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Abstract

We consider individual’s portfolio selection problems. Introducing the concept

of ambiguity, we show the existence of portfolio inertia under the assumptions that

decision maker’s beliefs are captured by an inner measure, and that her preferences

are represented by the Choquet integral with respect to the inner measure. Un-

der the concept of ambiguity, it is considered that a σ-algebra is not necessarily

an appropriate collection of events to which a decision maker assigns probabilities.

Furthermore, we study the difference between ambiguity and uncertainty by con-

sidering investors’ behavior.
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1 Introduction

In stock markets, we often observe portfolio inertia, i.e., a situation in which some stocks

are not traded or not priced for a few minutes or longer. This is neither an exceptional

situation in which some stock price soars too high to be priced, nor the one where some

stock price plummets too much to be traded. Now, a question is worth raising; what leads

to portfolio inertia?

Under the standard expected utility theory, Arrow (1965) shows that an investor

has the unique striking price, i.e., the price above which she is willing to sell, and below

which she is willing to buy. Portfolio inertia generically exists only if the striking price for

selling and that for buying have a spread. The standard expected utility theory does not

account for the existence of the spread, except for a transaction cost, which is too small

for institutional investors to justify the existence of portfolio inertia.

Dow and Werlang (1992) account for the existence of portfolio inertia under the

Choquet Expected Utility (henceforth CEU) with convex non-additive measures. In the

literature on CEU, decision makers’ (henceforth DM) attitude toward uncertainty is cap-

tured by the convexity of non-additive measures.1 However, the assumption of the con-

vexity of non-additive measures is so strong that there exist possibilities that important

economic problems cannot be fully accommodated as an example in this paper explains.

In this paper, we weaken the convexity, and adopt a new concept, i.e., the concept of

ambiguity. In this alternative setting, DM’s attitude toward ambiguity, which is differ-

entiated from risk and uncertainty, is captured by the super-additivity of non-additive

measures. The super-additivity is intuitively appealing compared with the convexity of

non-additive measures, it is weaker than the convexity, and it can accommodate the sit-

uations in which the convexity cannot. The purpose of this paper is to account for the

existence of portfolio inertia by adopting the concept of ambiguity.

In order to illustrate the point, suppose that an investor considers trading the stock

of a multinational corporation that does business in two countries, Japan and the United

1For the definitions of non-additive measures and convexity, see Section 2 in details.
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States. We suppose that the company’s profit is affected by the economic conditions

of both countries. We also assume that the state of the world is described by one of

the four elements in S = {gg, bg, gb, bb}, where the first and second letters stand for

the economic conditions of Japan and the US, respectively. We assume that she assigns

probabilities to the events that contain the state where the economic conditions of the

two countries are good. However, we assume that she does not assign probabilities to

the events where the conditions of the two countries are both good, and so forth. We

make these assumptions in order to describe the situation in which investors do not have

enough information to pin down whether the economic conditions of the two countries

are in good, or in bad, or in opposite condition. Then the collection A of the events to

which probabilities are assigned is A = {S, ∅, {gg, gb}, {gb, bb}, {bg, bb}, {gg, bg}}.2 In the

standard model, probabilities are assumed to be defined on a family of subsets of a state

space, called a σ-algebra, while A is not.3 We call all subsets of S outside A ambiguous

events. As we explain in Subsection 2.2, there exists a situation in which the existence of

portfolio inertia cannot be accounted for by the convexity of non-additive measures that

is considered as capturing uncertainty aversion in the literature on non-expected utility

theories. Before we provide the definition of ambiguity, let us review some of the existing

concepts.

It is Ellsberg (1961) who first casts doubt on the validity of the Subjective Expected

Utility (henceforth SEU) theory axiomatized by Savage (1954), which is widely applied

to economic problems.4 Since then, a number of generalizations have been developed to

overcome its shortcomings.5

In the course of development of non-expected utility theories, Knight’s approach

(1921) is reconsidered as one way to account for Ellsberg-type situations. According

to Knight (1921), the risk situation is a situation where a probability measure can be

2See Subsection 2.2 in details.
3Note that A is not closed with respect to intersections.
4SEU states that if a certain set of axioms is satisfied, then DM’s beliefs are captured by a unique

probability measure and her preferences are represented by the expected utility.
5Using an easy-to-understand example, Ellsberg shows that people often violate Savage’s crucial axiom,

the Sure Thing Principle.
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assigned, and the uncertainty situation is “all other situations.” In the literature on non-

expected utility theories, Knight’s risk situation is interpreted as a situation where DM’s

beliefs are captured by a unique probability measure, while the uncertainty situation is

interpreted as a situation where DM’s beliefs are not captured by a unique probability.

