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Group of Elasticity and Strength of Materials, Dept. of Continuum Mechanics, School of
Engineering, University of Seville, Camino de los Descubrimientos s/n, ES-41092 Sevilla,
Spain
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Abstract. Two models for quasistatic adhesive unilateral contact delaminating in mixed fracture
mode, i.e. distinguishing the less-dissipative Mode I (opening) from the more-dissipative Mode II
(shearing), and allowing rigorous mathematical and numerical analysis, are studied. One model,
referred to as Associative Plasticity-based Rate-Independent Model (APRIM), works for purely
elastic bodies and involves, in addition to an interface damage variable, an auxiliary variable
(representing interfacial plastic slip) to provide a fracture-mode sensitivity. It relies on a particular
concept of force-driven local solutions (given by either vanishing-viscosity concept or maximum-
dissipation principle). The other model, referred to as Linear Elastic - (perfectly) Brittle Interface
Model (LEBIM), works visco-elastic bodies and rely on a conventional concept of weak solution and
needs no auxiliary interfacial variable. This model is directly related to a usual phenomenological
model of interface fracture by Hutchinson and Suo used in engineering. This paper devises a way
how the phenomenology of the LEBIM can be fit to imitate the APRIM under relatively very slow
loading, where both models are essentially rate-independent. The so-called effective dissipated
energy is partitioned in both formulations to the surface energy and the energy dissipated during
the interface debonding process, where the former is independent and the latter dependent on
the fracture mode mixity. A numerical comparison of these models, implemented in a Boundary
Element Method (BEM) code, is carried out on a suitable two-dimensional example. Furthermore,
the computational efficiency and behaviour of the LEBIM is illustrated on another geometrically
more complicated numerical example.

Key Words. Inelastic surface damage, associative rate-independent model, interfacial gradient
plasticity with hardening and damage, maximally-dissipative solution, non-associative model, weak
solution, semi-implicit discretization, visco-elastic material, quadratic mathematical programming.
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1. Introduction – two models

Adhesive contact represents a part of nonlinear contact mechanics with numerous prac-

tical applications. Modelling damage and fracture of the adhesive layer standardly involves

an “internal” variable distributed at the contact surface. Here, this damage-type variable is
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denoted by z. This concept, falling in the framework of generalized standard materials [1],

was devised by M.Frémond [2, 3].

An important feature appearing in engineering models (and so far mostly omitted in

the mathematical literature), is the dependence of this process on the fracture modes under

which it proceeds. Indeed, Mode I (= opening) usually dissipates much less energy than

Mode II (= shearing). The difference may be up to hundreds of percents, cf. [4, 5, 6, 7, 8].

Moreover, the delamination process seldom occurs in such pure modes and, in reality, the

mixed fracture-mode appears more frequently. The substantial difference in the dissipation

in different modes can be explained either by some roughness of the glued interface (to be

overcome in Mode II but not in Mode I, cf. [9]) or by some plastification caused by shear in

Mode II (but much less by mere tension in Mode I) before the delamination itself happens,

cf. [6, 10]. Let us emphasize that a strong dependence of dissipation (or fracture toughness)

on the fracture mode mixity (easily ranging hundreds of percents) has been observed in

extensive experiments [4, 9, 5, 6, 8] and thus this phenomenon cannot be neglected in models.

The most common modelling assumption is that the time scale of external load is rather

slow so that, in particular the viscous bulk or surface effects are negligible and inelastic

processes on the contact surface are much faster so that they are considered rate-independent.

Often, also inertial effects are neglected. We also confine ourselves to isothermal models

at small strains and frictionless adhesive contact undergoing a unidirectional delamination

(i.e. no healing is considered). Most continuum-mechanical models in literature can be

(re)formulated as generalized gradient flow or, equivalently as the doubly-nonlinear Biot-

type equation:

∂.qR(q;
.

q) + ∂qE(t, q) ∋ 0, (1.1)

where q = q(t) is a state and
.

q denotes its time derivative, R is a dissipation potential and

E is a stored-energy potential, and “∂” is a partial generalized derivative (here the convex

subdifferential).

Two models developed in the literature that allow for rigorous mathematical and nu-

merical analysis (as far as existence of solutions and numerically stable, implementable, and

convergent approximation schemes) are studied here. Both have a bit different character:

LEBIM: Linear Elastic - (perfectly) Brittle Interface Model (like [11, 12, 13, 14, 15, 16]):

+ It allows for incorporation of arbitrary phenomenological dependence of dissipation (or

activation) energy on the fracture mode mixity. The state q in (1.1) is a couple (u, z)

and the “elasticity domain” of the adhesive varies depending on the state, which is

sometimes called “non-associative”, cf. e.g. [17]. Mathematics relies on the conventional

concept of weak solution, cf. [18].

− On the other hand, mathematic justification of the merely elastic variant is not avail-

able in literature, and a modification by considering a visco-elastic rheology of the

delaminating bodies seems inevitable, cf. [18]. Thus the viscosity is an additional pa-

rameter of the model, which may enrich the modelling aspects but, if the desired model

is rather purely elastic, may a bit twist the model.

APRIM: Associative Plasticity-based Rate-Independent Model (devised in [19, 20]):
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+ Arising from a rational motivation of interfacial plasticity with hardening, it uses R

independent of q and degree-1 homogeneous in
.

q and works for purely elastic bodies and

elasto-plastic adhesive. It involves an auxiliary variable π (called interface plastic slip)

to execute the fracture-mode-sensitivity. The state q in (1.1) is a triple (u, z, π) and

the “elasticity domain” of the internal variables (z, π) of the adhesive is independent

of the state, and such attribute is sometimes denoted by the adjective “associative”.

− It needs a reasonable choice of a solution concept, as discussed for this particular model

in [21]. To avoid unwanted effects leading to rather unphysically too early delamination

if the energy in the elastic bulk dominates, one must realize a special concept of force-

driven local solutions (here either a vanishing-viscosity concept like [22, 23] or solutions

complying at least approximately with the maximum-dissipation principle [24, 25, 21]).

