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Abstract

We investigate the application of the method of moments approach for the one-dimensional population
balance equation. We consider different types of moment closures, namely polynomial (PN ) closures, max-
imum entropy (MN ) closures and the quadrature method of moments QMOMN . Realizability issues and
implementation details are discussed. The numerical examples range from spatially homogeneous cases to
a population balance equation coupled with fluid dynamic equations for a lid-driven cavity test case. A
detailed numerical discussion of accuracy, order of the moment method and computational time is given.

Keywords: population balance, maximum entropy, quadrature method of moments
2010 MSC: 35L40, 45K05, 35R09

1. Introduction

Population balance equations are widely used in engineering applications, including aerosol physics, high
shear granulation, pharmaceutical industries, polymerization and emulsion processes, evaporation and con-
densation processes in bubble column reactors, bioreactors, turbulent flame reactors and many others, see
[13, 19, 24, 24, 43–45] and references therein. These polydisperse processes are characterized by two phases:
one of them is the continuous and the second is a dispersed phase consisting of particles. The particles can
take different forms like crystals, drops or bubbles with several possible properties such as volume, chemical
composition, porosity and enthalpy. In this work only the volume is considered.
The dynamic evolution of the particle number distribution which is described by the population balance
equation (PBE) of the dispersed phase depends not only on the particle-particle interactions, but also on
the continuous phase, due to interaction of these particles with the continuous flow field in which they are
dispersed. These interactions usually result in the common mechanisms aggregation, breakage, condensa-
tion, growth and nucleation. In our work we concentrate on binary aggregation, namely the Smoluchowski
aggregation [42] and multiple breakages, since binary breakage is not sufficient for some of these applications.
Binary aggregation is the process of merging two particles to a larger particle, whereas in a breakage process,
a particle breaks into several smaller fragments. Often included in a typical PBE are spatial transport terms,
i.e. advection and diffusion terms. We use the simplest case and assume that the mean particle velocity is
the same as those of the fluid. The resulting population balance equations range from integro-differential
to partial integro-differential equations of hyperbolic or parabolic type in phase space, in addition to the
differential terms for advection and diffusion in the physical space.
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The complex structure of the PBE allows for an analytical solution only for some simple breakage and aggre-
gation kernels, see [20, 60] and references therein. Thus, numerical solution methods have been extensively
studied. In literature, several different classes of methods are discussed like Monte-Carlo methods, see,
for example [35] or finite element techniques, see for example [38] and references therein. Other numerical
techniques are the method of successive approximations [43], the methods of classes [30, 43, 51], and the
method of weighted residuals [43, 57]. Another approach is to apply finite volume schemes (FVS), which
are frequently used for solving conservation laws. In [21, 22], this approach is used for solving aggregation
PBEs using a conservative formulation of the equation. Later, the scheme has been applied to solve the
combined breakage and aggregation PBE in [31]. In [33], sectional methods have been developed, among
them the cell average technique for both uniform and non-uniform grids.
Another class of methods for solving the complex PBE is the method of moments. Instead of solving the
PBE in full phase space, moment models reduce the high dimensionality of the original equation by using
a finite set of moment equations, which are obtained by taking volume averages with respect to some basis
of the volume space. The resulting moment equations require additional information about the unknown
particle number distribution that must be approximated via a closure. By the use of such an ansatz func-
tion the distribution function can be reconstructed from the available moments. One big issue regarding
the method of moments is realizability. Roughly speaking, realizable moments are those moments associ-
ated with non-negative distribution functions. The set of realizable moments forms a convex cone in the
set of all moment vectors. Several types of closures are available. One that is often used for population
balance equations is the quadrature method of moments (QMOM), first introduced in the PBE context in
[40]. It uses a non-linear Gaussian-like quadrature rule to compute weights and abscissas from the available
moments, assuming that the underlying distribution function is a weighted sum of Dirac δ−functions. The
computation of the quadrature rule involves solving a non-linear system. There also exist several extensions
of QMOM , such as SQMOM [8, 9, 12] and EQMOM [59].
The standard moment method in linear radiative transport is the polynomial closure PN [37], where N is
the order of the highest-order moment. For multi-variable cell population balance equations, PN closures
of different types where discussed in [39]. Using the polynomial closure with respect to an orthogonal basis
ensures a non-expensive moment method, at the price of a potentially negative, and thus physically meaning-
less, number density. Another moment approach is the use of entropy-based closures MN which approximate
the full distribution by an ansatz that solves a constrained, convex optimization problem. Using physically
relevant entropies, the big advantage of MN is the preservation of many important properties like positivity,
entropy dissipation, and hyperbolicity [36]. The disadvantage is the computational cost, especially compared
to the polynomial closure, since an optimization problem has to be solved numerically in every point of the
space-time grid. Realizability plays a big role for MN , since the solving the optimization problem near the
realizability boundary is especially expensive or even impossible.
In the present paper we aim at a numerical comparison of the above described closure approaches. The
outline of the paper is the following. First, in section 2 we introduce the population balance equation used
in this paper. Then we shortly state the finite volume scheme, based on the work in [34]. After that in
section 3 we explain the method of moments and the concept of realizability. Also, contained in this section
are the different types of moment closures for which we compute the PBE, namely the polynomial closure
PN , the maximum entropy closure MN and the quadrature method of moments QMOMN . This is followed
by a description of the numerical methods, supplemented with further implementation details in section 4.
The numerical results for the homogeneous case neglecting diffusion and advection are presented in section
5. These results are followed by two-dimensional results on a PBE coupled to fluid dynamic equations for
a lid-driven cavity test. In section 6 we summarize our conclusions.

2. Population Balance Equation

We consider a one-dimensional population balance equation (PBE). It describes the time evolution of the
particle number distribution function f(t, x, v) under the simultaneous effect of binary aggregation, multiple
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breakage, diffusion and advection processes [34]. The PBE reads

∂tf(t, x, v) +∇x · (vd(t, x)f(t, x, v))−∇x · (D(t, x)∇xf(t, x, v))

=
1

2

∫ v

vmin

ω(t, x, v − v′, v′)f(t, x, v − v′)f(t, x, v′)dv′︸ ︷︷ ︸
=: A+[f ](t, x, v)

− f(t, x, v)

∫ vmax

vmin

ω(t, x, v, v′)f(t, x, v′)dv′︸ ︷︷ ︸
=: A−[f ](t, x, v)

+

∫ vmax

v

Γ(t, x, v′)β(v, v′)f(t, x, v′)dv′︸ ︷︷ ︸
=: B+[f ](t, x, v)

−Γ(t, x, v)f(t, x, v)︸ ︷︷ ︸
=: B−[f ](t, x, v)

.