We call an approach based on the latter interpretation the uncertainty approach. In the

late 1990s, another approach based on a different interpretation of “all other situations”

is proposed. This approach focuses on domains of probability measures, in other words,

this considers that a σ-algebra is not necessarily an appropriate collection of events to

which a DM assigns probabilities, while the other two focus on set functions by which

DM’s beliefs are captured.6 In the present paper, we call this approach the ambiguity

approach.

The uncertainty approach is axiomatized and analyzed in the framework of the

Maxmin Expected Utility (henceforth MMEU) theory and CEU.7 MMEU states that if a

certain set of axioms is satisfied, then DM’s beliefs are captured by a set of finitely additive

measures and her preferences are represented by the minimum of expected utilities over

the set of these measures. On the other hand, CEU states that if a certain set of axioms

is satisfied, then DM’s beliefs are captured by a non-additive measure and her preferences

are represented by Choquet integrals. Unlike MMEU, CEU does not contain any axiom

that captures DM’s attitude toward uncertainty.8 Showing that CEU with a convex non-

additive measure is equivalent to a special case of MMEU, Schmeidler (1989) endows the

meaning of uncertainty aversion with CEU. This enables us to analyze DM’s behavior

under uncertainty through the convexity of non-additive measures.9 Our understanding

6See Epstein (1999) and Zhang (1999)
7MMEU is axiomatized by Gilboa and Schmeidler (1989) in the Anscombe and Aumunn (henceforth

AA) framework and axiomatized by Casadesus-Masanell, Klibanoff and Ozdenoren (2000) in the Savage
framework. CEU is axiomatized by Schmeidler (1989) in the AA framework and axiomatized by Gilboa
(1987) in the Savage framework.

8See Axiom 5 (Uncertainty Aversion) in Gilboa and Schmeidler (1989).
9Let µ be a convex non-additive measure, M be the set of finitely additive measures on (S, 2S), and

let B(S, R) denote the space of bounded functions from S into R. Then

∫

X(s)µ(ds) = min

{
∫

X(s)P (ds) |P ∈ core(µ)

}

,

where X ∈ B(S, R) and the core of µ is the set of finitely additive measures on (S, 2S) that dominate
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of DM’s behavior under uncertainty has been deepened by these new theories themselves

and their applications to game theory (Dow and Werlang (1994), Lo (1996, 1998, 1999),

and Marinacci (2000)), finance (Dow and Werlang (1992), and Epstein and Wang (1994,

1995)) or agency theory (Ghirardato (1994)).

Recently, Epstein (1999) casts doubt on the usage of the convexity of non-additive

measures as uncertainty aversion, and introduces the concept of ambiguity. Epstein (1999)

defines unambiguous events as those events to which a DM can assign probabilities, and

ambiguous events as the ones to which she cannot. This corresponds to the second in-

terpretation of Knight. Thus, we consider Epstein’s approach as the ambiguity approach.

One of the purposes of this paper is to seek the possibility of applications of the ambiguity

approach to economic problems.

Zhang (2002) proposes a new axiomatization of CEU. This states that if a certain

set of axioms is satisfied, then DM’s beliefs are captured by an inner measure and her

preferences are represented by the Choquet integral with respect to the inner measure.10

Zhang’s axiomatization is more restrictive than Schmeidler’s one. However, adopting

Zhang’s approach, we can incorporate the concept of ambiguity into CEU, and shed light

on the possibility of its applications to other economic problems.

Based on Zhang (2002), we show that there exists portfolio inertia under CEU

with an inner measure, which is neither additive nor convex. This approach is one of

the starkest contrasts to the one that depends on the convexity of non-additive measures.