It should be emphasized that some other models (mostly representing a variant of the LEBIM

or the so-called Cohesive Zone Models (CZM)) are routinely used in engineering even though

any rigorous convergence/existence analysis is not at disposal. Such computations and the

models themselves are thus unjustified so far from the mathematical point of view, although

in particular cases the launched computational simulations may be physically relevant; see

e.g. [26, 27, 13, 14, 15, 16] and references therein.

Let us still mention that the LEBIM was rigorously analyzed already in [28] even in a full

thermodynamical context but exploiting the concept of non-simple materials (see e.g. [29])

which whould be much more demanding to be implemented computationally.

In this paper, after more detailed formulation of the models LEBIM and APRIM in

Sections 2 and 3, respectively, we devise a way how the phenomenology of the LEBIM can

be fit to imitate the APRIM under very slow loading, where both models are essentially

rate-independent and have a good chance to produce similar responses in spite of rather

different essence of both models; this is performed in Section 4. Eventually, in Section 5,

these models, implemented in a BEM code, are numerically tested and compared on a two-

dimensional single-domain example. Furthermore, the solution of a two-domain problem,

reproducing the Mixed Mode Flexure (MMF) test, by LEBIM is studied.

Let us first introduce the notation we will use throughout the paper which will be com-

mon to both mentioned models. We suppose that the (visco)elastic-bulk/inelastic-adhesive

structure occupies a bounded Lipschitz domain Ω ⊂ Rd composed by (for notational simplic-

ity only) two bodies, denoted by Ω+ and Ω−, glued together on a common contact boundary,

denoted by ΓC, which represents a prescribed interface where delamination may occur. This

means we consider

Ω = Ω+ ∪ ΓC ∪ Ω− ,

with Ω+ and Ω− being disjoint Lipschitz subdomains. We denote by ~n the outward unit

normal to ∂Ω, and by ~n
C
the unit normal to ΓC, which we consider oriented from Ω+ to Ω−.

Moreover, given v defined on Ω\ΓC, v
+ (respectively, v−) signifies the restriction of v to Ω+

(to Ω−, resp.). We further suppose that the boundary of Ω splits as

∂Ω = ΓD ∪ ΓN ,

with ΓD and ΓN open subsets in the relative topology of ∂Ω, disjoint one from each other,

and for d = 3 each of them with a smooth (one-dimensional) boundary. Considering T > 0
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a fixed time horizon, we set

Q := (0, T )×Ω, Σ := (0, T )×∂Ω, ΣC := (0, T )×ΓC, ΣD := (0, T )×ΓD, ΣN := (0, T )×ΓN.

For readers’ convenience, let us summarize the basic notation used in what follows:

d = 2, 3 dimension of the problem,
u : Ω\ΓC → R

d displacement,
z : ΓC → [0, 1] delamination variable,
e = e(u) = 1

2∇u⊤+ 1
2∇u small-strain tensor,

[[u]] = u−|ΓC − u+|ΓC jump of u across ΓC,
σ stress tensor,
C ∈ R

d4 elastic moduli in the Hook law,
A ∈ R

d×d elastic coefficients of the adhesive,
κn distributed normal stiffness,
κt distributed tangential stiffness,

ψG fracture-mode-mixity angle for the LEBIM,
D ∈ R

d4 viscosity constants for the LEBIM,
α = α([[u]]) effective energy dissipated on ΓC,
wD : ΣD → R

d prescribed boundary displacement,
fN : ΣN → R

d applied traction,
σt,yield yield shear stress for the APRIM,
π:ΓC→R

d−1 the interfacial plastic slip for APRIM,
κH modulus of kinematic hardening for APRIM,
a
I
energy released per unit area in pure Mode I,

a
II
energy released per unit area in pure Mode II

Table 1. Summary of the basic notation used throughout the paper.

Throughout the whole paper, we will assume that C, D : Rd×d
sym → Rd×d

sym and A : Rd → Rd

are linear positive definite, and α(·) > 0.

2. The non-associative model (LEBIM)

The state is formed by the couple (u, z). We use Kelvin-Voigt’s rheology for subdomains

(adherents) and, rather for mathematical reasons to facilitate analysis in multidimensional

cases, a (possibly only slightly) nonlinear static response. Hence we assume the stress σ :

Q→ Rd×d in the form:

σ = σ(u,
.

u) := De(
.

u)︸ ︷︷ ︸
viscous
stress

+ Ce(u)︸ ︷︷ ︸
elastic
stress

. (2.1)

Furthermore, we shall denote by Tn and Tt the normal and the tangential components of the

traction σ
∣∣
Γ
~n on some two-dimensional surface Γ (used for either Γ = ΓC or Γ = ΓN), i.e.

defined on ΓC ∪ ΓN respectively by the formulas

Tn = ~n · σ
∣∣
Γ
~n and Tt = σ

∣∣
Γ
~n− Tn~n (2.2)

where of course we take as ~n the unit normal ~n
C
to ΓC. Note that Tn is a scalar while Tt is

a vector.

The classical formulation of the adhesive contact problem consists, beside the force equi-

librium (neglecting body forces) supplemented with standard boundary conditions, from two
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complementarity problems on ΣC. Altogether, we have the boundary-value problem

div
(
σ
)
= 0, in Q\ΣC, (2.3a)

u = wD on ΣD, (2.3b)

σ~n = fN on ΣN, (2.3c)
[[
σ
]]
~n

C
= 0 on ΣC, (2.3d)

Tt − z
(
A
[[
u
]]
−(~n

C
A
[[
u
]]
)·~n

C

)
= 0 on ΣC, (2.3e)

[[
u
]]
·~n

C
≥ 0 and Tn − z(A

[[
u
]]
)·~n

C
≤ 0 on ΣC, (2.3f)

(
[[
u
]]
·~n

C
)
(
Tn − z(A

[[
u
]]
)~n

C

)
= 0 on ΣC, (2.3g)

.

z ≤ 0 and ξ ≤ α
PLAST

(
[[
u
]]
) and

.

z
(
ξ − α

PLAST
(
[[
u
]]
)
)
= 0 on ΣC, (2.3h)

ξ ∈ 1
2
A
[[
u
]]
·
[[
u
]]
− α

ADHES
+N[0,1](z) on ΣC. (2.3i)

