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Abstract

This work considers weak approximations of stochastic partial differential equa-
tions (SPDEs) driven by Lévy noise. The SPDEs at hand are parabolic with ad-
ditive noise processes. A weak-convergence rate for the corresponding Galerkin
approximation is derived. The convergence result is derived by use of the Malli-
avin derivative rather then the common approach via the Kolmogorov backward
equation.
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1. Introduction

In contrast to partial differential equations, the error analysis of approxima-
tions of solutions to stochastic (partial) differential equations (SPDEs) allows
for two conceptually different approaches: weak and strong. Both of these kinds
of error analysis for SPDEs have been actively researched during the last two
decades. While the strong (or pathwise) error has been the subject of a vast
array of publications, the weak error, which is computed in terms of moments
of the solution process, has, to the date, garnered considerably less attention.

In this paper we consider weak-convergence rates of Galerkin approximations
of solutions to the parabolic stochastic partial differential equation given, for
t ∈ (0, T ] =: T, by
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gratefully acknowledged.

1

http://arxiv.org/abs/1603.02422v1


WEAK CONVERGENCE OF SPDES WITH LÉVY NOISE 2

dX(t) +AX(t)dt = f(t)dt+G(t)dL(t),

X(0) = x0 ∈ H.
(1)

By H we denote a separable Hilbert space, A is a linear operator on H , f maps
T into H and G is a mapping from T into the linear, bounded operators form
some separable Hilbert space U (not necessarily equal to H) into H . Further,
L denotes a Lévy process defined on the complete probability space (Ω,F ,P)
and it takes values in U .

For solutions to SPDEs like Equation (1), the strong-error rate of Galerkin
approximations has been considered, among others, in [3, 4, 6, 7, 9, 13, 14, 15,
17, 19, 20, 23]. In these references, SPDEs driven by either Gaussian or Lévy
noises are treated. Publications on weak approximations and their error analysis
are, among others, [1, 2, 5, 8, 10, 12, 16, 18, 21, 22], where, to a great extent,
SPDEs driven by Gaussian processes are considered.

In this paper, we consider an equivalent approach as in [22] and combine it
with the recent results on Malliavin calculus for Lévy driven SPDEs in [11]. In
our main result, Theorem 3.4, we show that the weak-convergence rate is twice
the strong-convergence rate. This is akin to the findings in [21], where a similar
equation is treated and a weak-convergence result for a Galerkin approximation
via the backward Kolmogorov equation is derived. Our methodology, however,
differs considerably and, with it, the regularity assumptions required on the
functional of the solution.

The paper is organized as follows: In Section 2 we provide the notation
and the results on Malliavin calculus for infinite dimensional Lévy processes
required for the weak-convergence result. In the third section, we introduce the
stochastic partial differential equation in question, as well as its approximation.
We then proceed with the proof of the main result on weak convergence of this
approximation.

2. Notation and preliminaries

Let (U, 〈·, ·〉U ) and (H, 〈·, ·〉H) be separable Hilbert spaces and let L(U ;H)
be the space of all linear bounded operators from U into H endowed with the
usual supremum norm. If U = H , the abbreviation L(U) := L(U ;U) is used. An
element G ∈ L(U ;H) is said to be a nuclear operator if there exists a sequence
(xk, k ∈ N) in H and a sequence (yk, k ∈ N) in U such that

∑

k∈N

‖xk‖H ‖yk‖U < +∞

and G has, for ∈ U the representation

Gz =
∑

k∈N

〈z, yk〉U xk.
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The space of all nuclear operators from U into H , endowed with the norm

‖G‖LN (U ;H) := inf

{

∑

k∈N

‖xk‖H ‖yk‖U | Gz =

∞
∑

k=1

〈z, yk〉U xk

}

is a Banach space, and is denoted by LN(U ;H). If U = H , we use the abbre-
viation LN(U). Furthermore, let L+

N (U) denote the space of all nonnegative,
symmetric, nuclear operators on U , i.e.,

L+
N(U) := {G ∈ LN(U)| 〈Gy, y〉U ≥ 0, 〈Gy, z〉U = 〈y,Gz〉U for all y, z ∈ U} .