µ for all E ∈ 2S, i.e., core(µ) =
{

P ∈ M |(∀E ∈ 2S)P (E) ≥ µ(E)
}

. This result implies that it is the
convexity of non-additive measures that serves the bridge between MMEU and CEU, and enables us to
analyze DM’s behavior under uncertainty through the Choquet integral. Mathematically, analyses of the
Choquet integral are easier than those of the minimization of expected utilities over a set of measures in
the framework of MMEU. For example, see Ghirardato (1997), and Ghirardato, Klibanoff and Marinacci
(1998). The reason that the convexity of non-additive measures has been used in the literature on CEU
and MMEU is this mathematical tractability of the Choquet integral and the meaning of uncertainty
aversion through MMEU.

10If a certain set of axioms is satisfied, her preferences are represented as follows: there exists a
nonconstant function u : X → R and a premeasure p on (S,A) such that

(∀f, g ∈ F) f � g ⇔

∫

u ◦ f dpA ≥

∫

u ◦ g dpA,

where X is some set of outcomes, F is some set of acts, and pA is the inner measure corresponding to
(S,A, p) and integrals are in the sense of Choquet integrals. For the definition of Choquet integrals, see
Subsection 2.1.
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Furthermore, we study the reason that different investors have different degrees of portfolio

inertia.

The organization of this paper is as follows. Section 2 provides an example, some

mathematical tools including the concept of the Choquet integral, inner and outer mea-

sures, and λ-systems. Section 3 presents main results of the present paper. Section 4

concludes this paper. Proofs and mathematical results are relegated to Appendices.

2 Preliminaries

2.1 Choquet Integrals

Let S be a set and let 2S be the power set of S. A set function µ : 2S → [0, 1] is a

non-additive measure (or capacity) if (a) µ(∅) = 0 and (b) E, F ∈ 2S and E ⊂ F imply

µ(E) ≤ µ(F ), where ∅ denotes the empty set. A non-additive measure µ is convex if

µ(E ∪ F ) + µ(E ∩ F ) ≥ µ(E) + µ(F ) for all E, F ∈ 2S.

Let B(S, R) denote the space of bounded functions from S into R and let X ∈

B(S, R). The integral of X with respect to a non-additive measure µ is called the Choquet

integral, and is defined by

∫

X(s) µ(ds)

=

∫ ∞

0

µ ({s ∈ S|X(s) ≥ α}) dα +

∫

0

−∞

[µ ({s ∈ S|X(s) ≥ α}) − 1] dα,

where integrals on the right hand side are in the sense of Riemann integrals. Throughout

this paper, all the integrals are in the sense of Choquet integrals.

2.2 An Example

Suppose that an investor considers trading the stock of a multinational corporation that

does business in two countries, Japan and the United States. We suppose that the com-

pany’s profit is affected by the economic conditions of both countries. We also assume

that the state of the world is described by one of the four elements in S = {gg, bg, gb, bb},

where the first and second letters stand for the economic conditions of Japan and the US,
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respectively. For example, gb stands for the state where the economic condition of Japan

is good and the economic condition of the US is bad. Let X : S → R+ denote the stock

price of the company at t = 1. Let X(gg) = a1, X(bg) = a2, X(gb) = a3, and X(bb) = a4.

We assume that the company’s profit is more likely to be affected by the economic con-

dition of the US than that of Japan. So, we suppose that a1 > a2 > a3 > a4. It is also

assumed that she assigns probabilities to the events that contain the state in which the

economic conditions of the two countries are good. However, we assume that she does not

assign probabilities to the events in which the conditions of the two countries are both

good, and so forth. We make these assumptions in order to describe the situation in which

investors do not have enough information to pin down whether the economic conditions

of the two countries are in good, or in bad, or in opposite condition. An interpretation

is that she is unwilling to, even subjectively, judge the correlation between the two coun-

tries’ economic conditions. We assume that she assigns p1 and p2 to {gg, gb} and {gg, bg},

respectively. It is also assumed that 1− p1 and 1− p2 are assigned to {gg, gb}c = {bg, bb}

and {gg, bg}c = {gb, bb}, respectively.11 Thus, the collection A of the events to which

probabilities are assigned is as follows:

A = {S, ∅, {gg, gb}, {gb, bb}, {bg, bb}, {gg, bg}} .