In (2.3d), [[σ]] denotes naturally the jump of the stress tensor σ accross ΓC so that (2.3d)

expresses the equilibrium of tractions on ΓC. The complementarity problem (2.3f)–(2.3g)

describes the frictionless Signorini unilateral contact. The complementarity problem (2.3h)–

(2.3i) corresponds to the flow rule governing the evolution of z:

1

2
A
[[
u
]]
·
[[
u
]]
+N(−∞,0](

.

z) +N[0,1](z) ∋ α
ADHES

+ α
PLAST

(
[[
u
]]
) =: α(

[[
u
]]
) in ΣC, (2.4)

with N(−∞,0], N[0,1] : R ⇒ R denoting the normal cones (in the sense of convex analysis) to

the intervals (−∞, 0] and [0, 1], respectively. For more details about derivation of the model

we refer to [28, 30]. We will consider the initial-value problem for (2.3) by prescribing the

initial condition

u(0) = u0 a.e. in Ω and z(0) = z0 a.e. in ΓC. (2.5)

In the weak formulation, the boundary-value problem (2.3) takes the abstract form (1.1),

i.e. now the doubly-nonlinear Biot-type system of two inclusions:

∂.uR(
.

u) + ∂uE(t, u, z) ∋ 0 and ∂.zR(u;
.

z) + ∂zE(u, z) ∋ 0, (2.6)

provided E and R are taken as

E(t, u, z) :=





1

2

∫

Ω\ΓC

Ce(u):e(u) dx−
∫

ΓN

fN(t)·u dS

+
1

2

∫

ΓC

zA
[[
u
]]
·
[[
u
]]
− α

ADHES
z dS if u = wD(t) on ΓD,

[[u]]·~n
C
≥ 0 and 0 ≤ z ≤ 1 on ΓC,

+∞ otherwise,

(2.7)

and

R
(
u;
.

u,
.

z) :=






1

2

∫

Ω\ΓC

De(
.

u):e(
.

u) dx+

∫

ΓC

α
PLAST

(
[[
u
]]
)|.z| dS if

.

z ≤ 0 a.e. in ΓC,

+∞ otherwise.
(2.8)

Note that the effective dissipated energy

α(
[[
u
]]
) = α

ADHES
+ α

PLAST
(
[[
u
]]
) (2.9)
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is, in general, composed from a part α
ADHES

interpreted as an adhesion energy stored by creat-

ing a new surface by delamination and another part, denoted by α
PLAST

, interpreted as an en-

ergy dissipated by the plastification process during delamination. Altogether, α
ADHES

+α
PLAST

is to be understood as a fracture energy (sometimes also referred to as fracture toughness).

Only the plastification energy is considered as dependent on the delamination mode, and is

usually increasing from pure Mode I to pure Mode II, and need not be zero even in pure

Mode I, cf. [31, Fig. 4.2], [9, Fig. 1] or [32, Fig. 2]. As the delamination is considered here as a

unidirectional process, the part α
ADHES

cannot be refreshed back and is effectively dissipated,

too. Both parts would be distinguished if R would be finite (i.e. healing or re-bonding of

the adhesive would be allowed) or if the full thermodynamical context would be considered

(then only α
PLAST

but not α
ADHES

would contribute to the heat production).

A standard engineering approach, as e.g. in [5, 13, 14, 15], is that A is diagonal in a local

coordinate system associated to ΓC, writing e.g. A = diag(κn, κt, κt) for ~n
C
= (1, 0, 0) at

some x ∈ ΓC, and the activation energy denoted here by α, whereas in engineering typically

referred to as fracture energy and denoted by Gc, depends on the so-called energetic fracture-

mode-mixity angle ψG defined as

ψG = ψG

([[
u
]])

:= arc tan

(√
κt
κn

|[[u]]t|
|[[u]]n|

)
, (2.10)

where [[u]]t and [[u]]n stand for the tangential and the normal relative displacements; i.e.

the jump of displacement across the boundary ΓC decomposes as [[u]] = [[u]]n~nC
+ [[u]]t, with

[[u]]n = [[u]]·~n
C
. Occasionally, other fracture-mode-mixity angles may be defined as associated

to displacements or stresses, ψu = arc tan(|[[u]]t|/|[[u]]n|) and ψσ = arc tan(κt|[[u]]t|/κn|[[u]]n|),
respectively. Here, we will not use any of the phenomenological laws for Gc(ψG) well-known

in engineering (see [13]) but rather fit it with the plasticity-inspired model described in the

following section.

3. The associative plasticity-based model (APRIM)

In accordance with other experimental observations and computational models [6, 10, 33],

the associated plastic zones in the adjacent bulk, near the crack tip, are larger in Mode II

than in Mode I and these plastic phenomena are localized in a relatively narrow plastic zone

in the bulk in the interface vicinity. In order to provide a better representation of these

experimental results, a plastic tangential response has been assumed at the interface, which

allows us to distinguish between fracture Mode I and II in the sense that some additional

dissipated energy is associated to interface fracture in Mode II. In our works [19, 20, 34],

imitating the conventional models of linearized single-threshold plasticity with kinematic

hardening (e.g. [17]), we have invented a plastic slip variable π as another internal variable

on the delaminating surface (in addition to z) whose evolution activates in Mode II but not

in Mode I in order to achieve the desired mixity-mode-dependent dissipation. In contrast to

the LEBIM from Section 2, the mathematical analysis now needs a gradient theory used for

some of the internal variables; here, following [25], we apply it on π rather than on z as in

[19, 20].

Instead of (2.1), we consider purely elastic material now:

σ = σ(u) := Ce(u). (3.1)

6



In the classical formulation, referring to (2.2), this model uses again (2.3a-d) completed now

by

Tt − z
(
w−

(
w·~n

C

)
~n

C

)
= 0 with w := A(

[[
u
]]
− Tπ) on ΣC, (3.2a)

[[
u
]]
·~n

C
≥ 0 and Tn − z w·~n

C
≤ 0 and

([[
u
]]
·~n

C

)(
Tn − z w·~n

C

)
= 0 on ΣC, (3.2b)

.

z ≤ 0 and ξ ≤ a1 and
.

z (ξ−a1) = 0 with ξ∈ 1
2
w·A−1w − a0 +N[0,1](z) on ΣC, (3.2c)

.