An operator G ∈ L(U ;H) is called a Hilbert-Schmidt operator if

‖G‖2LHS(U ;H) :=

∞
∑

k=1

‖Gek‖
2
H < +∞

for any orthonormal basis (ek, k ∈ N) of U . The space of all Hilbert-Schmidt
operators (LHS(U ;H), ‖·‖LHS(U ;H)) is a Hilbert space with inner product given
by

〈

G, G̃
〉

LHS(U ;H)
:=

∞
∑

k=1

〈

Gek, G̃ek

〉

H
,

for G, G̃ ∈ LHS(U ;H) and any orthonormal basis (ek, k ∈ N) of U . If U = H ,
the abbreviation LHS(U) := LHS(U ;U) is used.
Given a measure space (S,S, µ) and r ∈ [1,+∞), we denote by Lr(S;H) the
space of all S-B(H)-measurable mappings f : S → H with finite norm

‖f‖Lr(S;H) :=

(
∫

S

‖f‖rH dµ

)
1
r

,

where B(H) denotes the Borel σ-algebra over H .
We consider stochastic processes on the time interval T := [0, T ], with 0 <

T < +∞, defined on a filtered probability space (Ω,F , (Ft, t ∈ T),P) satisfying
the usual conditions. We denote by M2

T

(H) the space of all H-valued, càdlàg,
square integrable martingales. The space M2

T

(H) equipped with the norm
‖·‖M2

T

(H), which is defined by

‖Y ‖M2
T

(H) := sup
t∈T

(

E

[

‖Y (t)‖2H

])
1
2

=
(

E

[

‖Y (T )‖2H

])
1
2

for Y ∈ M2
T

(H), is a Banach space.

2.1. Stochastic integration with respect to compensated Poisson random mea-

sures

Let (S,Σ, ν) be a σ-finite measure space. We introduce the notation Z̄+ :=
Z+ ∪ {+∞}. We, further, work on the measure space (S × T,Σ ⊗ B(T)) :=
(S
T

,Σ
T

) and denote by λ the Lebesgue measure on (T,B(T)).
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Definition 2.1. A Poisson random measure on (S
T

,Σ
T

) with intensity mea-

sure µ := ν ⊗ λ is a mapping p : Ω× Σ
T

→ Z̄+ such that:

1. For all ω ∈ Ω, the mapping B 7→ p(ω,B) is a measure,

2. For all B ∈ Σ
T

, the mapping p(B) : ω 7→ p(ω,B) is a Poisson distributed

random variable with parameter µ(B),

3. For any pairwise disjoint B1, ..., BM ∈ Σ
T

, M ∈ N, the random variables

p(B1), ..., p(BM ) are independent.

For B ∈ Σ
T

with µ(B) < ∞ we write

q(B) := p(B)− µ(B)

and call q the compensated Poisson random measure associated to p.

We assume that the underlying probability space is equipped with the fil-
tration F = (Ft, t ∈ T) generated by q, i.e.,

Ft := σ(q((r, s] ×A)|0 ≤ r < s ≤ t, A ∈ Σ, ν(A) < ∞).

With slight abuse of notation, we write q(t, A) := q((0, t] × A), for t ∈ T and
A ∈ Σ with ν(A) < ∞. Defined like this we have that for all s, t ∈ T with s < t,
the increment q(t, A)− q(s, A) is independent of Fs and that (q(t, A), t ∈ T) is
a square integrable F -martingale.

As it is common, we start to define the stochastic integral with respect to a
compensated Poisson random measure, by considering elementary processes.

