Ω ≤ κΩ,α‖divv0‖α,Ω.

Thus, we arrive at the estimate (38). 2

Lemma 1 shows that the distance between v ∈ W 1,α
0 (Ω,Rd) and the set of di-

vergence free fields is easy to estimate from above provided that the constant
κΩ,α (or a suitable upper bound of it) is known. However, finding κΩ,α may be a
very difficult problem. To the best of our knowledge, estimates of the constant
are known mainly for the case α = 2 and d = 2 (see (34; 23; 10)). Interesting
results that probably can essentially improve all previously known estimates
has been recently obtained in (9) (these estimates are valid for bounded do-
mains in R2 which are star-shaped with respect to a ball). In (24), an estimate
was obtained for domains in R3 that satisfy some extra regularity assumptions.
However, for complicated domains with Lipschitz boundaries analogous esti-
mates are unknown.

Numerical evaluation of the constant (based on minimization of the respec-
tive quotient) could be a possible way out provided that the minimiser is suf-
ficiently regular. Regrettably minimising sequences often converge to highly
singular functions. On Figure 1 we depict approximations of the extremal
function in the Nečas inequality (which is a form of (33))

‖p‖ ≤ κΩ ‖∇p‖−1,Ω p ∈ L̃2(Ω), (39)

computed by means of the Fourier series with 8, 36, and 120 terms for the
square domain Ω = (−π, π) × (−π, π). It is easy to see that the minimizer
has a clear tendency to form singular components near the corners (in (17)
the minimiser is depicted with singularities pointed out in opposite directions
at opposite corners). The respective values of the constant tend to a quantity
close to 0.5; there is a hypothesis (9) that the exact value of the constant is

very close or equal to
(

1
2
− 1

π

)1/2
.

A collection of approximate values of κΩ for α = 2 and various domaines
(mainly in R2) is presented in (17). They are computed using sufficiently rich
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finite element subspaces and probably provide rather sharp estimates, but
strictly speaking we cannot say that they are fully guaranteed.
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Fig. 1. Extremal function in (39) for 8, 36, and 120 terms

Summarising, we can say that guaranteed estimates of κΩ,2 can be found by
analytical methods for special classes of 2D domains. On the other hand, so
far there is no reliable numerical technology for computing guaranteed and
sufficiently sharp two–sided bounds of these constants for Lipschitz domains
if d > 2.

A way to bypass these difficulties and obtain computable estimates of the
distance to divergence free fields is discussed in the next section. It is based on
the idea to use constants κΩi,α for a collection of relatively simple subdomains,
which union is Ω.

4 Finding ΠS1,α
0

(v) by domain decomposition

First, we present advanced forms of the stability theorem adapted to the case
where Ω is divided into a collection of non-overlapping Lipschitz subdomains
Ωi, i = 1, 2, ...N .

Theorem 4 Let f ∈ Lα(Ω) and {f}Ωi
= 0 for i = 1, 2, ..., N . Then, there

exists vf ∈ W 1,α
0 (Ω,Rd) such that
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divvf = f and ‖∇vf‖αα,Ω ≤
N∑

i=1

καΩi,α‖f‖αα,Ω, (40)

where κΩi,α are positive constants associated with subdomains Ωi.

Proof. We apply Theorem 3 to Ωi. There exists vf,i ∈ W 1,α
0 (Ωi,Rd) such that

divvf,i = f in Ωi and ‖∇vf,i‖α,Ωi ≤ κΩi,α‖f‖α,Ωi .

Define vf (x) = vf,i(x) if x ∈ Ωi. The function vf belongs to W 1,α
0 (Ωi,Rd). It

is easy to see that divvf = f and

‖∇vf‖αα,Ω =
n∑

i=1

‖∇vf,i‖αα,Ωi ≤
n∑

i=1

καΩi,α‖f‖αα,Ωi .

Thus, we obtain (40). 2

Theorem 4 implies an estimate of the distance between v ∈ W 1,α
0 (Ω,Rd) and

S1,α
0 (Ω,Rd) provided that v satisfies an additional integral type condition.

The idea to use this condition for getting easily computable estimates of the
distance to the set of divergence free fields was originally introduced in (32).
Assume that v ∈ W 1,α(Ω,Rd) and satisfies the following weak solenoidality
conditions:

{divv}Ωi
= 0 ∀ i = 1, 2, ..., N. (41)

If v does not satisfy (41), then the corresponding correction can be done by
changing N parameters in the representation of this function. Since

∫

Ωi

divv dx =
∫

∂Ωi

v · ni ds i = 1, 2, ..., N,

where ni is the outward normal to the boundary ∂Ωi, changing the parameters
should be done such that all the boundary integrals vanish. Therefore, from
the computational point of view integral type conditions (41) do not generate
essential difficulties (unlike the point wise condition divv = 0). Lemma below
shows that for the vector functions satisfying (41) we have a simple estimate
of the distance to the set of divergence free fields (for α = 2, the estimate (42)
has been earlier established in (30)).

Lemma 2 If v ∈ W 1,α
0 (Ω,Rd) and satisfies (41), then

inf
◦
v∈S1,α

0 (Ω,Rd)

‖∇(v− ◦v)‖α,Ω ≤ ΠN
S1,α

0
(v) =

(
N∑

i=1

καΩi,α‖divv‖αΩi
)1/α

. (42)
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Proof. We set f = divv. Then, there exists vf ∈ W 1,α
0 (Ω,Rd) satisfying (40).