π =

{
0 if |ζ | < σt,yield.

λζ, λ ≥ 0 if |ζ | = σt,yield,
and |ζ | ≤ σt,yield with

ζ = Tn − divS(κG
∇Sπ) + (divS~nC

)(κ
G
∇Sπ~nC

)− κ
H
π on ΣC, (3.2d)

where T = T(x) : Rd−1 → Rd denotes the mapping from the space where π has values to the

tangent space of the d-dimensional space where [[u]] has values. This mapping allows to sum

up (d−1)-dimensional vector π with the d-dimensional vector [[u]], as needed in (3.2a) and

later in (3.4a), too. In (3.2d), κ
G
> 0 is a (presumably small) parameter determining length-

scale of spatial variation of π. Also note that ξ and ζ denote the available driving forces

for the activated evolution of z and π, respectively. In (3.2d), divS := trace(∇S) denotes

the (d−1)-dimensional “surface divergence” and ∇S a “surface gradient”, i.e. the tangential

derivative defined as ∇Sv = ∇v − (∇v·~n
C
)~n

C
for v defined on ΓC.

In addition to the boundary conditions (2.3b,c), due to the surface gradient of π, we now

need also the condition for π. Most naturally, we assume:

∇Sπ·~νC
= 0 on ∂ΓC, (3.2e)

where ~ν
C
denotes the unit vector lying in ΓC and being outward normal to ∂ΓC. Of course, the

boundary/transmission-value problem (2.3a–d) with (3.1) and (3.2a–e) is to be completed

by the initial conditions. Assuming undamaged and unplastified adhesive at the beginning,

we consider

π(0, ·) = π0 = 0 and z(0, ·) = z0 = 1. (3.2f)

Note that we are now choosing a specific z0 in (2.5) and, in contrast to (2.5), the initial

condition for u is now irrelevant or, more precisely, it follows from (3.2f) because u(0) is

assumed to solve the boundary/transmition-value problem (2.3a–d) with (3.1) and (3.2a,b).

The last term in (3.2d) involves (divS~nC
) which is (up to a factor −1

2
) the mean curvature

of the surface ΓC, and it arises by applying a Green’s formula on a curved surface

∫

ΓC

ṽ:((∇Sv)⊗~nC
) dS =

∫

ΓC

(divS~nC
)(ṽ:(~n

C
⊗~n

C
))v − divS(ṽ·~nC

)v dS +

∫

∂ΓC

(ṽ·~ν
C
)v dl (3.3)

used with ṽ = κ
G
∇Sπ and with the boundary condition ṽ·~ν

C
= 0 on ∂ΓC, cf. (3.2e), for

the directional-derivative term
∫
ΓC
κ

G
∇Sπ·∇Sπ̃dS arising from the term

∫
ΓC

1
2
κ

G
|∇Sπ|2dS in

(3.4a). The Green-type identity (3.3) was used in a similar context in mechanics of complex

(also called non-simple) continua, cf. [29, 35].

This quite complicated boundary-value problem can still be covered by the simple and

elegant Biot’s form (1.1) even with R(q,
.

q) independent of q, which is why we used the
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adjective “associative”, provided the state q = (u, z, π) and provided the stored-energy

functional is taken as

E(t, u, z, π) :=





∫

Ω\ΓC

1

2
Ce(u):e(u) dx+

∫

ΓC

(1
2
zA

([[
u
]]
−Tπ

)
·
([[
u
]]
−Tπ

)
− a0z

+
κ

H

2
|π|2 + κ

G

2

∣∣∇Sπ
∣∣2
)
dS −

∫

ΓN

fN(t)·u dS if u = wD(t) on ΓD,

0 ≤ z ≤ 1 on ΓC, and

[[u]]n ≥ 0 on ΓC,

+∞ elsewhere,

(3.4a)

while the dissipation-energy potential is taken as

R(
.

z,
.

π) :=





∫

ΓC

a1
∣∣.z
∣∣+ σt,yield

∣∣.π
∣∣dS if

.

z ≤ 0 a.e. on ΓC,

+∞ otherwise.
(3.4b)

Actually, the doubly-nonlinear Biot-type equation (1.1) can now be written as three inclu-

sions:

∂uE(t, u, z, π)∋0, ∂.zR(
.

z) + ∂zE(u, z, π)∋0 and ∂.πR(
.

π) + ∂πE(u, z, π)∋0. (3.5)

Similarly as in Section 2, the effective dissipation energy in Mode I, denoted here by a
I
,

is composed from two parts, namely the surface energy a0 associated to the creation of a

new surface and the energy dissipated by debonding process a1, i.e.

a
I
:= a0 + a1. (3.6)

As in (2.10), we will consider that A = diag(κn, κt, κt) in a local coordinate system with

~n
C
= (1, 0, 0). Starting from the initial conditions (3.2f), the response in pure Mode I

is essentially determined by κn and a
I
because pure opening neither triggers the evolution

of π nor causes [[u]]t 6= 0, cf. Fig. 1(Left). To analyse the response in pure Mode II, let

us realize that the tangential stress σt is a derivative of E with respect to [[u]]t, and thus

σt = σt(u, π) = κt([[u]]t−π) if z = 1. In analogy with the conventional plasticity, the slope

of the evolution of π vs. [[u]]t under hardening is κt/(κt+κH
).
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MODE I MODE II

[[u]]n [[u]]t

σn σt

√
2κnaI

=:σn,crit

√
2κnaI

=:σn,crit

√
2κtaI

=:σt,crit

σt,yield

√
2a

I
/κn

σt,yield

κt

u
II
from (3.7a)

√
2a

II
/κt

+ = a
I
=effective
dissipated
energy

slope=κn

slope=κt

slope=
κtκH

κt+κ
H

area=a
II

κ
H
π

II

a0 (stored energy)

a1 (dissipated energy)

a0

a1

1
2
κ

H
π2

II
=energy stored

via hardening

σt,yieldπII
=energy

dissipated by
plastification

π
II

back-stress κ
H
π

of π
Fig. 1. Schematic illustration of the stress-relative displacement law in the model (3.4) for

d = 2 and A = diag(κn, κt) in the opening (Mode I) and the shearing (Mode II)
experiments, considering z0 = 1 and π0 = 0. The partition of the effective dissipated
energy is depicted only formally. The contribution of the delamination-gradient term
is neglected, i.e. κ