Definition 2.2. An H-valued stochastic process Φ : Ω×T× S → H is said to

be elementary if there exists some finite partition of T, given by 0 = t0 < ... <

tN = T , for some N ∈ N, and for every n = 0, ..., N − 1 there exist pairwise

disjoint sets An
1 , ..., A

n
Mn

∈ Σ of finite ν-measure, such that

Φ =

N−1
∑

n=0

Mn
∑

m=1

Φn
m1(tn,tn+1]×An

m
(2)

where Φn
m ∈ L2(Ω;H) is Ftn-measurable, for m = 1, ...,Mn, n = 0, ..., N − 1.

The class of all elementary processes is denoted by E.
For Φ ∈ E we define the stochastic integral with respect to the compensated

Poisson random measure q, for t ∈ T, by

I(Φ)(t) :=

∫

(0,t]

∫

S

Φ(s, z) q(ds, dz)

:=

N−1
∑

n=0

Mn
∑

m=1

Φn
m

(

q(tn+1 ∧ t, An
m)− q(tn ∧ t, An

m)
)

.
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For every Φ ∈ E , I(Φ) = (I(Φ)(t), t ∈ T) is a càdlàg, square integrableH-valued
F -martingale, i.e., I(Φ) ∈ M2

T

(H).
We endow the class of all elementary processes E with the seminorm

‖Φ‖2S
T

:= E

∫ T

0

∫

S

‖Φ(s, z)‖2H ν(dz)ds.

To define a norm on E , we identify Φ with Ψ if ‖Φ − Ψ‖S
T

= 0. Then, the
stochastic integral I is an isometric mapping from (E , ‖ · ‖S

T

) to (M2
T

(H), ‖ ·
‖M2

T

(H)), i.e., for Φ ∈ E ,

‖I(Φ)‖M2
T

(H) = ‖Φ‖S
T

.

Let E
S
T

be the completion of (E , ‖ · ‖S
T

). It is clear that there is a unique

isometric extension of I to E
S
T

. This broader class of integrands is denoted by
N 2

q (ST;H) and can be characterized by

N 2
q (ST;H) := L2(Ω×T× S,P

T

(S),P⊗ λ⊗ ν;H),

where P
T

(S) denotes the σ-algebra of predictable sets in Ω×T× S, i.e.,

P
T

(S) := σ
(

{Fs × (s, t]×A|0 ≤ s < t ≤ T, Fs ∈ Fs, A ∈ Σ}

∪ {F0 × {0} × A|F0 ∈ F0, A ∈ Σ}
)

.

2.2. The Malliavin derivative

With the stochastic integral in hand, we shall outline the notion of the
Malliavin derivative as introduced in [11, Section 5]. Given a Poisson random
measure p on (S

T

,Σ
T

) with intensity measure µ = ν × λ, it will be convenient
to introduce the following notation. We write for a tuple B = (B1, ..., BM ),
B1, ..., BM ∈ Σ

T

, M ∈ N,

p(B) := (p(B1), ..., p(BM )),

and denote by em the m-th unit vector in RM .

Definition 2.3. An H-valued random variable F : Ω → H is called cylindrical

if it has the form

F =

n
∑

i=1

fi(p(B1), ..., p(BM ))hi, (3)

where Bm ∈ Σ
T

, with µ(BM ) < +∞ for m = 1, ...,M , fi : Z
M
+ → R and hi ∈ H

for i = 1, ..., n, for some M,n ∈ N. The collection of all H-valued cylindrical

random variables is denoted by C(Ω;H).

In the sequel, we always assume that the sets B1, ..., BM used in the repre-
sentation of F ∈ C(Ω;H) are pairwise disjoint.
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Definition 2.4. For a cylindrical random variable F ∈ C(Ω;H), the Malliavin

derivative DF ∈ L2(Ω× S
T

;H) is defined by

DF :=

n
∑

i=1

M
∑

m=1

(fi(p(B) + em)− fi(p(B))) 1Bm
hi.

Note that the expression of the derivative does not depend on the particular
representation of F ∈ C(Ω;H). The proof of the following proposition can be
found in [11, Theorem 5.6].