The assigned values are given by

p(S) = 1, p(∅) = 0, p ({gg, gb}) = p1,

p ({gg, bg}) = p2, p ({bg, bb}) = 1 − p1, p ({gb, bb}) = 1 − p2.

We assume that she dislikes “ambiguity,” in other words, she is very cautious, and that

she uses a set function pA : 2S → [0, 1] given by

pA(B) = sup{p(A) |A ∈ A, A ⊂ B},

for every subset B ∈ 2S, not necessarily in A.12 This function assigns a number to every

subset B, which is approximated from the inside by an “unambiguous” event A ∈ A. Also

11We assume that p1 and p2 are in (0, 1).
12pA is a non-additive measure. See Lemma 1.
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assume that her preferences are represented by Choquet integrals with respect to pA, and

that she is a CEU maximizer.

In the following situations, suppose that p2 > p1.
13 First, consider a situation

where she will buy the stock. Since the expected value of buying the stock is

∫

X(s) pA(ds) = (a2 − a4)p2 + a4,

the expected return from buying it is
∫

X(s)pA(ds) − q, where q is the current price of

the stock. Thus, if q is less than
∫

X(s)pA(ds), she will buy the stock. Next, consider a

situation where she will sell the stock. Since the expected value of selling the stock is

∫

−X(s) pA(ds) = (a2 − a1)p1 + (a3 − a2)p2 − a3,

the expected return from selling it is q +
∫

−X(s)pA(ds). Thus, if q is more than

−
∫

−X(s)pA(ds), she will sell the stock. Note that the next inequality holds:

−

∫

−X(s) pA(ds) >

∫

X(s) pA(ds).

Thus, if the current price q is between these two numbers, she will not consider trading

the stock.14 If this investor’s beliefs are captured by a unique probability, in other words,

if she does not care about ambiguity, then the above inequality is replaced by equality.

Thus, under the standard model like Arrow (1965), the existence of portfolio inertia is

not accounted for.

More observations are in order. A collection of the events to which probabilities

are assigned is typically assumed to be a σ-algebra. In our example, however, since

{gg, gb} ∩ {gb, bb} = {gb} /∈ A, A is not a σ-algebra. Moreover, since

pA ({gg, gb}) + pA ({gg, bg}) > pA ({gg, gb, bg}) + pA ({gg}) ,

13For this inequality, we need assume that she believes that {gg, bg} is more likely to happen than
{gg, gb}. Even if the reverse inequality is assumed, portfolio inertia still exists.

14This phenomenon occurs when the expected values from buying and selling the stock are both neg-
ative, i.e.,

∫

X(s)pA(ds) − q < 0 and q +

∫

−X(s)pA(ds) < 0.
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pA is not convex.

In summary, we observe three points. First, a collection of the events to which this

investor assigns probabilities is not a σ-algebra. Second, a set function that captures her

attitude toward ambiguity is not a convex non-additive measure. Thus, such a situation

as this example cannot be accounted for in the framework of Dow and Werlang (1992).

Finally, even if the set function is not convex, portfolio inertia still exists.

2.3 λ-systems, Inner Measures

This subsection defines and discusses the concept of ambiguity, and provides mathematical

results related to the concept. First of all, the definition of λ-systems is provided.

Definition 1. A non-empty class of subsets A ⊂ 2S is a λ-system if

(λ.1) S ∈ A,

(λ.2) A ∈ A implies Ac ∈ A, and

(λ.3) 〈Ai〉
∞
i=1 ⊂ A and Ai ∩ Aj = ∅ for i 6= j imply

⋃∞

n=1
An ∈ A.

In the standard model, a probability measure is defined on a σ-algebra, while in

the present paper, a probability measure is defined on a λ-system.

Definition 2. Let S be a set and A be a λ-system on S. Consider a set function p : A →

[0, 1] and let p satisfy the following property:

(p.1) If 〈Ai〉
∞
i=1 is a sequence of disjoint sets in A, then p (

⋃∞

i=1
Ai) =

∑∞

i=1
p(Ai).