G
=0.
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From Fig. 1(Right), one can see that delamination in pure Mode II is triggered if 1
2
κt|[[u]]t−π|2 =

1
2
σ2
t /κt attains the threshold a

I
, i.e. if the tangential stress σt achieves the critical stress

σt,crit =
√
2κtaI

. Delamination in Mode II is thus triggered by the tangential displacement

u
II
and the tangential slip π

II
given by

u
II
=

√
2κtaI

(κt+κH
)− σt,yieldκt

κtκH

and π
II
=

√
2κtaI

− σt,yield
κ

H

(3.7a)

and, after some algebra, one can see that the overall effective dissipation energy in Mode II,
denoted here by a

II
, is composed from four parts, cf. Fig. 1(Right), namely

a
II
= a

I
+ σt,yieldπII

+
1

2
κ

H
π2

II
= a1 + σt,yieldπII

︸ ︷︷ ︸
arising from the

dissipated energy R

+ a0 +
1

2
κ

H
π2

II︸ ︷︷ ︸
arising from the
stored enery E

(3.7b)

provided 2κtaI
≥ σ2

t,yield, and taking into account that the evolution of π will stop evolving

after delamination is completed. To have actually this behaviour, the parameters should

satisfy

1

2

√
2κtaI

< σt,yield ≤
√

2κtaI
. (3.8)

After some algebra, from (3.7) it results that κ
H
π

II
= κtκH

(u
II
−σt,yield/κt)/(κt+κH

), cf. Fig. 1(Right).

A measure of maximum fracture-mode sensitivity a
II
/a

I
is then indeed bigger than 1, namely

a
II

a
I

= 1 +
(
σt,yieldπ

II
+
κ

H
π2

II

2

)
/a

I
= 1 +

κt
κ

H

−
σ2
t,yield

2κ
H
a

I

. (3.9)

Like discussed already for (2.9), also here the particular contributions in the spliting (3.6)

could be distinquished only in a full thermodynamical model where a1 (together possibly

with σt,yieldπII
) would contribute to the heat production while a0 (together possibly with

1
2
κ

H
π2

II
) would not, cf. also the splitting (3.7b).

The vital part of the rate-independent models themselves is a suitable choice of a concept

of solutions. Let us emphasize that the class of the so-called local (in fact weak [24]) solutions

to nonconvex rate-independent systems like this one given by (3.4) is typically very wide and

not every type solution will serve well in our context. For example, the so-called energetic

solutions [36] which conserves energy will have a tendency for too early rupture preferably in

less dissipative mode, i.e. here Mode I. Here, as we want to relate APRIM with LEBIM, we

should consider a force-driven-like local solution, which is physically relevant and comparable

with the conventional weak solution concept for the viscous LEBIM. See [37] for a comparison

of various concepts of local solution to rate-independent systems, and [21] for a numerical

comparison of the energetic and a particular local solution.

A physically justified concept of local solutions is a vanishing-viscosity solution, obtained

by considering small viscosity in the bulk like in the LEBIM or/and in the adhesive and

pass it to zero. The limit, if exists, is the vanishing-viscosity solution. When combined

with a suitable spatial discretisation, a control of the (approximate) energy conservation

needs very fine time discretisation for small viscosities, cf. [23], and therefore this method is

computationally quite heavy.

9



Computationally very efficient but physically in general rather ad-hoc method (cf. the

discussion in [24]), which however has a guaranteed convergence (in terms of subsequences)

towards local solutions devised in [25], is based on a semi-implicit discretisation of the

fractional-step type, cf. (5.2) below. Cf. also [38, Sect. 4.3.4.3].

4. Reading information from APRIM to be used in LEBIM

We further proceed by describing the APRIM in terms of the effective dissipated energy,

also referred to as a fracture energy α(·) = Gc(·), for which it can be shown [13, 39, 40,

41, 42] that equals the energy per unit area stored in the adhesive at the crack tip. In

principle, one can imagine various strategies fitting LEBIM towards APRIM, justified from

the perspective of plastification like suggested in [6, 10] as an explanation of the fracture-

mode-mixity sensitivity, or even conversely fitting APRIM towards a given phenomenology

of LEBIM.

Here, rather as an example, we will make the fitting of LEBIM to APRIM in such a way

that Mode I will be the same for both models while, in Mode II, the overall dissipated energy

will be the same for both models, cf. Fig. 2. Two scenarios for fitting their constitutive law

of interface are considered. In the first one, the initial stiffness of the adhesive layer is fitted,

Fig. 2(Left). In the second one, the relative tangential displacement causing the rupture in

Mode II will be equal, then the tangential adhesive stiffness in the matrix A for LEBIM,

namely κt = 2a
II
/u2

II
with a

II
and u

II
from (3.7), will be lower than the adhesive stiffness κt

in APRIM, Fig. 2(Right).

With reference to the first scenario, a certain misfit in the results can be expected because

the LEBIM fitted according to Fig. 2(Left) is elastically stiffer in Mode II than APRIM

for sufficiently large stresses, whereas the LEBIM fitted according to Fig. 2(Right) is at

least initially more compliant. Thus, we can expect that some parts in the resulting global

behaviour of both models will be better fitted in one scenario, but expectedly this will create

a certain misfit in some other parts.

One should also realize that APRIM has some unexploited freedom: e.g. one can consider

a non-linear hardening, i.e. a non-quadratic term instead of 1
2
κ

H
|π|2 in (3.4a). Having used

a gradient term in (3.4a), this generalization would still allow for a mathematical support.