Proposition 2.5. The operator D : C(Ω;H) ⊂ L2(Ω;H) → L2(Ω × S
T

;H) is

closable.

By abuse of notation, we let D stand for the closure of D : C(Ω;H) ⊂
L2(Ω;H) → L2(Ω × S

T

;H). We denote by D1,2(Ω;H) the domain of this
closure which is a Banach space endowed with the norm

‖F‖
D

1,2(Ω;H) :=
(

‖F‖2L2(Ω;H) + ‖DF‖2L2(Ω×S
T

;H)

)
1
2

,

for F ∈ D1,2(Ω;H)

Proposition 2.6. Let φ : H → H̃ be Lipschitz-continuous, where (H̃, 〈·, ·〉H̃)
is an arbitrary separable Hilbert space, and let F ∈ D1,2(Ω;H). Then φ(F ) ∈
D

1,2(Ω; H̃) with derivative

Dφ(F ) = φ(F +DF )− φ(F ). (4)

Proof. First, we assume that F ∈ C(Ω;H). Consider the sequence (φℓ, ℓ ∈ N)
of functions φℓ : H → H̃ defined by

φℓ(h) :=

ℓ
∑

k=1

〈

φ(h), h̃k

〉

H̃
h̃k, h ∈ H,

where (h̃k, k ∈ N) denotes an arbitrary orthonormal basis of H̃ . Now, for every
ℓ ∈ N we get

φℓ(F ) =

ℓ
∑

k=1

gk(p(B1), ..., p(BM ))h̃k,

where the functions gk : ZM
+ → R, k ∈ N, are given by

gk(m) := 〈φ(
n
∑

i=1

fi(m)hi), h̃k〉H̃ , m = (m1, ...,mM ) ∈ ZM
+ .
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From this follows that, for all ℓ ∈ N, φℓ(F ) ∈ C(Ω; H̃) with derivative

Dφℓ(F ) =
ℓ
∑

k=1

M
∑

m=1

(gk(p(B) + em)− gk(p(B))) 1Bm
h̃k

=

M
∑

m=1

1Bm

(

φℓ(

n
∑

i=1

fi(p(B) + em)hi)− φℓ(

n
∑

i=1

fi(p(B))hi)

)

= φℓ(F +DF )− φℓ(F ).

If we prove that, for ℓ → ∞,

φℓ(F ) → φ(F ) in L2(Ω; H̃) and

Dφℓ(F ) → φ(F +DF )− φ(F ) in L2(Ω× S
T

; H̃),
(5)

Equation (4) follows for φ, by the closedness of D. By the definition of (φℓ, ℓ ∈
N) we have, for every h ∈ H , φℓ(h) → φ(h) as ℓ → ∞. This clearly forces
convergence a.e. in Equation (5). If we can find dominating functions the
desired result follows from Lebesgue’s dominated convergence theorem. Indeed,
we have

‖φℓ(F )− φ(F )‖H̃ ≤ ‖φ(F )‖H̃ ≤ C (1 + ‖F‖H) ,

where we used the Lipschitz-property of φ and that, for all x ∈ H, ℓ ∈ N,

‖φℓ(x) − φ(x)‖H̃ ≤ ‖φ(x)‖H̃ .

Further, we have

‖Dφℓ(F )− (φ(F +DF )− φ(F ))‖H̃
≤ ‖φℓ(F +DF )− φℓ(F )‖H̃ + ‖φ(F +DF )− φ(F )‖H̃
≤ 2 ‖φ(F +DF )− φ(F )‖H̃
≤ C ‖DF‖H ,

where we used that, for all x, y ∈ H and ℓ ∈ N,

‖φℓ(x) − φℓ(y)‖H̃ ≤ ‖φ(x) − φ(y)‖H̃ .

For F ∈ D
1,2(Ω;H) arbitrary, we take a sequence (Fk, k ∈ N) ⊂ C(Ω;H)

such that
Fk → F in D

1,2(Ω;H) as k → ∞.