Then p is called a premeasure on (S,A).15

If a premeasure p on (S,A) satisfies p(S) = 1, then (S,A, p) is called a λ-system

probability space. Throughout this paper, (S,A, p) denotes a λ-system probability space.

Some comments on Definitions 1 and 2 are in order. Conditions (λ.1) and p(S) = 1

imply that a DM knows what the whole space is. Conditions (λ.2) and (p.1) imply that

if she knows what A is, she knows what the complement is. To put it differently, if

she can assign probabilities to an event, she can assign probabilities to its complement.

15Formally speaking, a premeasure is defined on an algebra, not on a λ-system. For example, see
Folland (1999).
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Conditions (λ.3) and (p.1) imply that if she knows what A1 and A2 are, she knows what

the disjoint union of them is. In other words, if she can assign probabilities to disjoint sets

A1, A2, respectively, she can assign probabilities to its disjoint union. On the other hand,

as we see in the previous subsection, she could not assign probabilities to intersections

of any sets in A. Thus, a λ-system can be considered as a collection of subsets that she

could assign probabilities to “unambiguously,” in other words, can be considered as a

collection of “unambiguous events.” Following Epstein (1999), this paper uses a λ-system

A for a collection of unambiguous events. Every subset of S outside A is called ambiguous

events.16 Next, we consider a set function to capture DM’s attitude toward ambiguity.

Definition 3. A set function pA : 2S → [0, 1] defined by

(∀B ∈ 2S) pA(B) ≡ sup {p(A) | A ∈ A, A ⊂ B}

is the inner measure corresponding to (S,A, p).

Since ∅ ∈ A, pA is well-defined. Note that a DM whose beliefs are captured by

pA is very cautious. Similarly, the outer measure corresponding to (S,A, p) is defined as

follows : A set function pA : 2S → [0, 1] defined by

(∀B ∈ 2S) pA(B) ≡ inf {p(A) | A ∈ A, B ⊂ A}

is the outer measure corresponding to (S,A, p). Since S ∈ A, pA is also well-defined. Now,

we must check what conditions the inner and outer measures satisfy.

Lemma 1. The inner and outer measures, pA and pA are non-additive measures.

Proof. See Appendix.

Note that pA is not necessarily a convex non-additive measure. Since the convexity of non-

additive measures has been assumed in order to capture DM’s attitude toward uncertainty,

its non-convexity of non-additive measures is one of the starkest contrasts to approaches

adopted in the literature on CEU and its applications. However, the inner measure has

useful results.
16Epstein and Zhang (2001) define ambiguous events in terms of DM’s preferences.
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Lemma 2. Let pA and pA be the inner and outer measures corresponding to (S,A, p).

(a) pA is the conjugate of pA, that is, for all B ∈ 2S, pA(B) = 1 − pA(Bc).

(b) pA is superadditive, that is, for all B1, B2 ∈ 2S such that B1 ∩B2 = ∅, pA(B1 ∪B2) ≥

pA(B1) + pA(B2).

Proof. See Appendix.

Recall that the inner and outer measures are non-additive measures. The non-additivity

provides the next lemma.

Lemma 3. Let pA and pA be the inner and outer measures corresponding to (S,A, p).

Then for all X ∈ B(S, R),

∫

X(s) pA(ds) ≤

∫

X(s) pA(ds).

Proof. See Appendix.

3 Portfolio Selection Problems

In this section, we derive our main results. Under CEU with the inner measure pA, we

show that there exists a range of prices, in which investors neither buy nor sell.

First, we consider the portfolio selection problem à la Arrow (1965) and provide

one of the main results of this paper. Let W ∈ R+ be the wealth at t = 0, N ∈ R be the

amount of money invested at t = 0, q > 0 be the price of a risky asset at t = 0, and X be

the random payoff of the asset at t = 1, where X ∈ B(S, R). Moreover, let u : R → R be

a monotonic increasing concave function.17

An investor is assumed to invest in two assets, a riskless asset and a risky asset.

The problem is to choose N so as to maximize

∫

u (W − N + (N/q)X(s)) pA(ds).