Similarly, the elastic A-term in (3.4a) can be made non-quadratic. Obtaining such a freedom,

one can then try conversely to fit APRIM towards LEBIM with a given phenomenological

nonlinearity α(·).
In engineering applications, the phenomenological law of Gc proposed in [5], cf. [4, 13],

is usually applied,

Gc(ψG) = a
I

(
1 + tan2((1−λ)ψG)

)
, (4.1)

where a
I
= Gc(0

◦) gives the fracture energy in Mode I, and λ is the so-called mode sensitivity

parameter, 0 ≤ λ ≤ 1. A moderately strong fracture-mode sensitivity occurs when the ratio

a
II
/a

I
is about 5-10 (see Fig. 3(a)), with a

II
= Gc(90

◦) the fracture energy in Mode II,

which happens for λ about 0.2-0.3. A numerical implementation of (4.1) in the above non-

associative model was presented in [18].

In a theoretical study of the behaviour of APRIM, including an interface plastic slip

variable, the following functional dependence of Gc(ψG) was deduced in [34, 43], while an

10



in-depth analysis and detailed description was presented in [21],

α(
[[
u
]]
) := Gc(ψG(

[[
u
]]
))

=





a
I
, for 0 ≤ ψG ≤ arcsin

σt,yield√
2κtaI

,

2a
I
(κt+κH

)− σ2
t,yield

2(κt+κH
+κ

H
tan2 ψG)

(
1+ tan2 ψG

)
for arcsin

σt,yield√
2κtaI

≤ ψG ≤ π

2
.

(4.2)

By comparing the expression of α([[u]]) in (4.2) with (2.9) and (2.10), and taking into ac-

count that α
ADHES

= a
I
is a constant, it is straightforward to extract a somewhat cum-

bersome expression of α
PLAST

([[u]]) for arcsin
σt,yield√
2κtaI

≤ ψG, whereas α
PLAST

([[u]]) = 0 for

ψG ≤ arcsin
σt,yield√
2κtaI

. From (4.2) the maximum value of Gc is given by, cf. (3.9),

a
II
= Gc(90

◦) = a
I

(
1 +

κt
κ

H

)
−
σ2
t,yield

2κ
H

. (4.3)

In the LEBIM, we will test the functional dependence defined in (4.2), governed by two

parameters σt,yield and κ
H
, in addition to the parameters a

I
, κn and κt of a basic linear

elastic-brittle model which is (originally) insensitive to fracture mode mixity. Plots of the

normalized fracture energyGc(ψG)/aI
in Fig. 3 qualitatively represent the behaviour observed

in experiments [4, 5, 6, 8, 9].
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PSfrag replacements

MODE I

MODE II MODE II

[[u]]n

[[u]]t [[u]]t

σn

σt σt

√
2κnaI

=:σn,crit√
2κnaI

=:σn,crit

√
2κtaI

=:σt,crit

√
2κtaI

=:σt,crit

σt,yield σt,yield

√
2a

I
/κn

σt,yield

κt

σt,yield

κt

u
II
from (3.7a) u

II
from (3.7a)

√
2a

II
/κt

area=a
I

slope=κn slope=κt

slope=2a
II
/u2

II

slope=
κtκH

κt+κ
H slope=

κtκH

κt+κ
H

area=a
IIarea=a

II

κ
H
π

II

back-stress κ
H
π

of π

LEBIM LEBIM

APRIM

APRIM

Fig. 2. Two scenarios for LEBIM in Mode II after fitting α by using APRIM with a specific
A. Left: A = diag(κn, κt). Right: A = diag(κn, 2aII

/u2
II
) with a

II
and u

II
from (3.7).

Let us remind that, as mentioned in Sect. 2, the above phenomenological relation (4.2),

motivated by an elasto-plastic behaviour of an adhesive layer, can be rewritten in terms

of ψu or ψσ instead of ψG. For an actual interface of some stiffness κt, the dependence of

the fracture energy on the fracture-mode-mixity is controlled by two parameters: the yield

stress σt,yield and the hardening parameter κH. According to the plots presented in Fig. 3, the

functional dependence of α(ψG)(= Gc(ψG)) qualitatively represents the expected behaviour

in view of the previous experimental results [4, 5, 6, 8, 9]. It can easily be observed from

these plots that, as it was expected, σt,yield has an influence on the threshold value of ψG

for which α(ψG) changes its behaviour from a constant function to an increasing function,
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while both σt,yield and the hardening parameter κH control the value of ratio α(ψG)/aI
, in

particular its maximum value according to (4.3).
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√
2κtaI
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√
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a
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G
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κH=0.125κt

κH=0.1875κt

κH=0.375κt

κH=0.75κt

Fig. 3. Influence of σt,yield, considering κH=0.11κt (left), and of κH, considering

σt,yield=0.75
√

2κtaI
(right), on the ratio α(ψG)/aI

given by (4.2). In both

plots, the respective a
II
/a

I
value from (3.9) is plotted with the dashed line.

5. Illustrative 2D simulations and comparison

Single-domain example with LEBIM and APRIM comparison

A comparison of both models including varying fracture-mode-mixity of delamination is

shown on a geometrically relatively simple but anyhow nontrivial two-dimensional example

motivated by the pull-push shear experimental test used in engineering practice [27]. In-

tentionally, we use the same geometry, shown in Fig. 4, as in [20, 25] in order to have a

comparison of our weak solution of the engineering non-associative visco-elastic model with

a maximally-dissipative local solution of the associative inviscid model presented in [25]. In

contrast to the previous sections, only one bulk domain is considered and ΓC is a part of its

boundary but this modification is straightforward; alternatively, one may also think about

Ω− as a completely rigid body in the previous setting.
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PSfrag replacements

ΓN

ΓN

ΓD

ΓC

elastic body

rigid obstacle
adhesive

Lc L = 250mm

H =
12.5mm

loa
din

g

Fig. 4. Geometry and boundary conditions of the problem considered. The length
of the initially glued part ΓC is 0.9L = 225mm, the adhesive layer has zero
thickness.

Here Ω+ is a two-dimensional rectangular domain glued along the 90% of its bottom side

ΓC to a rigid obstacle, with the Dirichlet loading acting on the right-hand side ΓD in the

direction (1, 0.6), see Fig. 4, increasing linearly in time with velocity 0.3 mm/s.

