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Abstract

An individual is asked to assess a real-valued variable y based on certain characteristics x:(xl,. ., x™), and
on a database consisting of n observations of (x',..., x™, ). A possible approach to combine past observations of
x and y with the current values of x to generate an assessment of y is similarity-weighted averaging. It suggests
that the predicted value ofy, y;1, be the weighted average of all previously observed values y;, where the weight
of'y; is the similarity between the vector xhits XM, associated with Vu+1, and the previously observed vector,
x!,..., x". This paper axiomatizes, in terms of the prediction y,., a similarity function that is a (decreasing)
exponential in a norm of the difference between the two vectors compared.
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1. Introduction

In many prediction and learning problems, an individual attempts to assess the value of a real
variable y based on the values of relevant variables, x:(xl,..., x™), and on a database, B,
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consisting of past observations of the variables (x;, y;)=(x; ..., x", »;), i=1,..., n. Some examples
for the variable y include the weather, the behavior of other people, and the price of an asset. The
relevant variables x may represent meteorological conditions, psychosocial cues, or the attributes
of the asset, respectively.

There are many well-known approaches for the prediction of y given x and the database B. For
instance, regression analysis is such a method. k-nearest neighbor techniques (Fix and Hodges,
1951, 1952) would be another method, predicting the value of y at a point x by the values that y
has assumed for points close to x. In fact, the literature in statistics and in machine learning offers
a variety of methods for this problem, which encompasses a wide spectrum of problems that
people encounter in their daily lives as well as in professional endeavors.

One approach to deal with the classical learning/prediction problem is to use a similarity-
weighted average: fix a similarity function s : R” x R”—R, , and, given the database B and the
new data point x& R”, generate the prediction

ys _ Zign S(xiax)yi
Ziﬁn S(xivx)

This formula was suggested and axiomatized in Gilboa, Lieberman, and Schmeidler, 2006 .-
They assume that, for every n= N, ,, any database B (consisting of n> 1 observations in R"*1),
and every new point x€R", a predictor has an ordering over R, Z 3 ,, interpreted as “more likely
than”. They show that these orderings satisfy certain axioms if and only if there exists a similarity
function such that the ordering ranks possible predictions y according to their proximity to y*.

In this paper, we investigate the explicit form of the similarity function s, in the context of the
similarity-weighted formula. That is, we assume that Y is assessed according to

Dicn S0 X)Yi
> icn S(xi,X)

where the function Y (-,-) is defined on the all databases, B = U, >, (R’”*l )", and for all xe R".
The derivation of formula (1) by Gilboa et al. (2006) is done for each x separately, considering the
rankings of possible values of Y(B, x) for various databases B, but for a fixed x& R". Hence, they
obtain a separate function s(-, x) for each x. This function is strictly positive and it is unique up to
multiplication by a positive number. For concreteness, we here normalize this function such that s
(x, x)=1 for every x. With this convention, s is unique.

We consider the behavior of Y (-,) when one varies its arguments. We suggest certain
consistency conditions on Y, referred to as “axioms”, which characterize an exponential
functional form, namely, a similarity function s that satisfies, for every x,ze R",

Y(B,x) = (1)

s(z,x) = exp[—v(x — 2)] (2)

for some norm ¥ on R™. Assuming that the assessments Y are observable, our result may be
interpreted as showing what observable implications are there to the assumption of exponential
similarity (2) in the context of the similarity-weighted average formula (1).