In other words, she chooses the amount of money N to invest the risky asset in order to

maximize her non-expected utility of the terminal wealth.

17In this paper, we capture investor’s attitude toward risk by u.
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Theorem 1. Let pA and pA be the inner and outer measures corresponding to (S,A, p).

Then, this investor will neither buy nor sell the risky asset, if q satisfies:

∫

X(s) pA(ds) < q <

∫

X(s) pA(ds).

Proof. See Appendix.

This theorem states that the range she will neither buy nor sell the risky asset does not

depend on her attitude toward risk measured by u. Moreover, the range does not depend

on her attitude toward uncertainty captured by the convexity of non-additive measures.

In our setting, the range is determined by a set of unambiguous events A, and the inner

and outer measures pA and pA corresponding to (S,A, p).

Before we investigate a possibility of the further application of the ambiguity ap-

proach, we provide an example.

Example 3.1. Suppose that two investors consider trading the stock of GE whose current

price is $35 per share. On the one hand, one investor might want to sell it if the stock

price is over $40, and might want to buy it if the stock price is below $30. On the other

hand, the other investor might want to sell it if the stock price is over $38, and might want

to buy it if the stock price is below $32. In this case, they will never consider changing

their positions. Moreover, ceteris paribus, suppose that the stock’s current price is $39.

In this case, the first investor does not consider trading the stock. However, the second

one does sell it.

While such a situation is not actually observable, it would cause no trouble to

suppose that different investors behave in a different way. To put it differently, it is natural

to suppose that a spread between the striking price for selling and that for buying is not

unique among different investors. What brings the differences of the spreads between the

striking price for selling and that for buying among investors? This phenomenon as well

as the existence of portfolio inertia cannot be accounted for under the standard expected

utility theory. However, adopting the ambiguity approach enables us to obtain a solution

to the problem. Before we present the last theorem of this paper, some mathematical
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results are in order. Let (S,A1, p1) and (S,A2, p2) be λ-system probability spaces, where

A1 ⊂ A2, and p1 = p2|A1
, i.e., p1 is the restriction of p2 to A1. Now, we are in a position

to present two results, which play a crucial part in obtaining the last result of this paper.

Lemma 4. Let (S,A1, p1) and (S,A2, p2) be λ-system probability spaces, where A1 ⊂ A2,

and p1 = p2|A1
. Then, for all B ∈ 2S, pA1

(B) ≤ pA2
(B) and pA2(B) ≤ pA1(B).

For the inner measure, Lemma 4 states that a fine λ-system yields a fine assessment

to all the subsets outside A by approximating them from the inside. For the outer measure,

Lemma 4 states that a fine λ-system yields a fine assessment to all the subsets outside A

by approximating them from the outside. From above observations, pA can be considered

as a set function to capture a form of aversion to ambiguity through A.

Theorem 2. Let (S,A1, p1) and (S,A2, p2) be λ-system probability spaces, where A1 ⊂

A2, p1 = p2|A1
, and X ∈ B(S, R). Then

∫

X(s) pA1
(ds) ≤

∫

X(s) pA2
(ds) and

∫

X(s) pA2(ds) ≤

∫

X(s) pA1(ds).

Proof. See Appendix.

This theorem states that the Choquet integral with respect to pA is increasing in A,

and that the Choquet integral with respect to pA is decreasing in A. In other words,

the monotonicity of the Choquet integral with respect to A provides a fine evaluation of

X(s).

Theorems 1 and 2 provide the last theorem of this paper.

Theorem 3. Let (S,A1, p1) and (S,A2, p2) be λ-system probability spaces, where A1 ⊂

A2, and p1 = p2|A1
, and let q be the price of a risky asset at t = 0, and let X ∈ B(S, R) be

the asset price at t = 1. Suppose that one investor’s preferences are represented by CEU

with the inner measure pA1
corresponding to (S,A1, p1), and the other investor’s prefer-

ences are represented by CEU with the inner measure pA2
corresponding to (S,A2, p2).