The bulk material is considered linear, homogeneous, and isotropic with Young’s modulus

E = 70 GPa and Poisson’s ratio ν = 0.35 (which corresponds to aluminum); thus Cijkl =
νE

(1+ν)(1−2ν)
δijδkl +

E
2(1+ν)

(δikδjl + δilδjk) with δij standing for the Kronecker symbol. In the

LEBIM, the viscosity tensor D = χC is considered with a relaxation time χ = 0.001 s, which

is very small in relation to the considered external-loading speed. Actually, we did not see any
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essential difference for just merely elastic material with χ = 0, although the inviscid variant

of the LEBIM is not theoretically justified even as far as existence of solution concerns, and

thus neither convergence of any numerical scheme.

For the adhesive, we took the normal stiffness κn =150 GPa/m, the tangential stiffness

with κt = κn/2, and the Mode-I fracture toughness a
I
= 187.5 J/m2. Furthermore, the

engineering LEBIM was fitted to the APRIM using κH = κt/9 and σt,yield ≈ 0.79
√
2κtaI

,

which satisfies inequalities in eq. (3.8) and corresponds to a rather moderate mode-sensitivity

α(90◦)/aI ≈ 4.36.

k=50

k=87

k=107

k=163

k=198

k=238

k=242

k=254

Fig. 5. Time evolution at eight snapshots of the deformed geometrical configuration (solid lines)
compared with the original configuration (dashed lines) until complete delamination (dis-
placement depicted magnified 100×). Calculations performed by the algorithm LEBIM.

This example exhibits remarkably varying mode of delamination. At the beginning, the

delamination is performed by a mixed mode close to Mode I given essentially by the direction

of the Dirichlet loading, see Figure 4, while later it turns rather to nearly pure Mode II. Yet,

at the very end of the process, due to elastic bending the delamination starts performing

also from the left-hand side of the bar opposite to the loading side, and thus again a mixed

mode occurs. This relatively complicated mixed-mode behaviour is depicted as a “movie”
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of 8 selected snapshots in Figure 5 calculated by the LEBIM fitted to the APRIM through

the model of Fig. 2(Left), which would yield essentially similar picture.

The comparison of “global” quantities for the non-associative engineering LEBIM with

α(·) from the models of Fig. 2 with the associative (plasticity) APRIM is shown in Figures 6

and 7. As it can be observed the two models, even if they are based on similar assumptions

and their parameters are fitted to provide similar responses, they show quite different be-

haviours. The observed differences can be explained by the fact that in APRIM the stiffness

of the adhesive layer is progressively decreasing due to the presence of an interface plastic

slip π, which may evolve at a portion of the interface before the damage suddenly occurs.

Nevertheless, in LEBIM there is no variation of the adhesive layer stiffnesses before the dam-

age occurs. In particular, this effect is clearly seen in Fig. 6, where the specimen stiffnesses

begins to decrease with respect to that in LEBIM once the plastic slip begins to evolve. It

worths mentioning that the LEBIM mode-mixity distribution is in a good agreement with

the expected maximum a
II
/a

I
value.

Let us eventually briefly outline some implementation details for both models. We used

the semi-implicit discretisation of the fractional-step type. Using an equidistant partition of

the time interval [0, T ] with a time step τ > 0, for LEBIM, the discrete variant of (2.6) looks

as

∂.uR
(ukτ−uk−1

τ

τ

)
+ ∂uE(kτ, u

k
τ , z

k−1
τ ) ∋ 0 and (5.1a)

∂.zR
(
ukτ ;

zkτ−zk−1
τ

τ

)
+ ∂zE(u

k
τ , z

k
τ ) ∋ 0, (5.1b)

where ukτ denotes an approximation of u(kτ) and similarly for zkτ . This recursive scheme is

to be solved for k = 1, 2, ..., T/τ ∈ N. Note that both inclusions in (5.1) are decoupled from

each other. For APRIM, the discrete variant of (3.5) looks as

∂uE(kτ, u
k
τ , z

k−1
τ , πk

τ )∋0, and ∂.πR
(πk

τ−πk−1
τ

τ

)
+ ∂πE(u

k
τ , z

k−1
τ , πk

τ )∋0, and (5.2a)

∂.zR
(zkτ−zk−1

τ

τ

)
+ ∂zE(u

k
τ , z

k
τ , π

k
τ )∋0, (5.2b)

Also this recursive scheme decouples (5.2a) from (5.2b).
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Fig. 6. The total force response evolving in time: the horizontal (left) and the vertical
(right) components.
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Right: Fracture-mode-mixity distribution along elements of ΓC evaluated as the
ratio of the overall dissipated energy to a

I
after the delamination has been com-

pleted: value= 1∼Mode I, value= 4.36= a
II
/a

I
∼Mode II.

For details of spatial discretisation by P1/P0-boundary-element method (P1 used for

displacements, tractions and plastic slip π discretizations, whereas P0 used for the damage

variable z discretization) and the outlined semi-implicit discretisation leading to a quadratic-

programming or even a linear-programming problems, as well as of computer implementation

in the case of both models LEBIM and APRIM, we refer to [18] and [20, 25], respectively.

For BEM-implementation of the involved boundary-value problems see also [15, 23, 44, 45].

For the results presented in Figures 5–7, we have used 54 elements on ΓC, i.e. h = 4.16̄mm

(=the size of a boundary segment in the present uniform discretization), and the time step

τ = 5ms for both LEBIM and APRIM simulations.

Remark 5.1 (Approximate maximum-dissipation principle). We already mentioned at the

end of Sect. 3 that (5.2) enjoys a guaranteed stability and convergence towards weak (called

also local) solutions to the rate-independent problem (3.5). Yet, this class of solutions may

be very wide if the stored-energy functional E(t, ·, ·, ·) is nonconvex, which is our case here, cf.