(2.1)

The particle number density f(t, x, v) ≥ 0 depends on the time t ∈ R+, the space x ∈ Rnd , nd ≥ 1 and the
volume v ∈ [vmin, vmax] ⊆ R+ of the particles. The particle volume is limited through the minimal volume
vmin and the maximal volume vmax, which are physical properties determined by experiments. In theoretical
works, vmin = 0 and vmax = ∞ is widely used. The left-hand side of the equation is devoted to the space
and time evolution of the density: it includes an advection term with the droplet velocity vd(t, x) and a
diffusion term including a diffusion rate D(t, x). On the right hand side A+ and A− characterize the binary
aggregation, where the birth term A+ determines the creation of particles of volume v and the death term
A− describes disappearance of particles of volume v in the population balance. B+ and B− are the breakage
terms [34]. The aggregation and breakage processes are modeled via the aggregation kernel ω(t, x, v, v′), the
breakage frequency Γ(t, x, v) and the daughter droplet distribution function β(v, v′). The breakage frequency
Γ(t, x, v) ≥ 0 represents the fractional number of breakage events per unit time of droplets of size v while the
daughter droplet distribution function β(v, v′) ≥ 0 is the probability function for the creation of particles of
size v from particles of size v′ [29].

We assume the following properties for the daughter droplet distribution function:

β(v, v′) ≡ 0, ∀v′ < v, (2.2a)∫ v′

vmin

β(v, v′)dv = N(v′), ∀v′ ∈ [vmin, vmax], (2.2b)∫ v′

vmin

vβ(v, v′)dv = v′, ∀v′ ∈ [vmin, vmax]. (2.2c)

The first property (2.2a) comes from the fact that no particle can split into larger particles. The function
N(v′) ∈ R+ in (2.2b) represents the number of fragments obtained from the splitting of a particle of size
v′ [29]. Property (2.2c) takes into account that over time the total mass should be conserved by breakage
events, while the total number of particles increases.

We furthermore set β(v, v′) ≡ 0, Γ(t, x, v) ≡ 0 for all v, v′ /∈ [vmin, vmax].

Binary aggregation appears if two particles of size v1 and v2 collide and merge to a particle of size v1 + v2.
The aggregation kernel ω provides the probability that a collision of two particles results in a successful
merge. We again assume the following conditions:

ω(t, x, v, v′) ≥ 0, ∀v, v′ ∈ [vmin, vmax], (2.3a)

ω(t, x, v, v′) = ω(t, x, v′, v), ∀v, v′ ∈ [vmin, vmax], (2.3b)

ω(t, x, v, v′) ≡ 0, ∀v, v′ ∈ [vmin, vmax] with v + v′ > vmax, (2.3c)

ω(t, x, v, v′) ≡ 0, ∀v, v′ /∈ [vmin, vmax]. (2.3d)

The symmetry condition (2.3b) comes from the fact that the two merging events (v1, v2) → v1 + v2 and
(v2, v1)→ v1 + v2 are equivalent (symmetry of binary aggregation events).

Formulas for our choice of kernels can be found in section 5.
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3. Moment Models and Realizability

The method of moments is commonly used to derive reduced models for kinetic transport equations [23,
25, 47, 53, 58]. To solve such a reduced model is often less expensive, regarding computational time, than
to solve the complete model. Equation (2.1) depends on time, space and the volume. Here, the method
of moments consists in a (nonlinear) projection of the solution f with respect to a polynomial basis in the
volume variable v.

We start with some definitions that closely follow [4, 5, 36].

We denote by γ = (γ0, γ1, ..., γN )
T

: R+ × Rnd → RN+1 the vector containing entries of the first N + 1

moments of f with respect to some polynomial basis m = m(v) = (m0(v), ...,mN (v))
T

of PN ([vmin, vmax])1,
that means

γ(t, x) := 〈mf(t, x, ·)〉 :=

∫ vmax

vmin

m(v)f(t, x, v) dv, (3.1)

where the integration is applied component-wise. Then the system of N + 1 moment equations for the
population balance equation is derived by multiplying (2.1) by the basis m and integrating over the volume
domain. This results in

∂tγ(t,x) +∇x · (vd(t, x)γ(t, x))−∇x · (D(t, x)∇xγ(t, x))

=〈m(v)A+[f ](t, x, v)〉 − 〈m(v)A−[f ](t, x, v)〉+ 〈m(v)B+[f ](t, x, v)〉 − 〈m(v)B−[f ](t, x, v)〉.
(3.2)

The moments γi depend on the distribution function that appears on the right hand side of (3.2) in the
aggregation and breakage terms. Here, an ansatz for the distribution function, which depends on the known
moments, is needed to close the equations.

3.1. Realizability

When dealing with closures, the question arises which moments can actually be realized by a physical (non-
negative) distribution function, compare [3, 18]. In other words, for given moments γi one has to find a
non-negative distribution function f(v) ≥ 0 such that

〈mi(v)f(v)〉 = γi, 0 ≤ i ≤ N.

The realizability domain
RN = {γ ∈ RN+1 | ∃f ≥ 0, 〈mf〉 = γ}

is defined as the set of vectors (γ0, ..., γN )T ∈ RN+1 such that this problem has a solution. We refer to
[3, 18] for further reading and explicit characterizations of RN in terms of the moments γ. Note that the
realizable set changes when 〈·〉 is replaced by a numerical quadrature, see section 4.3 and [4, 6]

3.2. Moment Closures

Assuming a specific form of the distribution function f in the integrals appearing in (3.2), which depends on
the available moments, one can close the equations. There exist many types of closures in literature, each
with their own advantages and disadvantages. In this section we will explain the polynomial closure PN ,
the maximum entropy closure MN as well as the quadrature method of moments QMOM .

1Other bases are also possible, see, e.g., [47].
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3.2.1. Polynomial Closure

The PN equations can be most easily understood as a Galerkin semi-discretization in v. The idea is to
expand the distribution function in terms of a truncated series expansion

fPN
(t, x, v) =

N∑
i=0

ai(t, x)mi(v).

Inserting fPN
into the definition of moments (3.1) leads to

γi(t, x) =

N∑
j=0

aj(t, x)〈mi(v)mj(v)〉, i = 0, ..., N. (3.3)

The basis m can be chosen to be any kind of polynomial basis, for example the monomials vi. But to
simplify the solution of the linear system of equations (3.3) for the expansion coefficients ai, we use an
orthogonal basis. Choosing the Legendre polynomials and shifting them to the interval [vmin, vmax] gives
us the following recursion formula

m0(v) = 1, m1(v) =
2

vmax − vmin
(v − vmin)− 1,

mi(v) =
2i− 1

i

(
2

vmax − vmin
(v − vmin)− 1

)
mi−1(v)− i− 1

i
mi−2(v), for i ≥ 2.