Then both investors neither buy nor sell the asset if q satisfies:

∫

X(s) pA2
(ds) < q <

∫

X(s) pA2(ds).
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Furthemore, for such an asset price, the spread between the striking price for selling and

that for buying with respect to A1 is wider than that with respect to A2, i.e.,

∫

X(s) pA1
(ds) ≤

∫

X(s) pA2
(ds) < q <

∫

X(s) pA2(ds) ≤

∫

X(s) pA1(ds).

The latter part of this theorm provides a solution to the problem: what leads to the

differences of the spreads between the striking price for selling and that for buying among

different investors? If an investor has more events to which she assigns probabilities,

then the spread shrinks compared with the case in which she has less events to which

she assigns probabilities. This interpretation is made possible by capturing ambiguity

through λ-systems.18

4 Conclusion

This paper adopts the ambiguity approach to show that there exists portfolio inertia

under CEU with an inner measure. A related work is Dow and Werlang (1992) who

adopt the uncertainty approach to obtain a result similar to ours. However, there are two

differences between their paper and this one. First, their model is based on CEU with

every convex non-additive measure. On the other hand, we adopt CEU with the inner

measure pA, which is neither additive nor convex. As the example in Subection 2.2 shows,

there exists some situation where the convexity of non-additive measures does not account

for investor’s behavior. This implies that such a situation cannot be accounted for within

the framework of theirs, and that the convexity assumption is not crucial for the existence

of portfolio inertia. Second, we introduce the concept of ambiguity to portfolio selection

problems by letting λ-systems serve as domains of probabilities. Adopting the concept

of ambiguity enables us to account for a problem that cannot be explained by Dow and

Werlang (1992). To the best of my knowledge, analyses based on the ambiguity approach

have not been done in the fields of game theory or finance. Our results provide a new view

18A different approach appears in Dow and Werlang (1992). Let µ, µ1 and µ2 be non-additive measures
on (S, 2S). They define uncertainty aversion, by c(µ,A) = 1 − µ(A) − µ(Ac), measured by µ, for every
set A in 2S. Furthermore, they say that µ2 is more uncertainty averse than µ1 if c(µ2, A) ≥ c(µ1, A) for
every set A in 2S . Based on this definition, they show that if µ2 is more uncertainty averse than µ1, a
spread between the striking price for selling and that for buying expands.
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point by illuminating the difference between the uncertainty approach and the ambiguity

approach. Furthemore, our results imply that the convexity of non-additive measures is

not a panacea for analyzing DM’s behavior under uncertainty. If this paper becomes a

first step toward the further research on the ambiguity approach, the goal of this paper

will be achieved.
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Appendix

A. Mathematical Results

In this subsection, let µ be a non-additive measure on (S, 2S).

Fact 1.

(∀X, Y ∈ B(S, R)) X ≥ Y ⇒

∫

X(s) µ (ds) ≥

∫

Y (s) µ (ds).

Fact 2.

(∀X ∈ B(S, R))(∀a ∈ R)(∀b ∈ R+)

∫

(a + bX(s))µ (ds) = a + b

∫

X(s)µ (ds).

Fact 3.

(∀X ∈ B(S, R))

∫

X(s) µ(ds) = −

∫

−X(s) µ′(ds),

where µ′ is the conjugate of µ.

Lemma 5. Let u : R → R. If u is concave on (a, b) and t0 ∈ (a, b), then there exists

β ∈ R such that

u(t) ≤ u(t0) + β(t − t0) for all t ∈ (a, b).

For such a β, the next inequlities hold:

lim
t↓t0

u(t) − u(t0)

t − t0
≡ u′

+(t0) ≤ β ≤ lim
t↑t0

u(t) − u(t0)

t − t0
≡ u′

−(t0).

Furtheremore, if u is increasing on (a, b), then 0 ≤ u′
+(t0).

Proof of Lemma 5. For the first claim, see Folland (1999, p.109), or Royden (1987, p.115).

The second and third ones are immediate.
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B. Proofs

Proof of Lemma 1. For all B1, B2 ∈ 2S, let B1 ⊂ B2. Then {p(A)|A ∈ A, A ⊂ B1} ⊂

{p(A)|A ∈ A, A ⊂ B2}, which implies pA(B1) ≤ pA(B2). The proof that pA(∅) = 0 is

trivial.