Then, by the Lipschitz-continuity of φ, it holds that

‖φ(Fk)− φ(F )‖L2(Ω;H̃) ≤ C ‖Fk − F‖L2(Ω;H) ,

where the right hand side tends to zero for k → ∞. By the closedness of D, the
proof is completed by showing that

Dφ(Fk) → φ(F +DF )− φ(F ) in L2(Ω× S
T

; H̃) as k → ∞.
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For this purpose, we assume, by possibly considering a suitable subsequence of
(Fk, k ∈ N), that Fk → F P-a.e. and DFk → DF P ⊗ µ-a.e. as k → ∞.
Since φ is continuous, we obtain convergence P⊗ µ-a.e.. By the above and the
Lipschitz-continuity of φ, we have

‖Dφ(Fk)− (φ(F +DF )− φ(F ))‖H̃
≤ ‖φ(Fk +DFk)− φ(Fk)‖H̃ + ‖φ(F +DF )− φ(F )‖H̃

≤ C
(

‖DFk‖H + ‖DF‖H
)

,

where the right-hand side converges in L2(Ω × S
T

). The result follows by the
application of a generalized version of Lebesgue’s dominated convergence theo-
rem.

Thanks to [11, Lemma 5.7], the operator D is densely defined. Therefore
the following definition makes sense.

Definition 2.7. The divergence operator

δ : dom(δ) ⊂ L2(Ω× S
T

;H) → L2(Ω;H)

is defined to be the adjoint of

D : D1,2(Ω;H) ⊂ L2(Ω;H) → L2(Ω× S
T

;H).

From the definition, it is clear that, for all F ∈ D1,2(Ω;H) and Φ ∈ dom(δ),

E

∫

S
T

〈DF,Φ〉 dµ = E [〈F, δ(Φ)〉] . (6)

Lemma 2.8. For every φ ∈ L2(S
T

;H) it holds that δ(φ) ∈ D1,2(Ω;H) and

D(δ(φ)) = φ.

Proof. Suppose first that φ is a simple function

φ =

M
∑

i=1

1Bi
hi,

where Bi ∈ Σµ are pairwise disjoint sets and hi ∈ H . By [11, Lemma 5.9], we
have φ ∈ dom(δ) and

δ(φ) =

M
∑

i=1

q(Bi)hi =

M
∑

i=1

fi(p(B))hi,

where
fi(n) := ni − µ(Bi), n := (n1, ..., nM ) ∈ Z

M
+ .
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Thus, we get δ(φ) ∈ C(Ω;H) and

Dδ(φ) =

M
∑

i=1

M
∑

m=1

(fi(p(B) + em)− fi(p(B))) 1Bm
hi

=

M
∑

i=1

(fi(p(B) + ei)− fi(p(B))) 1Bi
hi =

M
∑

i=1

1Bi
hi = φ.

Now, let φ ∈ L2(S
T

;H) be arbitrary. We may choose a sequence (φℓ, ℓ ∈ N)
of simple functions converging to φ in L2(S

T

;H). Since ‖δ(φℓ)‖L2(Ω;H) =

‖φℓ‖L2(S
T

;H), for ℓ ∈ N, the sequence (δ(φℓ), ℓ ∈ N) converges in L2(Ω;H).

By the closedness of δ, we see that φ ∈ dom(δ) and δ(φℓ) → δ(φ) as ℓ → ∞.
Furthermore, we have

Dδ(φℓ) = φℓ → φ in L2(Ω× S
T

;H)

The assertion follows by the fact that D is closed.

We return to the situation where p is a Poisson random measure on (S
T

,Σ
T

)
with intensity measure µ = λ⊗ν. As before we consider the filtration generated
by the corresponding compensated measure q.