[46] for a survey of variety of solution concepts, some of them may exhibit nonphysically early

ruptures due to counting with a big energy cumulated in the elastic bulk or a nonphysical

tendency of sliding to less dissipative Mode I even in situations where obviously Mode II

should be preferred, cf. also [21]. It was discussed in [24] that the sound Hill’s maximum-

dissipation principle [47] can serve as an additional attribute which may eliminate such

unphysical weak solutions. In our case, it reads as

∫

ΓC

ξ(t)
.

z(t) dS = max
ξ̃∈Kz

∫

ΓC

ξ̃
.

z(t) dS and

∫

ΓC

ζ(t)·.π(t) dS = max
ζ̃∈Kπ

∫

ΓC

ζ̃·.π(t) dS (5.3)

for t ∈ [0, T ], where ξ ∈ −∂zE(u(t), z(t), π(t)) and ζ ∈ −∂πE(u(t), z(t), π(t)) are available

driving forces occurring already in (3.2) and Kz := ∂żR(0, 0) and Kπ := ∂π̇R(0, 0) are the

“elasticity domains” for the internal variable z and π, i.e. here

Kz =
{
ξ∈L1(ΓC); ξ ≥ −a1 on ΓC

}
and Kπ =

{
ζ∈L∞(ΓC;R

d−1); |ζ | ≤ σt,yield on ΓC

}
.

(5.4)
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This principle holds rather automatically for a.a. (= almost all) time instants t for any weak

solution to (3.2) which has
.

z and
.

π absolutely continuous and then the integrals in (5.3)

have the standard Lebesgue sense. On the other hand, during sudden ruptures where
.

z or
.

π

may concentrate in space and time to be only a general measure, the validity of (5.3) is not

automatic and even analytically the integrals in (5.3) looses a sense even as dualities. It has

been proposed in [24] to consider (5.3) rather integrated over the time interval [0, T ], which

then reads, when also re-writing “max” over the elasticity domains in (5.3) equivalently as

total variations, as

∫

ΣC

ξ(t) dz(t)dS =

∫

ΓC

a1
(
z(T )−z0

)
dS and

∫

ΣC

ζ(t)·dπ(t) dS = σt,yield

∫

ΣC

∣∣.π(t)
∣∣ dSdt

(5.5)

where the notations
∫
· dz(t) and

∫
· dπ(t) stand for (lower) Pollard-Moore-Stieltjes integrals

as used in [38], which are a Pollard-Moore modification of the so-called lower Riemann-

Stieltjes integral, cf. e.g. [48], while the last integral is am integral of a total variation of

the measure
.

π. Here, as suggested in [24], we apply (5.5) to the left-continuous piecewise-

constant approximate solutions obtained by (5.2), let us denote them by ūτ , z̄τ , and π̄τ .

Such a maximum dissipation principle for the approximate solution is expected to hold only

approximately, if at all. The lower Pollard-Moore-Stieltjes integral can then be explicitly

evaluated as well as the right-hand sides of (5.5), which yields

∫

ΣC

ξ̄τ(t) dz̄τ (t)dS =

T/τ∑

k=1

∫

ΓC

ξk−1
τ (zkτ − zk−1

τ ) dS
?∼

∫

ΓC

a1
(
zT/ττ −z0

)
dS and (5.6a)

∫

ΣC

ζ̄τ(t) dπ̄τ (t)dS =

T/τ∑

k=1

∫

ΓC

ζk−1
τ (πk

τ − πk−1
τ ) dS

?∼ σt,yield

T/τ∑

k=1

∫

ΓC

∣∣πk
τ − πk−1

τ

∣∣ dS

= σt,yield

∫

ΣC

∣∣.π̄τ (t)
∣∣dSdt (5.6b)

where ξkτ ∈ −∂zE(ukτ , zk−1
τ , πk

τ ) and ζkτ ∈ −∂πE(ukτ , zkτ , πk
τ ), and where ”

?∼” means that the

equality holds at most only asymptotically for τ → 0 but even this is rather only desirable

and not always valid. See [25, 21], for such sort of a-posteriori justification of the approximate

local solution obtained by fractional-step discretisation as a stress-driven solution.

Multi-domain example with LEBIM model

The influence of the mixed-mode behavior, as well as, the efficiency of the LEBIM ap-

proximation, will be illustrated on an example of the Mixed-Mode Flexure (MMF) test

[16, 19, 49] shown in Fig. 8. The specimen of the MMF test consists of two aluminium arms,

bonded with a layer of resin adhesive. Detailed specimen dimensions and boundary condi-

tions realizing the loading are shown in Figure 8; it should be noted the point support is

on the bordeline of compatibility (and, in fact, not compatible) with traces of H1-functions

in dimension 2 but anyhow the numerical simulations did not see this slight discrepancy.

The material properties of the bulk and interface are the same as in the previous example,

however considering σt,yield ≈ 0.56
√
2κtaI

and inviscid conditions. Plane strain conditions
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are considered for the problem, while a uniform mesh of 188 linear boundary elements is used

to model the geometry. The evolution of the delamination of this double-stripe specimen

in shown in Figure 9.
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Fig. 8. Specimen configuration in the Mixed-Mode Flexure test.
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Fig. 9. Time evolution at ten snapshots of the deformed geometrical configuration (solid lines)
compared with the original configuration (dashed lines, displacement depicted magnified
5×). Calculations performed by the algorithm of LEBIM.

Finally, both scenarios for the LEBIM model shown in Fig. 2 are compared. The be-

haviour of their solutions is shown in Fig. 10, where the energetics of the delamination

evolution are summarized (left) together with the load-deflection curves (right). Comparing
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this behaviour with the former test from Fig. 5, whose results are depicted in Figs. 6 and

7, we can see that the scenario (1) yields again a bit earlier rupture than the scenario (2),

as could be expected from the stress-relative displacements laws of these scenarios shown in

Fig. 2. The length of the fractured part of the adhesive layer is the same in both scenarios,

and the total dissipated energy is only slightly larger in the scenario (1) due to a slightly

larger fracture mode mixity at the beginning of the crack propagation.
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Fig. 10. Comparison of the evolution of energies (left) and load-deflection curves (right)
for both scenarios of Fig. 2.
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lems using an interface damage and plasticity model, Comput. Mech. 51 (2013) 505–521.

[35] P. Podio-Guidugli, M. Vianello, Hypertractions and hyperstresses convey the same me-
chanical information, Contin. Mech. Thermodyn. 22 (2010) 163–176.

[36] A. Mielke, F. Theil, On rate-independent hysteresis models, Nonlinear Differ. Equ.
Appl. 11 (2004) 151–189.

[37] A. Mielke, Differential, energetic and metric formulations for rate-independent pro-
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