(3.4)

Therefore, the moments γi for i = 0, ..., N can be expressed as

γi(t, x) =

N∑
j=0

aj(t, x)〈mimj〉 =

N∑
j=0

aj(t, x) vmax−vmin

2
2

2i+1δij = ai(t, x) vmax−vmin

2i+1 ,

where δij is the Kronecker delta. Solving for the coefficients ai, the approximated distribution function for
the PN closure looks like

fPN
(t, x, v) =

N∑
i=0

γi(t, x)
2i+ 1

vmax − vmin
mi(v). (3.5)

The polynomial closure does not necessarily provide a non-negative distribution function, thereby the com-
puted moments could get physically meaningless, like e.g. a negative particle number.

3.2.2. Maximum Entropy

Another kind of closure for the approximation of the distribution f are entropy-based methods. Here, fMN

is the solution of a constrained, convex optimization problem [25]. Namely, for strictly convex η : R → R
the optimization problem looks like

min
g
〈η(g)〉,

subject to 〈mg〉 = γ.
(3.6)

Transforming (3.6) into its unconstrained, strictly convex dual problem we end at searching for the Lagrange
multipliers α̂(γ) ∈ RN+1 that solve

min
α∈RN+1

(
〈η(g) + αTmg〉 − αγ

)
.

Using the Legendre dual η∗ : R→ R of η, this is equivalent to

α̂(γ) = argmin
α∈RN+1

(
〈η∗(αTm)〉 − αγ

)
. (3.7)
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So, if a solution of problem (3.7) exists, it takes the form [36]

fMN
= Gα̂ := η′∗(α̂

Tm). (3.8)

Choosing the Maxwell-Boltzmann entropy η(g) = g log(g) − g, the Legendre dual and its derivative are of
the form η∗(y) = η′∗(y) = ey and therefore the solution of (3.7) can be written as

Gα = exp(αTm).

We define the dual objective function h : RN+1 → R (the function which gets minimized) by

h(α) = 〈Gα〉 − αT γ.

Through the properties of the exponential function it is ensured that fMN
is always a positive function.

Because of the strict convexity, problem (3.6) does have a unique solution whenever γ is realizable [25].

3.2.3. QMOM

In QMOM the general idea is to use an n-atomic discrete measure as ansatz. This means that the approx-
imated distribution function consists only of a linear combination of Dirac δ-functions

fQMOMN
=

n∑
j=1

wjδ(v − vj), (3.9)

with wj > 0 and vj ∈ [vmin, vmax] for all j = 1, ..., n. Plugging fQMOMN
into (3.1) and choosing mi(v) = vi

leads to

γi =

n∑
j=1

wjv
i
j , i = 0, ..., N.

The above nonlinear system can be solved using the Wheeler-algorithm [3, 18, 56, 59] which diagonalizes a
tridiagonal matrix to find the weights wi and abscissas vi. This results in a robust and efficient algorithm
for the inversion of the moment problem, which will only succeed if γ is realizable. It can be shown that a
moment vector on the realizability boundary can be uniquely represented by an atomic distribution function.
Thus, QMOM is able to exactly reproduce this behavior in such a case [28, 53].

4. Numerical Implementation

4.1. Finite Volume Scheme for the PBE

We will shortly recall the finite volume scheme (FVS) for the one-dimensional PBE with binary aggregation
and multiple breakages on uniform meshes, as introduced in [10, 21]. Its solution will be used as a reference
for our numerical comparison of the moment closure schemes.

Extensions of this scheme to different types of uniform and non-uniform grids and analytical results can be
found in [30, 32, 34].

At first, equation (2.1) is rewritten in conservative form [34] for the mass density vf(t, v),

∂t(vf(t, x, v)) +∇x · (vd(t, x)f(t, x, v))−∇x · (D(t, x)∇xf(t, x, v)) + ∂v
(
F agg(t, x, v) + F brk(t, x, v)

)
= 0,

with the continuous aggregation flux

F agg(t, x, v) =

∫ v

vmin

∫ vmax

v−u
uω(t, x, u, w)f(t, x, u)f(t, x, w)dwdu,
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and the continuous breakage flux

F brk(t, x, v) = −
∫ vmax

v

∫ v

vmin

uβ(u,w)Γ(t, x, w)f(t, x, w)dudw.

The volume domain [vmin, vmax] is discretized into equidistant cells

Λi := [vi− 1
2
, vi+ 1

2
[, i = 1, ..., nv with vi+ 1

2
= vmin + i∆v.

The grid size is denoted by ∆v = (vmax−vmin)/nv and the midpoints vi are computed by vi =
(
vi+ 1

2
+ vi− 1

2

)
/2.

Let fi(t) be the semi-discrete approximation of the cell average of the solution on cell i [32]

fi(t, x) =
1

∆v

∫ v
i+1

2

v
i− 1

2

f(t, x, v)dv.

The FVS is derived by integrating the conservation law over every cell Λi,

dfi(t, x)

dt
= − 1

∆vvi

(
Jagg
i+ 1

2

(t, x)− Jagg
i− 1

2

(t, x) + Jbrki+ 1
2
(t, x)− Jbrki− 1

2
(t, x)

)
.

The numerical fluxes Ji+ 1
2

are chosen as appropriate approximations of the continuous flux functions [21,

21, 29, 32–34]. The numerical breakage flux takes the form [34]

Jbrki+ 1
2
(t, x) = −

nv∑
l=i+1

fl(t)Γ(t, x, vl)∆v
2

i∑
j=1

vjβ(vj , vl).

Moreover, Jbrk1/2 (t, x) = Jbrknv+1/2(t, x) = 0 since at the boundary we have F brk(t, x, vmin) = F brk(t, x, vmax) =
0.

The numerical aggregation flux is given by [21, 34]

Jagg
i+ 1

2

(t, x) =

i−ζ∑
l=1

vlfl(t, x)∆vfi−l+1−ζ(t, x)ω (t, x, vi−l+1−ζ , vl)
(
vmin +

(
1
2 − ζ

)
∆v
)

+

i−ζ∑
l=1

vlfl(t, x)∆v

nv∑
j=i−l+2−ζ

fj(t, x)ω(t, x, vj , vl)∆v

+

i∑
l=max(i−ζ+1,1)

vlfl(t, x)∆v

nv∑
j=1

fj(t, x)∆vω(t, x, vj , vl)

with αi,l = i− l − ζ + 2. The index ζ is determined by vi+ 1
2
− vl = vi−l+1 − vmin ∈ Λi−l+1−ζ and

ζ =

⌈
vmin
∆v

− 1

2

⌉
.