Proposition 2.9. Let Φ ∈ N 2
q (ST;H) be a predictable stochastic process. Then

Φ ∈ dom(δ) and
δ(Φ) = I(Φ)(T ). (7)

Proof. Suppose first that Φ ∈ E is an elementary process as given in Equa-
tion (2) with Φn

m ∈ C(Ω;H), which are Ftn -measurable. As δ is linear we have,
by [11, Lemma 5.9],

δ(Φ) =

N−1
∑

n=0

Mn
∑

m=1

q((tn, tn+1]×An
m)Φn

m = I(Φ)(T ).

Since C(Ω;H) is dense in L2(Ω;H), the closedness of δ shows that E is contained
in dom(δ) and Equation (7) holds. Finally, since E is dense in N 2

q (ST;H),
applying the closedness of δ again, the assertion follows.

With the Malliavin derivative in hand we are able to prove the main result
on weak convergence.

3. Weak error estimate for the parabolic SPDEs

Assume L = (L(t), t ∈ T) is a Lévy process in a real separable Hilbert space
(U, 〈·, ·〉U ) defined on a filtered probability space (Ω,F , (Ft, t ∈ T),P) satisfying
the usual conditions. We assume that for s, t ∈ T with s < t the increment
L(t)−L(s) is independent of Fs. We assume that L is square integrable and of
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mean zero. It follows that L is a martingale with respect to (Ft, t ∈ T). It is
well-known that L is square integrable if and only if its Lévy measure ν satisfies

∫

U

‖u‖2U ν(du) < +∞. (8)

Moreover, we assume that the Gaussian part of L vanishes. We always consider
a càdlàg modification of L and define the jump process of L by ∆L(t) := L(t)−
L(t−), for t ∈ T. Let Q ∈ L+

N (U) be the covariance operator of L, which is
determined by the Lévy measure ν via

〈Qx, z〉U =

∫

U

〈x, u〉U 〈z, u〉U ν(du), x, z ∈ U.

We introduce the space U0 := Q
1
2 (U) which endowed with the inner product

〈x, z〉U0
:=
〈

Q− 1
2x,Q− 1

2 z
〉

U
, x, z ∈ U0,

becomes a separable Hilbert space, called the reproducing kernel Hilbert space
of L. Here, Q− 1

2 denotes the pseudo-inverse of Q
1
2 . Since Q is nuclear, Q

1
2

is Hilbert-Schmidt. Consequently, the embedding U0 →֒ U is Hilbert-Schmidt,
i.e., for arbitrary orthonormal basis (ei, i ∈ N) of U0 one has

∑

i∈N

‖ei‖
2
U < +∞.

Setting

p :=
∑

0<s≤T

1{∆L(s) 6=0}δ(s,∆L(s))

defines a Poisson random measure on (T × U,B(T) ⊗ B(U)) with intensity
measure λ⊗ ν. The associated compensated measure is denoted by

q := p− λ⊗ ν.

In order to make the results of the previous section applicable, especially
Proposition 2.9, we assume that F and the filtration (Ft, t ∈ T) are generated
by q.

Combining [21, Lemma A.2], Proposition 2.9 with (S,Σ) = (U,B(U)) and
Equation (6) we obtain

Proposition 3.1. If Φ ∈ L2(Ω×T,P
T

;LHS(U0;H)) and F ∈ D
1,2(Ω;H), then

E

[〈

F,

∫ T

0

Φ(s) dL(s)

〉

H

]

= E

∫ T

0

∫

U

〈[DF ](s, u),Φ(s)u〉H ν(du)ds.

Our main objective is to prove weak convergence of the mild solution X :
Ω×T→ H to the stochastic evolution equation

dX(t) +AX(t)dt = f(t)dt+G(t)dL(t)

X(0) = x0 ∈ H
(9)

We make the assumption:
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Assumption 3.2. The data of the stochastic evolution equation (9) satisfy:

1. The linear operator A : D(A) ⊂ H → H is densely defined, self-adjoint,

positive-definite and has a compact inverse.

2. The functions f : T → H and G : T → L(U ;H) are measurable and

bounded.