'It is reminiscent of derivations in Gilboa and Schmeidler (2003) and in Billot et al. (2005). It also bears resemblance to
kernel-based methods of estimations, as in Akaike (1954), Rosenblatt (1956), Parzen (1962) and others. See Silverman
(1986) and Scott (1992) for surveys.
2 The term similarity at this point does not impose any restriction on the function. It just indicates that this function is
used in a formula like the one above.
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The notion of a similarity function which is decaying exponentially as a function of distanceis
rather natural, and appears in other contexts as well. For instance, Shepard (1987) derives an
exponential similarity function which measures the probability of generalizing a response from
one stimulus to another. An exponential decay function is used to model the probability of recall
(see, for instance, Bolhuis, Bijlsma, and Ansmink, 1986), which may be interpreted as a measure
of the similarity between two points of time. The present paper shows that exponential decay,
relative to some norm, has, and is characterized by rather appealing properties also when
similarity is used for the computation of similarity-weighted average as in Eq. (1).

The axioms and the main result are stated in the next section. They are followed by comments
on several special cases of the norm v, the special case of a single-dimensional space, and a
general discussion. Proofs are to be found in an Appendix.

2. Main result

Suppose that there are given functions ¥ : B x R”"—R ands : R” x R"—R, , asin formula (1)
(The positive integer m is fixed throughout the paper.). We impose the following axioms on Y:

A1l. Shift Invariance

For every B = (x;,1:);.,€B, and every x, we R”,
Y((xi +w, 1) <X + W) = Y (x5 01) <, %)-

Al states that the prediction does not depend on the absolute location of the points (x;), x in
R™, but only on their relative location. More precisely, it demands that a shift in all independent
variables in the database, accompanied by the same shift in the new independent variable for
which prediction is required, will not affect the predicted value Y.

The next axiom requires that evidence that was obtained for further points has lower impact. It
is restricted to a rather uncontroversial definition of “being further away”: it is only required to
hold along rays emanating from zero, when prediction is required for the point x=0 (To avoid
confusion we will denote the origin in R™ by a bold 0, 0.).

A2. Ray Monotonicity
For every x,zeR", Y(((Ax, 1), (z, —1)),0) is strictly decreasing in 4 >0.

A2 considers databases consisting of two points, one, Ax, at which the value 1 was observed,
and another, z, at which the value — 1 was observed. Obviously, Eq. (1) would generate a value Y
in (—1, 1) for such a database. When we vary A, the value of ¥ will be higher, the more similar is
Ax considered to be to 0. A2 states that, if we move Ax further away from 0 (along the ray through x),
it will be considered less similar to 0, and the prediction Y will decrease (i.e., it will move away from
1 toward —1.).

A3. Symmetry

For every xe R",
Y(((x,1),(0,0)),0) = Y(((0,1), (x,0)),x).

A3 considers two situations. In the first, one has observed the value 1 for x€R”, and the value
0 for 0= R"™, and one is asked to make a prediction for 0 =R". In the second situation, the roles
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are reversed: the value 1 was observed at 0 =R"™, the value 0 at x&R™, and the prediction is
requested for x. A3 then requires that the prediction be the same in these two situations.
Intuitively, it demands that the impact an observation at x has on observation at 0 is the same as
the impact of the same observation at 0 has on observation at x.

Axiom 4 is reminiscent of Al, but the antecedent is more restrictive and the conclusion
stronger. It applies to a database where all the independent variables are on a ray through the
origin. A shift along this ray leaves the prediction unchanged although the independent variable
for which the predictions are made is the origin before and after the shift. Formally,

A4. Ray Shift Invariance

Let there be given B = (o;v,y;),.,€B, for some veR” and ;>0 (<n). Then, for every
0>09 Y((ch!)+00a yi)iSm O)ZY((ail)a yi)iﬁm 0)

Our last axiom is,

AS5. Self-relevance

For every x,zeR",

Y(((0,1), (x,0)),2)=<Y(((0,1), (x,0)),0).

A5 considers a simple database B consisting of two points: the value 1 was observed for the
point 0, while the value 0 was observed for the point x. Given such a database, any prediction
generated by Eq. (1) is necessarily in [0,1]. Intuitively, the prediction generated given this
database, for every z, is higher the higher is the similarity of z to 0 relative to its similarity to x.
Self-relevance requires that this relative similarity be maximized at z=0. That is, no other point
z#0 can be more similar to 0 than to x, as compared to 0 itself.