Proof of Lemma 2. (a)

(∀B ∈ 2S) pA(B) = sup {p(A) |A ∈ A, A ⊂ B}

= − inf {−p(A) |A ∈ A, A ⊂ B}

= − inf {p(Ac) − 1 |Ac ∈ A, Bc ⊂ Ac}

= 1 − inf {p(Ac) |Ac ∈ A, Bc ⊂ Ac}

= 1 − pA(Bc).

(b) If ε > 0, there exist A1, A2 ∈ A, A1 ⊂ B1, A2 ⊂ B2, B1 ∩B2 = ∅ such that pA(B1)−

ε ≤ p(A1) and pA(B2) − ε ≤ p(A2). So

pA(B1) + pA(B2) − 2ε ≤ p(A1) + p(A2)

= p(A1 ∪ A2)

≤ pA(B1 ∪ B2).

The first equality follows from the facts that B1 ∩ B2 = ∅ ⇒ A1 ∩ A2 = ∅, A1 ∪ A2 ∈ A

and p is a premeasure on A. The last inequality holds by the definition of pA. Since ε is

arbitrary, the proof is completed.

Proof of Lemma 3. This follows from Fact 1 and the fact that pA(B) ≤ pA(B) for all

B ∈ 2S.
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Theorem 4 (Jensen’s Inequality). Let (S, 2S, µ) be a measure space with µ(S) = 1,

where µ is a non-additive measure. Let X : S → (a, b) be in B(S, R), and u be a concave,

increasing and real-valued function on (a, b). Then for all non-additive measures µ,

∫

u(X(s)) µ(ds) ≤ u

(
∫

X(s) µ(ds)

)

.

Proof. Let t0 =
∫

X(s) µ(ds) and t = u(s). Then t0 ∈ (a, b) and t ∈ (a, b). By Lemma 5,

there exists β ∈ [u′
+(t0), u

′
−(t0)] ⊂ R+ such that

u (X(s)) ≤ u

(
∫

X(s) µ(ds)

)

+ β

(

X(s) −

∫

X(s) µ(ds)

)

for all X(s) ∈ (a, b).

Integrating both sides with respect to µ and Fact 1 imply

∫

u (X(s)) µ(ds)

≤

∫
(

u

(
∫

X(s) µ(ds)

)

+ β

(

X(s) −

∫

X(s) µ(ds)

))

µ(ds).

Then

∫

u (X(s)) µ(ds)

≤ u

(
∫

X(s) µ(ds)

)

+ β

∫
(

X(s) −

∫

X(s) µ(ds)

)

µ(ds)

= u

(
∫

X(s) µ(ds)

)

+ β

(
∫

X(s) µ(ds) −

∫

X(s) µ(ds)

)

= u

(
∫

X(s) µ(ds)

)

.

The inequality and the first equality follow from Fact 2.

Proof of Theorem 1. Assume

∫

X(s) pA(ds) < q.

Then

(∀N ≥ 0)

∫

u (W − N + (N/q) X(s)) pA(ds)

≤ u

(
∫

(W − N + (N/q) X(s)) pA(ds)

)
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= u

(

W − N + (N/q)

∫

X(s)pA(ds)

)

< u (W − N + (N/q) q)

= u(W ).

The first inequality follows from Theorem 4. The first equality holds by Fact 2. The

second inequality follows from the assumption.

Next, assume

q <

∫

X(s) pA(ds).

Similarly,

(∀N ≤ 0)

∫

u (W − N + (N/q) X(s)) pA(ds)

≤ u

(
∫

(W − N + (N/q) X(s)) pA(ds)

)

= u

(

W − N − (N/q)

∫

(−X(s)) pA(ds)

)

= u

(

W − N − (N/q)

(

−

∫

X(s) pA(ds)

))

< u (W − N − (N/q) (−q))

= u(W ).

The first inequality holds by Theorem 4. The first equality holds by Fact 2. The second

equality holds by Fact 3. The last inequality follows from the assumption.

Proof of Theorem 2. The first and second inequalities follow from the boundedness of X,

the definition of the Choquet integral, and Lemmas 3 and 4.
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