Under these conditions, −A is the generator of an analytic semigroup of con-
tractions (S(t), t ∈ T). The mild solution is then given by the variation of
constants formula

X(t) = S(t)x0 +

∫ t

0

S(t− s)f(s) ds+

∫ t

0

S(t− s)G(s) dL(s). (10)

Furthermore, by the assumption there exists an nondecreasing sequence
(λk, k ∈ N) of positive real numbers, which tends to ∞, and an orthonor-
mal basis (ek, k ∈ N) of H such that Aek = λkek. This enables us to define
fractional powers of the operator A in the following way.

For s ≥ 0, A
s
2 : D(A

s
2 ) ⊂ H → H is given by

A
s
2 x :=

∞
∑

k=1

λ
s
2

k 〈x, ek〉 ek,

for all x ∈ D(A
s
2 ), where

D(A
s
2 ) :=

{

x ∈ H | ‖x‖2s :=

∞
∑

k=1

λs
k 〈x, ek〉

2
< ∞

}

.

Then Ḣs := D(A
s
2 ) endowed with the norm ‖·‖s becomes a Hilbert space. We

may alternatively express the norm ‖·‖s as

‖x‖s =
∥

∥A
s
2x
∥

∥

H
, for all x ∈ Ḣs.

Let (Vh, h ∈ (0, 1]) be a family of finite dimensional subspaces of Ḣ1. Unless
otherwise stated, we endow Vh with the norm in H . By Ph : H → Vh and
Rh : Ḣ1 → Vh we denote the orthogonal projections with respect to the inner
products in H and Ḣ1, respectively. We assume that the Ritz projection Rh

satisfies the estimate

‖Rhx− x‖H ≤ Chβ ‖x‖β , x ∈ Ḣβ, β ∈ {1, 2}, h ∈ (0, 1]. (11)

Discrete versions Ah : Vh → Vh of the operator A are then defined in the
following way: For x ∈ Vh we define Ahx to be the unique element in Vh for
which

〈x, y〉Ḣ1 = 〈Ahx, y〉 for all y ∈ Vh.
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Obviously, Ah is self-adjoint and positive definite on Vh. Hence, −Ah is the
generator of an analytic semigroup of contractions on Vh, which is denoted by
Sh(t) := e−tAh , for t ∈ T. In what follows, we use the abbreviation

Fh(t) := Sh(t)Ph − S(t), t ≥ 0. (12)

Given such a family of finite element spaces Vh ⊂ Ḣ1, we define, for h ∈ (0, 1],
an approximation (Xh(t), t ∈ T) of the solution (X(t), t ∈ T) to be the mild
solution to

dXh(t) +AhXh(t)dt = Phf(t)dt+ PhG(t)dL(t)

Xh(0) = Phx0 ∈ Vh

(13)

Therefore Xh : Ω×T→ Vh, h ∈ (0, 1], is given by

Xh(t) = Sh(t)Phx0 +

∫ t

0

Sh(t− s)Phf(s) ds+

∫ t

0

Sh(t− s)PhG(s) dL(s) (14)

The following deterministic estimate will be used in the proof of our weak
error result stated in Theorem 3.4 below. For a proof, the reader is referred
to [24, Theorem 3.2]. There the result is formulated under the assumption that
−A is the Laplace operator with homogeneous Dirichlet boundary conditions,
the proof, however, can be extended to the more general setting we work in.

Lemma 3.3. Let Equation (11) hold. Then there exists a constant C > 0 such

that for any h ∈ (0, 1] and t > 0

‖Fh(t)‖L(H) ≤ Ch2t−1.

With this result in hand we prove our main result on weak convergence.

Theorem 3.4. Given a continuously Fréchet-differentiable mapping φ : H → R

with Lipschitz continuous derivative, there exists a constant C(T ) > 0, indepen-
dent of h, such that

|E [φ(Xh(T ))− φ(X(T ))] | ≤ C(T )(1 + | ln(h)|)h2.