Recall that a norm on R™ is a function v : R"—R, satisfying:

(1) v(&)=0iff £=0;
(ii) v(2&)=|Av (&) for all £ eR™ and 1 R,
(iii) v(E+) <v(&)+v () for all &, (eR™.

We can now state our main result:

Theorem 1. Let there be given a function Y as in formula (1), were s is normalized by: s(x, x) =1
for all xeR™. The following are equivalent:

(i) Y satisfies AI-A5;
(ii) There exists a norm v : R" =R, such that
(x) s(x,z) =exp[—v(x—z)]  forevery x,zeR"™

We observe that, given s, the norm v is uniquely defined by (), and vice versa.

The shift axioms (A1) enables us to state the rest of the axioms for Y (-, 0) rather than for Y (-, w)
for every w € R™. As will be clear from the proof of the theorem, one may drop A1, strengthen the
other axioms so that they hold for every w €RR™, and obtain a similar representation that depends on
a more general distance function (that is not necessarily based on a norm).
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It will also be clear from the proof that our result can be generalized at no cost to the case that
the data points x; belong to any linear space (rather than R™). This is true also of the
axiomatization in Gilboa et al. (2006). Taken together, the two results may be viewed as
axiomatically deriving a norm on a linear space, based on predictions Y.

The similarity function obtained in Gilboa et al. (2006) has no structure whatsoever. The only
property that follows from their axiomatization is the positivity of s. An important feature of our
result is that observable conditions on predictions Y imply that ¥ is a norm, and this, in turn,
imposes restrictions on the similarity function. For example, since for a norm v, v(&)=v(—£), we
conclude that s(x, z)=s(z, x), that is, that s is symmetric.

Another important feature of norms is that they satisfy the triangle inequality. This would
imply that s satisfies a certain notion of transitivity. Specifically, it is not hard to see that, given the
representation (*), the triangle inequality for v implies thats satisfies multiplicative transitivity,
namely, for every x, z, w eR",

s(x, w)=s(x,z)s(z, w).

Thus, if both x and w are similar to z to some degree, x and w have to be similar to each other to a
certain degree. Specifically, if both s(x, z) and s(w, z) are at least &, then s(x, w) is bounded below by &2.

3. Special cases

One may impose additional conditions on Y that would restrict the norm that one obtains in the
theorem. For instance, consider the following axiom:

A6. Rotation

Let P be an mxm orthonormal matrix. Then, for every B=(x;, y;)i<n, Y((xiy ¥))i<n, 0)=
Y((xiP, y)i<ns 0).

A6 asserts that rotating the database around the origin would not change the prediction at the
origin. It is easy to see that in this case the norm v coincides with the standard norm on R™.

For certain applications, one may prefer a norm that is defined by a weighted Euclidean
distance, rather than by the standard one. To obtain a derivation of such a norm, we need an
additional definition.

For two points z,z’€ R™, we write x ~x’ if the following holds: for every BB, and y=R,
Y((B, (x,1)), 0)=Y((B, (x",»)), 0), where (B, (x, y)) denotes the database obtained by concatenation of
Bwith (x, y). In light of Eq. (1), it is easy to see that two vectors x and x” are considered ~ -equivalent
ifand only ifs(x, 0)=s(x’, 0). Using this fact, or using the definition directly, one may verify that ~ is
indeed an equivalence relation.

In the presence of axiom Al, two vectors x and x’ are considered ~ -equivalent if observing y
at a point that is x-removed from the new point has the same impact on the prediction as observing
y at a point that is x’-removed from the new point.

Forj<m, let e;R" be the j-th unit vector in R" (that is, ef=1 for k=j and ej’»‘=0 for k#j).
We can now state.