Again, Jagg1/2 (t, x) = Jaggnv+1/2(t, x) = 0, since at the boundaries we have F agg(t, x, vmin) = F agg(t, x, vmax) =

0. We remark that restrictions of the size of the time-step to ensure positivity of the distribution function
have been investigated in [21, 29].
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4.2. Numerical approximation of the moment system

We reconsider the moment equations (3.2). For a better numerical approximation we transform the second
term on the right hand side of (3.2) towards

〈m(v)A−[f ](t, v)〉 (2.3d)
=

∫ vmax

vmin

m(v)f(t, v)

∫ vmax−v+vmin

vmin

ω(t, v, v′)f(t, v′)dv′dv

=

∫ vmax

vmin

m(v)f(t, v)

∫ vmax

vmin

ω(t, v, gA−(v, v′))f(t, gA−(v, v′))g′A−(v, v′)dv′dv,

with gA−(v, x) = (vmax − v)(x − vmin)/(vmax − vmin) + vmin. In general, one is not able to compute the
above integrals exactly. They have to be evaluated numerically. As quadrature rule for the computation of
the terms on the right hand side of (3.2) we use a Gauß Lobatto formula, which integrates polynomials up
to degree 2nQ − 3 exactly for nQ quadrature points.
For the QMOMN , whose closure is based on Dirac δ functions, we approximate the integrals by

〈m(v)A+[fQMOMN
]〉 =

1

2

n∑
i=1

n∑
j=1

m(vi + vj)wiwjω(vi, vj),

〈m(v)A−[fQMOMN
]〉 =

n∑
i=1

n∑
j=1

m(vj)wiwjω(vj , vi),

〈m(v)B+[fQMOMN
]〉 =

n∑
i=1

wiΓ(vi)

∫ vi

vmin

m(v)β(v, vi)dv,

〈m(v)B−[fQMOMN
]〉 =

n∑
i=1

m(vi)wiΓ(vi).

Using property (2.2c) of the β−kernel, we can easily see that mass conservation is exactly fulfilled in case
of the quadrature moment method, when m is the monomial basis:∫ vmax

vmin

v
(
B+[fQMOMN

](t, v)−B−[fQMOMN
](t, v) +A+[fQMOMN

](t, v)−A−[fQMOMN
](t, v)

)
dv = 0.

4.3. Numerical Realizability

Since for maximum-entropy models almost all of the integrals 〈·〉 have to be evaluated numerically, we need
to adapt the definition of the realizable set.

For a function g : [vmin, vmax]→ R the nodes {vi}
nQ

i=1 and weights {wi}
nQ

i=1 of a quadrature rule Q are chosen
such that 〈g〉 is approximated by

〈g〉 ≈ Q(g) =

nQ∑
i=1

wig(vi). (4.1)

By abuse of notation, 〈·〉 should be understood as Q(·) whenever needed.

For an arbitrary quadrature rule Q the Q-realizable set is defined as [4, 6]

RQ
N =

{
γ

∣∣∣∣γ =

nQ∑
i=1

wim(vi)fi, fi > 0

}
.

It is worth mentioning that RQ
N is a strict (polytopic) subset of RN and like RN , it is an open convex cone

[4]. RQ
N depends on the choice of the quadrature nodes and, in particular, on the number of points nQ.
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4.4. Realizability-preserving property of the schemes

As we have noted above, the maximum-entropy moment problem (3.1) has a solution if and only if the

moments γ are realizable (in RN or RQ
N , respectively). Since we need to be able to solve the moment problem

to evaluate the right hand side of (3.2), it is crucial to maintain realizability throughout the computation.
Similar problems have been treated in the context of radiative transfer, e.g., in [6, 16, 41, 46, 48].

Theorem 4.1. Under the non-negativity of the kernels Γ and ω for all v ∈ [vmin, vmax] and neglected space
dependency, the explicit Euler scheme discretization of the moment equations (3.2), combined with MN or
QMOMn, preserves realizability under the CFL-like condition

max

(
sup

v∈[vmin,vmax],k

〈
fapprox

(
tk, gA−(v, v′)

)
ω
(
tk, v, gA−(v, v′)

)
g′A−(v, v′)

〉
, sup
v∈[vmin,vmax],k

Γ(tk, v)

)
≤ 1

∆t
,

that is, given initial data in RQ
N (RN , respectively), one step of the forward Euler scheme provides updated

values that are also in RQ
N (RN , respectively).

The proof of this theorem can be obtained similarly to the work [21, 30] and [5, 6] and is therefore omitted.

4.5. Implementation details for maximum entropy models

For the numerical implementation of the maximum entropy model two big questions arise: how to solve
the optimization problem and what to do if the algorithm fails to converge (in a reasonable time). The
optimization problem is commonly solved by variations of the Newton algorithm [1, 4, 5, 52]. Problems
occur for moment vectors which are near the realizability boundary. In this case, the algorithm may require
a large number of Newton iterations to converge or does not converge at all. Also, the solution will be
sensitive to small changes in the moments, caused by an ill-conditioned Hessian matrix of the dual objective
function. The problem is impaired by the use of a quadrature rule and the finite-precision arithmetic to
evaluate the integrals [4]. There are several variations of Newton’s method available that deal with the
singularity of the Hessian matrix [2, 5, 50]. We follow the ideas in [4]. There, the authors use an adaptive
change of basis together with a regularization method.

4.5.1. Newton’s Method with an Adaptive Change of Basis

We slightly modify the ideas and algorithms proposed in [4], where more details and results can be found.
The optimization algorithm we use is based on Newton’s method stabilized by an Armijo backtracking line
search [7] and an adaptive change of basis to improve the condition number of the Hessian. It computes
an approximation α of the true solution α̂. If the algorithm fails to converge we use some regularization
technique.

Let us recall the dual objective function

h(α) = 〈Gα〉 − αT γ.

Its gradient g : RN+1 → RN+1, Hessian H : RN+1 → R(N+1)×(N+1) and its Newton direction d : RN+1 →
RN+1 are given by

g(α) := 〈mGα〉 − γ, H(α) := 〈mmTGα〉 and H(α)d(α) = −g(α).