Proof. The mean value theorem yields

|E [φ(Xh(T ))− φ(X(T ))] |

=

∣

∣

∣

∣

E

〈
∫ 1

0

φ′ (σXh(T ) + (1− σ)X(T )) dσ,Xh(T )−X(T )

〉

H

∣

∣

∣

∣

≤

∫ 1

0

|E 〈φ′ (σXh(T ) + (1− σ)X(T )) , Fh(T )x0〉H | dσ

+

∫ 1

0

∣

∣

∣

∣

∣

E

〈

φ′ (σXh(T ) + (1− σ)X(T )) ,

∫ T

0

Fh(T − s)f(s) ds

〉

H

∣

∣

∣

∣

∣

dσ

+

∫ 1

0

∣

∣

∣

∣

∣

E

〈

φ′ (σXh(T ) + (1− σ)X(T )) ,

∫ T

0

Fh(T − s)G(s) dL(s)

〉

H

∣

∣

∣

∣

∣

dσ

=: I1h(T ) + I2h(T ) + I3h(T ).
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To the first term, we apply the Cauchy-Schwarz inequality, the fact that φ′

grows at most linearly and Lemma 3.3, to get

I1h(T ) ≤

∫ 1

0

‖φ′(σXh(T ) + (1− σ)X(T ))‖L2(Ω;H) dσ ‖Fh(T )x0‖H

≤ C
(

1 + ‖Xh(T )‖L2(Ω;H) + ‖X(T )‖L2(Ω;H)

)

‖Fh(T )‖L(H) ‖x0‖H

≤ CT−1h2.

Similarly, the second term is bounded by

I
2
h(T ) ≤

∫ 1

0

∥

∥φ
′(σXh(T ) + (1− σ)X(T ))

∥

∥

L2(Ω;H)
dσ

∥

∥

∥

∥

∫

T

0

Fh(T − s)f(s) ds

∥

∥

∥

∥

H

≤ C
(

1 + ‖Xh(T )‖L2(Ω;H) + ‖X(T )‖
L2(Ω;H)

)

∫

T

0

‖Fh(T − s)‖
L(H) ‖f(s)‖H ds

≤ C

(

∫

T−h
2

0

‖Fh(T − s)‖
L(H) ds+

∫

T

T−h2

‖Fh(T − s)‖
L(H) ds

)

≤ C

(

h
2

∫

T−h
2

0

(T − s)−1
ds+ h

2

)

≤ Ch
2 (ln(T )− 2 ln(h) + 1)

≤ C(T )(1 + | ln(h)|)h2
,

where we used the boundedness of f in the third step and Lemma 3.3 to estimate
the first summand of the third line.

It remains to estimate I3h(T ). Applying Proposition 3.1, the chain rule and
the Lipschitz continuity of φ′, Lemma 3.3 and the boundedness of G yields

I
3
h(T )

=

∫ 1

0

∣

∣

∣E

∫

T

0

∫

U

〈

Dφ
′(σXh(T ) + (1− σ)X(T )), Fh(T − s)G(s)u

〉

H
ν(du)ds

∣

∣

∣ dσ

≤ C

∫ 1

0

E

[

∫

T

0

∫

U

‖σ[DXh(T )](s, u) + (1− σ)[DX(T )](s, u)‖
H

‖Fh(T − s)G(s)u‖
H
ν(du)ds

]

dσ

≤ CE
[

∫

T

0

∫

U

(

‖[DXh(T )](s, u)‖H + ‖[DX(T )](s, u)‖
H

)

‖Fh(T − s)G(s)u‖
H
ν(du)ds

]

= C

∫

T

0

∫

U

(

‖Sh(T − s)PhG(s)u‖
H

+ ‖S(T − s)G(s)u‖
H

)

‖Fh(T − s)G(s)u‖
H
ν(du)ds

≤ C

∫

U

‖u‖2
U

ν(du)

∫

T

0

‖Fh(T − s)‖
L(H) ds

≤ C(T )(1 + | ln(h)|)h2
,

where the last estimate has already been used in the bound of I2h(T ). Summing
the estimates proves then the assertion.
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