A7. Elliptic Rotation

Assume that, for j, k<m and >0, e;~ fe;. Let 0, u>0 be such that B02+,u2=ﬁ. Then for
every x=(x",..., x), x+e;~x+0e+ ey
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A7 requires that ~-equivalence classes would be elliptic. Specifically, it compares a unit
vector on the j-th axis to a multiple of the unit vector on the k-axis. It assumes that f§ is
the appropriate multiple of e that would make it equivalent to e;. It then considers the ellipse
connecting these points, and demands that this ellipse would lie on an equivalence curve of ~. It
can be verified that A7 will imply that v is defined by a weighted Euclidean distance.

More generally, one may use the equivalence relation above to state axioms that corre-
spond to various specific norms. In particular, any L, norm can be derived from an axiom that
parallels A7.

4. A single dimension

An interesting special case is where there is only one predictor, i.e., when m=1. A prominent
example would be when the data are indexed by time. In this case, the point for which a prediction is
required is larger, that is, further into the future, than any point in the database and not all the axioms
are needed for our main result. Moreover, when m=1 the exponential similarity function can also be
justified on different grounds. We begin by stating the appropriate versions of the axioms.

Let B = {((x;,1),<,)|(xi, )€ R?,x;>x; for i>/}. Denote by By, the union of B and the set
containing the empty database (corresponding to n=0). Assume that Y is defined on

D= {((xi7yi)isnﬂx)|(xivyi)iSnEB/aXER7X2XH}~

Re-write the axioms as follows.

A1°. Shift Invariance

FOI" eVery ((xivyi)[gnvx)e D: and eVery WER: Y((xi+wa yi)iSn: X+W): Y((xia yi)iﬁm X).
A2’, Monotonicity

Y(((—1, 1), (4, — 1)), 1) is strictly decreasing in AE[—1, 1].
A4’°. Ray Shift Invariance

For every ((x;,71);<,,x)€D, and every w0, Y((x;, ¥)i<n» XTW)=Y((X;, Y1)i<n» X)-

The Shift Invariance axiom states that shifting the entire database, as well as the new point,
does not affect the prediction. The monotonicity axiom states that the closer is a datapoint (1) to
the new prediction (1), the higher is its impact, that is, the —1 associated with 4 has a greater
weight in the prediction for x=1 as compared to another datapoint (1 observed at —1). Finally, the
Ray Shift Invariance states that if a prediction is required for a later point (x+w rather than x), but
no new datapoint have been observed, the prediction does not change.

Interpreting the single predictor as time, the axioms have quite intuitive justifications: Shift
Invariance states that the point at which we start measuring time is immaterial. Monotonicity simply
requires that a more recent experience have a greater impact on current predictions. Finally, Ray Shift
Invariance can be viewed as stating that the predictor does not change her prediction simply because
time has passed. If no new datapoints were added, no change in prediction would result.

In a single dimension, the exponential similarity function allows one to summarize a database
by a single case, such that, for all future observations and all future prediction problems, the
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summary case would serve just as well as the entire database. Specifically, we formulate a new
condition:

Summary.

For every ((x;,71),-,) B, there exists (¥, 7)eR?, such that for every ((x}1}),-,,)€Bo with x{ >x,
(lf m> O)s and every xzxilm Y(((X[, yi)ism (xl{5 y/l’)[ﬁm)a X): Y(((fs )7)’ (xl{! yl{)ism)a X).

We can now state:

Proposition 2.

Let there be given a function Y as in formula (1), were s is normalized by: s(x, x) =1 for all xe R™.
The following are equivalent:

(i) Y satisfies AI’, A2’, A4’;
(ii) Y satisfies AI’, A2’, and Summary;
(iii) There exists 0= R such that s(x, z) =exp[—0(z—x)] for every z=>x.

Appendix A. Proof

Proof of Theorem 1. It is convenient to prove that (i) is equivalent to (ii) by imposing one axiom
at a time. This will also clarify the implication of A1, Al and A2, etc.’