9



4.5.2. Initial Guess of the Optimization Algorithm and Regularization

First, we define two bases mmono = (1, v, v2, ..., vN )T and mo, whereas mmono is used to evaluate the integral
terms of (3.2) and to compute the moments. The basis mo is needed in the optimization algorithm as the
initial orthogonal triangular basis to start the algorithm. Then the iterative basis remains orthogonal and
triangular. We choose as basis the Legendre basis (3.4). For the Hessian matrix to have full rank it is
necessary that nQ ≥ N + 1 [4]. In [4] the authors proposed to initially start with the Legendre basis and
then save the new adapted basis computed in the Newton algorithm to use it in the next time step as initial
basis. Similarly, they handled the approximated Lagrange multipliers α. We proceed in a slightly different
way. We use in every Newton algorithm the Legendre basis mo as initial basis no matter what time step
we have. We then compute an initial guess αM1 for the Lagrange multipliers involving only the first two
moments γ0, γ1 with the help of the Newton algorithm. Here we use as initial guess the Legendre basis
and α0,M1

= (ln(γ0), 0)
T
. Our initial guess for the total set of moments is α0 = (αM1

, 0, ..., 0)
T ∈ RN+1. Of

course for the actual optimization algorithm we need those multipliers with respect to the orthogonal basis
β0 = (m−To α0). If the moments are too close to the realizability boundary, the algorithm could fail, therefore
in this case a regularization is used. We define a realizable moment Qmono such that we can derive a new
realizable moment which is farther away from the realizability boundary through a convex combination of
the original moment γ and Qmono. Note that since RN , RQ

N both are convex cones, convex combination
of realizable moments are again realizable. Therefore, we again take advantage of α0 and compute the
corresponding moments both in the monomial basis and in the Legendre basis

Qmono := 〈mmono exp
(
αT0 mmono

)
〉, Q = 〈mo exp

(
βT0 mo

)
〉.

So starting the Newton algorithm with some moments in the monomial basis γ and their corresponding
Legendre moments γ̃, the regularization technique we use for r ∈ [0, 1] has the following form

γ̃reg = (1− r)γ̃ + rQ.

It is implemented in this way because for the reduced moment equations (3.2), mass conservation should be
guaranteed, which means γ1 remains constant. The Lagrange multiplier α0 exactly reproduces the zeroth,
and first moment. So despite the regularization technique they do not change.

4.5.3. Stopping Criterion

For the stopping criterion, we compute the gradient in the k−th iteration by

g(αk) = 〈mmono exp
(
αTkmmono

)
〉 − γ.

We stop the algorithm if ∣∣∣∣〈mmono exp
(
αTkmmono

)
〉 − (1− r)γ − rQmono

∣∣∣∣ < τ.

The last two terms arise from the regularization technique. If the algorithm stops and regularization was
needed we replace our original moments γ by (1− r)γ + rQmono. The rest of the algorithm follows the one
shown in [4].

4.6. Numerical Treatment of the population balance equation and its moment equations

We consider the two-dimensional case. Let Ω = [xmin, xmax] × [ymin, ymax] be our rectangular spatial
domain. We discretize it by a Cartesian equidistant grid with cells Ci,j = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
],

where xi+1 1
2

= xmin + i∆x, i = 0, ..., Nx and yj+ 1
2

= ymin + j∆y, j = 0, ..., Ny with the step sizes

∆x = (xmax − xmin)/Nx and ∆y correspondingly. The cell centers of such a cell Ci,j are computed by
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(xi, yj) = ( 1
2 (xi− 1

2
+ xi+ 1

2
), 1

2 (yj+ 1
2

+ yj+ 1
2
)). The numerical approximation of the average of f over a cell

Ci,j is defined by

fi,j(t, v) =
1

∆x∆y

∫
Ci,j

f(t, x, y, v)dxdy.

T is the final time until which the numerical evaluation of the solution is calculated. The time domain [0, T ]
is discretized by the points of time tk = k∆t with the time step size ∆t.

4.6.1. Positivity-Preserving Discretization of the Population Balance Equation

In this section we derive a positivity-preserving numerical scheme for the spatially inhomogeneous population
balance equations neglecting here for simplicity the aggregation and breakage terms, which have been treated
in a previous section.

∂tf +∇ · (vdf)−∇ · (D∇f) = 0. (4.2)

The droplet velocity is defined by vd(t, x) = (u(t, x), z(t, x))T and the diffusion rate by D = D(t, x) > 0.
Integrating equation (4.2) over the cells [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]× [tk, tk+1] and the use of the mid point

rule gives the finite volume formulation

fk+1
i,j (v) = fki,j(v)− ∆t

∆x

[
u
(
tk, xi+ 1

2
, yj

)
f
(
tk, xi+ 1

2
, yj , v

)
︸ ︷︷ ︸

=: Fk

i+1
2
,j

(v)

−u
(
tk, xi− 1

2
, yj

)
f
(
tk, xi− 1

2
, yj , v

)
︸ ︷︷ ︸

:= Fk

i− 1
2
,j

(v)

]

− ∆t

∆y

[
z
(
tk, xi, yj+ 1

2

)
f
(
tk, xi, yj+ 1

2
, v
)

︸ ︷︷ ︸
:= Gk

i,j+1
2

(v)

− z
(
tk, xi, yj− 1

2

)
f
(
tk, xi, yj− 1

2
, v
)

︸ ︷︷ ︸
:= Gk

i,j− 1
2

(v)

]

+
∆t

∆x

[
D
(
tk, xi+ 1

2
, yj

)
∂xf

(
tk, xi+ 1

2
, yj , v

)
︸ ︷︷ ︸

:= Hk

i+1
2
,j

(v)

−D
(
tk, xi− 1

2
, yj

)
∂xf

(
tk, xi− 1

2
, yj , v

)
︸ ︷︷ ︸

:= Hk

i− 1
2
,j

(v)

]

+
∆t

∆y

[
D
(
tk, xi, yj+ 1

2

)
∂yf

(
tk, xi, yj+ 1

2
, v
)

︸ ︷︷ ︸
:= Mk

i,j+1
2

(v)

−D
(
tk, xi, yj− 1

2

)
∂yf

(
tk, xi, yj− 1

2
, v
)

︸ ︷︷ ︸
:= Mk

i,j− 1
2

(v)

]
.

