Representing Interval Orders by Weighted Bases:
some Complexity Results

Pierre Marquig Meltem Oztiirk®

ACRIL-CNRS, Universst d’Artois, 62307 Lens, France

Abstract

This paper is centered on the notion of interval order as aefrfod preferences. We in-
troduce a family of representation languages for such ergrameterized by a scale and
an aggregation function. We show how interval orders carepeesented by elements of
those languages, called weighted bases. We identify theleaity of the main decision
problems to be considered for exploiting such represemtsitof interval orders (includ-
ing the comparison problems and the non-dominance probléfa)also show that our
representation of interval orders based on weighted bamesrpasses the penalty-based
representation of complete preorders as a specific case.

Key words: Compact representation of preferences, Preferences ondigatorial
domains, Computational complexity

1 Introduction

Dealing with preferences over alternatives is an impoitsue in many fields, like
economics, decision theory, and artificial intelligenceef€rences are generally
formulated as binary relations which are related to a notibforder”. Different
types of models may be used for their representation. Maistieg models are
guantitative ones, the quantification of preferences nengeasier the search for
optimal or near-optimal decisions. Much work has been ael/sb far to such mod-
els in social choice theory. In the majority of these workgf@rence is given by a
utility function (i.e., a mapping from the set of alterna&svunder consideration to
the setR of real numbers). On the other hand, pure qualitative gttame adequate
when quantifying preferences is meaningless when no quantification of prefer-

I In real life situations, when the preferences are just @idime following type of affir-
mations about preferences intensities can be a non-sahsepreference of alternative
over alternative is two times the preference of alternativever alternativel”.
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ences is known. In such settings, a preference relatiopisdiy defined as a com-
plete preorder (i.e., a reflexive and transitive relatiovgrahe set of alternatives.
However, such a model for preferences does not prove adetpall situations,

and other models (generalizing the complete preorder came) been pointed out.
In particular, a well-known problem with the complete piarstructure for pref-

erence is that the associated indifference relation isssac#y transitive, and it is
known that such a property may be violated in the presendaes$holds as shown
in the famous example of Luce [18]:

Example 1 Let the set of alternatived = {c(0), ..., ¢(100)} consists of 101 cups
of coffee which are identical except that tiecupc(i) containsi grains of sugar.
Any human agent who wants to compare those alternativesstingathem is not
able no make any distinction betweefi) and ¢(: + 1), hencec(i) andc(i + 1)

(: € 0...99) are indifferent for the agent. Assuming such indiffererelation
transitive would imply that(0) and ¢(100) are indifferent as well, which is not
adequate whenever the agent prefers coffee with sugar.

Among other relational structures like quasi-orders,rtoiee orders, split semi-
orders, etc. (for more details, see e.g. [11]), intervakoschave been introduced
for handling such scenarios. Indeed, in contrast to thecestgal strict preference
relation, the indifference relation induced by an interoeder is not necessarily
transitive.

Once an adequate model for preference has been chosenptbsamation issue
has still to be addressed. In this direction many contrdngin decision theory are
based on the representational theory of measurement, limethan [23] and pre-
sented in details in the three-volume set by Krantz et al, Bdppes et al. [15] and
Luce et al. [19]. Concerning the interval orders and seneia@special case of the
first ones), the axiomatic analysis of what is called “ing¢irders” has been given
by Wiener [27], then the term “semiorders” has been intreduay Luce [18] and
many results about their representations have been otifayndifferent researchers
(for more details see [10], [22]). In the classical numdriepresentation of interval
orders, an interval (with a uniform length in the case of seders) is associated
to each alternative and each alternative is said to be peeféo another one if and
only if its associated interval is completely to the righttbé other’s interval. In
the following, this is what we call an interval represerdatof an interval order.
Doignon [7] has observed that it is possible to define a mihintarval representa-
tion of interval orders and Fishburn [10] has been intetest@another optimization
problem about interval orders (minimal number of differeerval lengths). Isaak
[13] has obtained a minimax theorem for the minimum numbemaf points in an
interval representation of an interval order by the helpaieptials in digraphs.

Unfortunately, when the set of alternatives is huge, neithe explicit represen-
tation of the interval order (i.e., its representation byrganor its interval repre-
sentations are feasible; especially when the set of alieesshas a combinatorial



structure, i.e., it is a cartesian product of a finite domainefach one of a set of
variables. For instance, let us imagine that a decision miakeying to choose a
new computer. A set of variables may be hard disk, ram, sszen sound card,
DVD reader and DVD writer. In this case the set of alternatiigeall the possible
combinations of the evaluations of these variables. In susktuation the space
of possible alternatives has a size exponential in the nuwibeariables and it is
therefore not feasible (for space reasons) to associatetergal to each alterna-
tive. Hence, it is important to define more compact repredmt languages for
interval orders and to evaluate them.