The function v0 = v − vf is divergence free and

‖∇(v− ◦v)‖αα,Ω = ‖∇vf‖αα,Ω ≤
N∑

i=1

καα,Ωi‖divv‖αα,Ωi ,

which implies (42). 2

Remark 1 By the same arguments we conclude that for any v ∈ W 1,α(Ω,Rd)

there exists a divergence free field
◦
v such that

◦
v= v on ∂Ω and ‖∇(v− ◦v)‖α,Ω

satisfies (42). This estimate could be helpful for problems with mixed boundary
conditions.

Remark 2 We can deduce fully computable estimates of the distance, which
are valid without the conditions or (41). Let µi :=

∫
Ωi

divv0 dx. Usually it is not

difficult to find a correcting function w0 ∈ W 1,α
0 (Ω,Rd) such that

∫

Ωi

divw0 dx = µi for i = 1, 2, ..., N.

On polygonal meshes such a function can be constructed by, e.g., piecewise
polynomial vector functions. Then v0 − w0 satisfies (41) and we have

inf
◦
v∈S1,α(Ω,Rd)

‖∇(v0−
◦
v)‖α,Ω ≤

(
N∑

i=1

καΩi,α‖div(v0 − w0)‖αα,Ωi
)1/α

+ ‖∇w0‖α,Ω.

Since w0 ∈ W 1,α
0 (Ω,Rd) can be selected in many different ways, optimal (or

close to optimal) estimated should involve a certain minimisation procedure
with respect to w0. However, if the values µi are small (what is natural to
await from good approximations), then the overall effect of optimisation may
be insignificant.

By using (42) together with (16), we obtain the following error majorant for
the Stokes problem:

µ‖∇(u− v)‖≤ ‖τ+ qI−µ∇v‖+ CFΩ‖Divτ+f‖+ 2µ

(
N∑

i=1

κ2
Ωi
‖divv‖2

Ωi

)1/2

.

Another localised version of Theorems 2 has been proved in (31) for α = 2.
We use similar arguments and extend it to the case α ∈ (1,+∞). Let Ω
be decomposed into a collection of Lipschitz subdomains Dk, k = 1, 2, ..., K.
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Subdomains Dk may overlap. They generate a decomposition of Ω into a set
of nonoverlapping subdomains Ωi (k = 1, 2, ..., N) so that

Ω =
K⋃

k=1

Dk =
N⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j

and the intersection of Dk and Dl is either empty or consists of one or several
subdomains Ωi (any Ωi is contained in one or several Dk).

Theorem 5 Let f ∈ Lα(Ω) be such that {f}Ωi
= 0 for i = 1, 2, ..., N . Then,

there exists a function vf ∈ W 1,α
0 (Ω,Rd) such that divvf = f in Ω and

‖∇vf‖Ω ≤
N∑

i=1

κi‖f‖Ωi (43)

where

κi = inf
k=1,...,K

ρk, ρk =




κDk,α if Ωi ⊂ Dk,

+∞ if Ωi 6⊂ Dk

(44)

and κDk,α denote the respective constants associated with subdomains.

Proof. It is easy to see that f =
N∑
i=1

fi, where

fi(x) =




f if x ∈ Ωi,

0 if x 6∈ Ωi.

There exists at least one Dk such that Ωi ⊂ Dk. If there are several Dk contain-
ing Ωi, then we select Dk with minimal κDk,α (see (44)). Since {fi}Dk = 0,

and Dk is a Lipschitz domain, we can find vfi ∈ W 1,α
0 (Dk,Rd) such that

divvfi = fi in Dk (45)

and
‖∇vfi‖α,Dk ≤ κi‖fi‖α,Dk = κi‖f‖α,Ωi .

We extend vfi by zero to Ω \Dk and find that (45) holds in Ω. Moreover,

‖∇vfi‖α,Ω ≤ κi‖f‖α,Ωi .

Set vf =
N∑
i=1

vfi ∈ W 1,α
0 (Ω,Rd). Then divvf = f . Since

‖∇vf‖α,Ω ≤
n∑

i=1

‖∇vfi‖α,Dk ≤
N∑

i=1

κi‖fi‖α,Dk =
N∑

i=1

κi‖f‖α,Ωi ,

we arrive at (43). 2
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Theorem 5 implies another estimate of the distance to the set of divergence
free fields.

Lemma 3 Assume v0 ∈ W 1,α
0 (Ω,Rd) satisfies (41). Then,

inf
◦
v∈S1,α(Ω,Rd)

‖∇(v0−
◦
v)‖α,Ω ≤ ΠN,K

S1,α
0

(v0) =
N∑

i=1

κi‖divv0‖α,Ωi ,

where κi are defined by (44).

Remark 3 For problems with mixed boundary conditions (where the Dirichlet
boundary conditions are set on ΓD ⊂ ∂Ω) it is important to have majorants
of the distance between a function

v ∈ W 1,α
0,ΓD

(Ω,Rd) := {v ∈ W 1,α(Ω,Rd) | v = 0 on ΓD},

and S1,α
0,ΓD

(Ω,Rd) =
{
v ∈ W 1,α

0,ΓD
(Ω,Rd) | divv = 0

}
. This question is consid-

ered in (31). In particular, for α = 2 it is shown that

inf
◦
v∈S1,2

0,ΓD
(Ω,Rd)

‖∇(v− ◦v)‖ ≤ κΩ‖divv‖+ C∗

∣∣∣∣∣∣

∫

Ω

divv dx

∣∣∣∣∣∣
,

where

C∗ =
1

‖∇u∗ ‖

(
κΩ
‖divu∗ ‖
‖∇u∗ ‖

+ 1

)
,

and u∗ solves a specially constructed auxiliary boundary value problem.
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