(4.3)
We exemplary show for F k

i+ 1
2 ,j

and Hk
i+ 1

2 ,j
how to handle these terms. G and M work similarly. Let us first

address the advection flux in x-direction F k
i+ 1

2 ,j
. We split droplets into left- and right-moving particles and

get for the numerical flux

F ki+ 1
2 ,j

(v) = max
(

0, uki+ 1
2 ,j

)
f+,k

i+ 1
2 ,j

(v) + min
(

0, uki+ 1
2 ,j

)
f−,k
i+ 1

2 ,j
(v),

where uk
i+ 1

2 ,j
= 1/2

(
uki,j + uki+1,j

)
. The values f+,k

i+ 1
2 ,j

, f−,k
i+ 1

2 ,j
on the right and left sides of the cell edge at

(xi+ 1
2
, yj) [23, 25], are approximated by

f+,k

i+ 1
2 ,j

(v) = fki,j(v) +
1

2
σx,ki,j (v), f−,k

i+ 1
2 ,j

(v) = fki+1,j(v)− 1

2
σx,ki+1,j(v),

with σx,ki,j the approximation of the slope in the x−direction in cell Ci,j at time tk,

σx,ki,j (v) = minmod

{
2
(
fki+1,j(v)− fki,j(v)

)
,

1

2

(
fki+1,j(v)− fki−1,j(v)

)
, 2
(
fki,j(v)− fki−1,j(v)

)}
.
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The minmod limiter does not only guarantee non-negativity of f+,k

i+ 1
2 ,j

, f−,k
i+ 1

2 ,j
but also suppresses spurious

oscillations [49]. The diffusion term is treated in a similar way as in [15],

Hk
i+ 1

2 ,j
(v) =

1

2∆x

(
Dk+1
i+1,j +Dk

i,j

) (
fki+1,j(v)− fki,j(v)

)
.

4.6.2. Realizability Preserving Discretization of the Moment Equations

For the maximum entropy closure or the quadrature method of moments we did discuss the realizability
preservation of the spatially homogeneous case in subsection 4.3. Here, a realizability preserving scheme for
the advection-diffusion equation neglecting the breakage and aggregation terms is given. Consider

∂tγ +∇(vdγ)−∇(D∇γ) = 0. (4.4)

Assuming that γki,j is realizable and that f̃ is the corresponding distribution function approximated by the
maximum entropy model. Then to derive a realizable scheme we multiply equation (4.3) with the basis m
and integrate over the whole volume domain [25, 48], which gives

γk+1
i,j = γki,j −

∆t

∆x

〈
F̃ ki+ 1

2 ,j
(v)− F̃ ki− 1

2 ,j
(v)
〉
− ∆t

∆y

〈
G̃ki,j+ 1

2
(v)− G̃ki,j− 1

2 (v)

〉
+

∆t

∆x

〈
H̃k
i+ 1

2 ,j
(v)− H̃k

i− 1
2 ,j

(v)
〉

+
∆t

∆y

〈
M̃k
i,j+ 1

2
(v)− M̃k

i,j− 1
2
(v)
〉
,

(4.5)

the terms F̃ k
i± 1

2 ,j
, G̃k

i,j± 1
2

, H̃k
i± 1

2 ,j
, M̃k

i,j± 1
2

are in the same way defined as F k
i± 1

2 ,j
, Gk

i,j± 1
2

, Hk
i± 1

2 ,j
, Mk

i,j± 1
2

but with respect to the approximate distribution function f̃ . For the polynomial closure PN we can also use
this scheme, but there no realizability can be guaranteed, since the distribution function can get negative.
A similar scheme as in (4.5) applied to the moment equations (4.4) with the QMOM closure without
aggregation and breakage terms can be shown to be realizability preserving in every time step [54, 55].
Recall that the QMOM−distribution function is of the form f̃(t, x, v) =

∑
α wα(t, x)δ (v − vα(t, x)) . The

discretization is now similar to the discretization method (4.5). One only has to change the definition of the

terms f̃
+/−,k
i± 1

2 ,j
, f̃

+/−,k
i,j± 1

2

. They are determined by

f̃+,k

i+ 1
2 ,j

(v) =
∑
α

w̃+,k

α,i+ 1
2 ,j
δ
(
v − vkα,i,j

)
, f̃−,k

i+ 1
2 ,j

(v) =
∑
α

w̃−,k
α,i+ 1

2 ,j
δ
(
v − vkα,i+1,j

)
.

The interface weights are defined as

w̃+,k

α,i+ 1
2 ,j

= wkα,i,j +
1

2
∂wx,kα,i,j , w̃

−,k
α,i+ 1

2 ,j
= wkα,i+1,j −

1

2
∂wx,kα,i+1,j .

Again we use the minmod limiter to reconstruct the slopes as

∂wx,kα,i,j = minmod

(
2
(
wkα,i+1,j − wkα,i,j

)
,

1

2

(
wkα,i+1,j − wkα,i−1,j

)
, 2
(
wkα,i,j − wkα,i−1,j

))
.

The discretization in the y−direction works analogously.

Theorem 4.2. To ensure either a non-negative distribution function for the advection-diffusion equation
(4.2) discretized by the finite volume scheme (4.3) or a realizability preservation of the schemes for the
moment equations with QMOM , or the maximum entropy closures of the advection diffusion problem (4.4),
the following time step restriction has to be fulfilled

sup
θ∈(0,1)

(
2a

θ∆x
,

2b

θ∆y
,

1

2 (1− θ)

(
c

∆x2
+

d

∆y2

))
≤ 1

∆t
,
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with
a = sup

i,j,k

(∣∣uki+1,j + uki,j
∣∣) , b = sup

i,j,k

(∣∣zki,j+1 + zki,j
∣∣) ,

and
c = sup

i,j,k

(
Dk
i+1,j + 2Dk

i,j +Dk
i−1,j

)
, d = sup

i,j,k

(
Dk
i,j+1 + 2Dk

i,j +Dk
i,j−1

)
.

5. Numerical Results

We compare the zeroth moment of the different closures QMOM (3.9), maximum entropy (3.8) and PN
(3.5) with each other. As reference solution we use the finite volume scheme explained in section 4.1. The
zeroth moment for the finite volume scheme is computed by

γ0 = ∆v

nv∑
i=1

fi.

We will compare them regarding the L2-error as well as computation time. The relative error in the L2

sense for two number densities γ0,ref, γ0,clo is evaluated by the formula

E2(γ0,ref, γ0,clo)2 =

∫ T
0

∫
Ω
|γ0,ref(t, x)− γ0,clo(t, x)|2 dxdt∫ T

0

∫
Ω
|γ0,reference(t, x)|2 dxdt

, (5.1)

where Ω is the spatial domain and T the final time until which we compute the numerical solution. For the
Newton-algorithm in the maximum entropy case we need to choose several parameters which can be found
in table 1. For the explanation of the parameters see [4].