It is easy to see that A1 is equivalent to the existence of a function f/ : R"—R. ., with {0)=1,
such that s(x, z)=f(x—z) for every x, zeR™. Indeed, if such an fexists, Al will hold. Conversely,
if A1 holds, one may define f(x)=s(x, 0) and use the shift axiom to verify that s(x, z)=f(x—z)
holds for every x, zeR".

Next consider A2. Since f(x)=s(x, 0), it is easy to see that A2 holds if and only if f is
strictly decreasing along any ray emanating from the origin. Explicitly, A1 and A2 hold if and only
if s(x, z)=f{x—z) for every x, z&R™ and f(Ax) is strictly decreasing in 4 >0 for every xeR", x#0
and /(0)=1.

It is easily seen that symmetry (A3) is equivalent to the fact that f(x)=7(—x) for every x&R".

We now turn to A4. Consider a ray originating from the origin, {Ax|]A >0}, for a given x&RR"
(x#0). We observe that for Ray Invariance to hold, in the presence of Monotonicity, s(4x, 0)
has to be exponential in 4. To see this, observe that Ray Invariance implies that the ratio s(kAx, 0)/
s((k+1)Ax, 0) is independent of k for every A. This guarantees that s(Ax, 0) is exponential on the
rational values of 4. Given monotonicity (A2) we conclude that for every x& R”™ there exists a
number v, such that s(Ax, 0)=exp[— Av,]. Obviously, ¥4,=Av, for 1>0. A2 also implies that
v,>0 for x#0.

Combining these observations with the previous ones, we conclude that A1-A4 are
equivalent to the existence of a function /: R” —R , such that s (x, z)=f(x—z) for every x, zeR",
where f(0)=1, f(x)=f(—x) for every x&R", and, for every x&R™ there exists a non-negative
number v, such that f(x)=exp[—Av,] and vA,=Av, for 1>0. Further, »,=0 only for x=0.
Defining v(x)=v, we obtain the representation (*) for a function v that satisfies all the
conditions of a norm, apart from the triangle inequality.

3 We will follow the order A1—A4. The exact implication of each subset of axioms separately can be similarly analyzed.
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To conclude the proof, we need to show that v satisfies v (x+z) <v(x)+v(z) if and only if AS
holds. Consider arbitrary x, zeR™. A5 states that

Y(((0,1), (x,0)),2)=Y(((0,1), (x,0)),0)
which implies that

5(0,z) - 5(0,0)

5(0,2) 4+ s(x,z) ~ 5(0,0) + s(x,0)

or

5(0,z) - 1
5(0,2) +s(x,z) ~ 1 +5(x,0)°

Equivalently, we have

5(0,2) + s(x,2)

S0.2) >1 + s(x,0)

which is equivalent, in turn to

(x,2)
5(0,z)

©n

> s(x,0)

and to
s(x,z) > 5(x,0)s(0,z).

Observe that AS is equivalent to this form of multiplicative transitivity independently of the
other axioms. While we obtain the multiplicative transitivity condition only at 0, an obvious
strengthening of A5 will imply that s(x, z) > s(x, w)s(w, z) for every x, z, weR"™.

Using the representation of s, we conclude that AS is equivalent to the claim that, for every
x, zeR"™,

expl—v(x — z)|Zexp[~v(x) — v(—)

v(x — z)<v(x) + v(—z).

Setting £=x and {=—z, we conclude that A5 holds if and only if v satisfies the triangle
inequality.
This completes the proof of the theorem. [

Proof of Proposition 2. The equivalence of (i) and (iii) is proved as in the general case (see the
Proof of Theorem 1 above). We wish to show that Summary may replace A4’. First, observe
that Summary is a stronger condition than is A4’. This follows from restricting Summary to
the case m=0, and observing that Y((X, ), x)=y for all x. Conversely, it is easy to verify that
(iii) implies Summary. [
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