Parameter kmax ε χ τ {rl}
Value 400 2−52 3/5 10−9 {0, 10−10, 10−8, 10−6, 10−4, 10−2, 0.1, 0.5, 1}

Table 1: Parameter choice for the Newton algorithm in the case of the maximum entropy closure.

For all examples we use the a daughter droplet distribution which is based on the purely statistical daughter
droplet distribution function of Hill and Ng [26]. Recall that N(v′) is the average number a particle of size
v′ splits. Our daughter droplet distribution is a weighted sum of daughter droplet functions

β(v, v′) =


0 for v < vmin, v

′ < vmin,∑c(v′)
i=1 gi(v

′)β̄i(v, v′) for v ∈ [vmin, v
′] and v′ ∈ [vmin, vmax]

0 for v′ > vmax

,

where the i−breakup process (a mother droplet splits in average into i ∈ N smaller droplets) daughter
distribution functions for vmax ≥ v′ > pvmin are defined as

β̄i(v, v
′) =

{
0 for v > v′ − (i− 1)vmin

β̃i(v, v
′) for vmin ≤ v ≤ v′ − (i− 1)vmin

,

with β̃i(v, v
′) =

i(mi+ i− 1)!(v − vmin)m(v′ − v − (i− 1)vmin)mi+i−m−2

m!(mi+ i−m− 2)!(v′ − ivmin)im+i−1
,
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Figure 1: The subfigures (a)-(e) show the distribution of the weights gi(v
′) for quasi-ternary breakage (p=3) and for v′ contained

in the different intervals I1-I5. It can be seen that only for v′ ∈ Ij , j > 3 different kind of breakages occur at the same time.

where m ∈ N determines the shape of β̃i. The no-breakup daughter distribution function is defined for
vmax ≥ v′ ≥ vmin as

β̄1(v, v′) =

{
0 for v > v′

δ(v − v′) for vmin ≤ v ≤ v′
.

For all v′ ∈ [vmin, vmax] the weight functions gi(v
′) ∈ [0, 1] have to fulfill

c(v′)∑
i=1

gi(v
′) = 1,

c(v′)∑
i=1

gi(v
′)i = N(v′) and gi(v

′) = 0 for v′ < ivmin, (5.2)

and c(v′) ∈ [2,∞). We choose c(v′) as c(v′) = 2N(v′)− 1. For the computation of the weight functions let
1U (x) be the indicator function on U . We choose gN(v′)−j = gN(v′)+j for all j = 1, ..., N(v′)− 1 and for all
v′ ∈ [vmin, vmax] and assume that the weight functions are of the form

gi(v
′) = 1]0,∞[(i+ 1− k(v′, N(v′)))

1

j2N(v′)−i , for i = 1, ..., N(v′),

with k(v′, N(v′)) ∈ N determining that the first k(v′, N(v′)) − 1 and last k(v′, N(v′)) − 1 weight functions
of the series g1(v′), .., g2N(v′)−1(v′) are zero for v′. With the first property (5.2) of the weight functions, the
variable j is determined by

j = 3− 1

2N(v′)−1−k(v′,N(v′))
.

Let us define the intervals

I1 = [vmin, 2vmin], Il =]lvmin, (l + 1)vmin], l = 2, ..., 2p− 2, and I2p−1 =](2p− 1)vmin, vmax].

Then, if v′ ∈ Il for some l ∈ N we define

k(v′, N(v′)) :=

 l for l ∈ [1, ..., p],
2p− l for l ∈ [p+ 1, ..., 2p− 2]

1 for l = 2p− 1
, N(v′) :=

 l for l ∈ [1, ..., p],
p for l ∈ [p+ 1, ..., 2p− 2]
p for l = 2p− 1

.

This definition fulfills all the properties mentioned in section 2 .

Although the choice of the weight functions seems complicated there are just chosen such that they are
symmetric about N(v′) and the largest weight corresponds to N(v′) for all v′ and such that all properties
mentioned in section 2 are fulfilled. The choice also guarantees that droplets cannot break into droplets
whose volume is not contained in [vmin, vmax]. Figure 1 demonstrates the behavior of the weight functions
gi(v

′) on the example of quasi-ternary breakage.

14



5.1. Pure Breakage

First we only want to consider a pure breakage problem without spatial dependency. This means that we
set ω ≡ 0 in (3.2) and (2.1). Our initial condition is a normal distribution

f(0, v) = N0/
(√

2πσinit

)
exp

(
−1/2 (v − v0)

2
/σ2

init

)
. (5.3)

For the daughter droplet distribution function we choose binary breakage p = 2 and m = 2. Table 2 contains
some of the parameters chosen for this example.

Parameter vmin vmax σinit α0 d0 N0 v0

Value 1
6π0.0013 1

6π0.0093 0.1(vmax − vmin) 0.01
(

3
π (vmin + vmax)

)(1/3) 6α0

πd30

π
6 d

3
0

Table 2: Parameter choice for the volume domain and the initial condition.

The time step size is for all methods ∆t = 0.01. We compute the solutions until T = 4 is reached. The
number of points of the quadrature rule is nQ = 100 and for the reference solution computed by the finite
volume scheme we use nv = 5000 grid points. As breakage frequency we choose the one from Coulaloglou
and Tavlarides [17]

Γ(v) =
C1ε

1
3

(1 + αd) v
2
9

exp

(
−C2σ (1 + αd)

2

ρdε
2
3 v

5
9

)
. (5.4)

Table 3 shows the values corresponding to the parameters for the breakage frequency. In Figure 2 the

Parameter C1 C2 αd ε ρd σ
Value 0.12 0.078 α0 0.004 865.6 0.0361

Table 3: Parameter choice for the breakage frequency.

results are shown for the comparison of PN (magenta line), MN (green line) and QMOMN (black line). We
computed the density for all three models with different values for the order, namely up to order thirteenth.
The figure is divided into three subfigures: (a) showing the order N plotted against the computation time,
(b) illustrating the relation between the order and the relative L2 error (5.1) and (c) showing the computation
time plotted against the relative L2 error (5.1). It is demonstrated that with increasing order the computation
time also increases. For this situation MN and QMOMN have much higher computation times than PN .
We note that the optimization algorithm for MN is the dominating part of the computation. In case of
QMOMN the solution of the nonlinear system is the costly part. This results in the higher computation
times for MN and QMOMN . On the other hand, as mentioned above, the PN approach might lead to
unphysical moments.

5.2. Pure Aggregation

For the pure aggregation problem we choose Γ ≡ 0, β ≡ 0 in (3.2) and (2.1) and neglect spatial dependency.
We use an aggregation kernel proposed by Coulaloglou and Tavlarides [17]

ω(v, w) =
CΩ

1 + αd

(
v

1
3 + w

1
3

)2

ε
1
3

(
v

2
9 + w

2
9

) 1
2

exp

− kω′ηcρcε

σ2 (1 + αd)
3

(
v

1
3w

1
3

v
1
3 + w

1
3

)4
 . (5.5)

The parameters remain the same as in the pure breakage case see table 2. Table 4 shows the parameters for
the aggregation kernel.
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Figure 2: Pure breakage: In subfigure (a) the order of moments N is plotted against the computation time, for the maximum
entropy model, the polynomial closure and the QMOM and in subfigure (b) the order N is plotted against the relative E2

error for all three methods, in subfigure (c) we can see the computation time plotted against the relative E2 error, again for
all three models. In all three subfigures the computations are only done up to the thirteenth order. The reference solution for
the error evaluation is computed by the finite volume scheme (FVS) with nv = 5000.
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Parameter CΩ kω′ αd ε ρc σ ηc
Value 41.2 1.33 · 1010 α0 0.004 1000 0.0361 0.001

Table 4: Parameter choice for the aggregation kernel.

As before, we choose nQ = 100, ∆t = 0.01, nv = 5000. The comparison of PN (magenta line), MN

(green line) and QMOMN (black line) is illustrated in figure 3. Again the densities for all three models are
computed with changing values for the order, namely up to the ninth order. The figure is subdivided in the
same way as figure 2. It is demonstrated that with increasing order the computation time also increases. In
this case again the computation times of MN and QMOMN are much larger than those of PN . As before
the optimization algorithm is the dominating part of MN , resulting in the higher computation time. If we
compare figures 2 and 3, one observes that the relative error in the QMOMN case is much higher. This
is due to the fact, that the breakage integrals are less complex then the aggregation integrals, where the
distribution function has to be evaluated twice.

5.3. Coupled Diffusion-Advection-Breakage-Aggregation

For this example we consider equations (2.1) and (3.2), we choose the diffusion rate to be constant D(t, x) =
D = 0.001. We assume that the droplet velocity vd(t, x) is the same as the velocity of the fluid computed
by the lid driven cavity problem [11] with a Reynold’s number of Re = 5. The spatial domain is a square
Ω = [0, 1] × [0, 1]. We discretize it with 50 gridpoints in both directions. We choose as breakage frequency
(5.4) with the same parameters as in table 3. For the daughter droplet distribution function we choose again
p = 2 and m = 2. The aggregation kernel is the one from (5.5) of the pure aggregation problem with the
parameters from table 4. Again, nQ = 100. The reference solution is computed via the finite volume scheme
from section 4.1 with nv = 2000.
We compare the densities of the finite volume schemes with those of the moment methods, namely QMOM
(3.9), maximum entropy (3.8) and PN (3.5). The numerical simulation for all methods runs until the final
time T = 5 is reached. As initial distribution function we choose a Gaussian distribution,

f(0, x, y, v) =
1

4π20.082
exp

(
−1

2

(
(x− 0.3)2

0.082
+

(y − 0.3)2

0.082

))
N0√

2πσinit
exp

(
−1/2

(v − v0)
2

σ2
init

)
,

the parameters for f are chosen as in table 2.
In figure 4 and 5 the time evolution of the densities for the different methods, namely FVS (a), M1 (b), P1

(c), QMOM2 (d) are exemplary shown for two different points of time.
With increasing time the densities move from the lower left corner to the upper left corner, following the
surrounding fluid. We can see that P1 and M1 look similar to the reference solution computed by the FVS.
For QMOM2 the solution shows bigger differences compared to the reference solution.

The comparison of PN (magenta line), MN (green line) and QMOMN (black line) is illustrated in figure 6.
Again, the densities for all three models are computed with changing values for the order. The numerical
solution is computed up to ninth order. The figure is subdivided in the same way as figure 2. It is
demonstrated that with increasing order the computation time also increases and the relative L2 error
decreases. Again the Newton algorithm is responsible for the big difference in computation time between
MN and PN .

Remark 5.1. The PN method is equivalent to the well-known discrete ordinates in case of radiative transfer
equations [14], implying that meaningful initial conditions (i.e. those where the underlying PN distribution
is positive for all v) will stay meaningful. While this is the case in the examples presented, this cannot be
guaranteed in all cases. This requires to carefully choose the situations where the PN closure can be applied,
if positivity of the kinetic solution is required. If the initial conditions are such that the underlying PN
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Figure 3: Pure aggregation: In subfigure (a) the order of moments N is plotted against the computation time, for the maximum
entropy model, the polynomial closure and the QMOM and in subfigure (b) the order N is plotted against the relative E2

error for all three methods, in subfigure (c) we can see the computation time plotted against the relative E2 error, again for
all three models. In all three subfigures the computations are only done up to the ninth order. The reference solution for the
error evaluation is computed by the finite volume scheme (FVS) with nv = 5000.
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Figure 6: Lid driven cavity case: In subfigure (a) the order of moments N is plotted against the computation time, for the
maximum entropy model, the polynomial closure and the QMOM and in subfigure (b) the order N is plotted against the
relative E2 error for all three methods, in subfigure (c) we can see the computation time plotted against the relative E2 error,
again for all three models. In all three subfigures the computations are only done up to the ninth order. The reference solution
for the error evaluation is computed by the finite volume scheme (FVS) with nv = 2000.
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distribution is not positive, one has to choose MN or the QMOM model which do not suffer from the above
mentioned drawback [27].

6. Conclusions

We have compared a linear moment closure, a nonlinear maximum entropy moment closure and the quadra-
ture method of moments numerically in terms of accuracy, order of the moments and computation times
for a population balance equation. In the cases where breakage is involved the computation time of the
quadrature method of moments and the maximum entropy closure are alike, in contrast to the pure aggre-
gation example. In all cases, the linear closure is the fastest of the three methods. On the other hand, for
the linear moment closure the underlying distribution function is not necessarily positive, which can lead
to meaningless solutions in some applications. The error produced by the linear closure and the maximum
entropy closure are smaller than the ones produced by the quadrature method of moments.

Future research should include other versions of QMOM , like EQMOM or SQMOM [8, 59], investigating
if the classical moment models maintain their superiority. Furthermore, low-order (N ≤ 2) partial moment
methods on a partition of the velocity space should be taken into account, simplifying the inversion of
the moment problem. These models should be compared with similar low-order QMOM models regarding
error and run-time. Additionally, multi-dimensional PBEs and their moment approximations should be
investigated. Finally, the comparison of our simulations with real experiments would be interesting.
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