Generally speaking, by preference relatiomver a setA of alternatives, we mean
a binary relation overd. By arepresentation languagdor preference relations,
we mean a set of symbolic descriptions of such relationssante procedures for
exploiting them. For the sake of generality, we do not put singng restrictions
on the acceptable representations, except that they mustitee Thus, within a
representation language, each element of the preferenaeuse is represented
by aword. We define a representation language througlalphabetwhich can
be any finite set of symbols; e.g. a language of first-ordeclsgoften expressed
using an alphabet which, besides logical symbols such asectives\, Vv, — and
guantifiersy, 3 contains elements,, x{, z», ... playing the role of variables. A
word over an alphabet can be any finite sequence of elemetite afphabet. And
finally a language over an alphabet is just a subset of thef sditwords over the
alphabet.

For the purpose of evaluating a representation languagpréference relations,
the following three criteria are of great value:

e Simplicity and modularity: a representation language geeted to have a sim-
ple (yet formal) semantics expressing the connection lEtviee representation
and the corresponding (explicit) preference relationhsaconnection must be
easy to understand. Modularity is the ability to specify gineference relation
within the representation language in a piecewise way.

e Complexity issues: they indicate the computational effdrich must be spent to
realize a number of treatments of interest on the preferezlagon represented
in the chosen language. Such treatments (vote, aggregatimh typically de-
pend on the way preferences have to be exploited in the apiplicunder con-
sideration, and are often based on some basic queries astoimaations. Some
basic queries consist in determining whether a given atem is preferred or
not to another and determining whether a given alternasivmdominated. The
focus is typically laid on worst case scenarios.

e Expressiveness and spatial efficiency: expressiveness thie (relative) aptitude
of a representation language to encode a family of prefereelations (total
order, preorder, partial order, etc.), while spatial efindy gives its aptitude to
do it using little space (it refines expressiveness); botlone are formalized as
preorders on the set of all representation languages Ge&p:



Definition 1 A representation languagé; for preference relations is said to
be at least as expressive asrepresentation languagé, if and only if every
preference relation which can be represented.incan also be represented in
L.

Definition 2 A representation languagk; for preference relations is said to be
at least as succinct asrepresentation languagg, if and only if there exists

a polynomialp such that every preference relation which can be represente
by an element, in L, can be represented by an elementin L; such that

1] < p(|r2]). 2

Since the complexity of any algorithm is a function relatitsgnput size with
the amount of resources (time or space) needed to achiewethgutation, the
complexity results for treatments based on a given reptasen language must
be interpreted in light of its spatial efficiency.

The first criterion (simplicity and modularity) is fundantehin the direction of
preference elicitation and other human-computer intemastabout the preference
relation. It shows the perspective of preference repratientmore general than
preference compilation, which mainly consists in turningigen preference rep-
resentation into another one, so as to optimize at least biine dast two criteria.
For instance, a preference relation (viewed as a binartioalaver a set of, alter-
natives) can be compactly represented as a Boolean funettbr2[log,n| argu-
ments, where the firgiogon | bits encodes a first alternatiue and the lasflogsn |

bits encodes a second alternatiyeand the function takes the valuef and only

if a1 is at least as preferred ag, the Boolean function itself can be represented in
many different ways (CNF formulae, Binary Decision Diagsamtc., see e.g. [6]).
The encoding procedure and/or the definition of the Booleantfon (since it may
be complicated) may prevent the resulting data structune fachieving what is
expected from the point of view of simplicity and modularfpr instance, the fol-
|0Wing formU|a((_\1'1\/1'2)/\({23'1\/_\{272))\/ ((_|{L'1\/_\"L'Q)/\(_'l'l\/(l'g/\_\l'4)) /\(([L’g/\

(x3 & —zq))V (11 A2 Axg A—zy))) CAN be viewed as a representation of the pre-
orderR = {(a, a), (a,b), (b,a), (b,b), (a,c), (b, c), (a,d), (b,d), (c,d), (c,c), (d,d)}
overA = {a, b, ¢, d} with the encoding: = 00, b = 11, ¢ = 01, d = 10 . Clearly
enough, the connection betweBrand the formula representing it is not so salient.

While much effort has been devoted to the representatiare ifs utility func-
tions or preorders (complete or partial) for the last yeaee (@mong others [9,1—
3,12,17,4]), the compact representation of interval ardhers not been addressed
so far (as far as we know).

2 The size|r| of any wordr is the number of symbols in it.
3 For instance we havg, b) € R since the assignment = 2o = false andzz = x4 =
true satisfies the logical proposition



In this paper, we contribute to fill this gap by showing howeimal orders can be
compactly encoded by weighted bases, i.e., multisets @iqzitional formulae as-
sociated to intervals over a scale. In order to handle a nuoflukfferent scenarios
and achieve some flexibility, the scale and an aggregatioctifun over this scale
are considered as parameters in our framework; each chicacgcale and aggrega-
tion function gives rise to a specific representation lagguslVe give a simple for-
mal semantics for such languages and show them modular.tAs expressiveness
issue, we explain how any interval order over a finite sett@fatives can be rep-
resented as a weighted base in some representation lasgMégalso show that a
language of weighted bases is strictly more expressivettiglanguage of penalty-
based representations of complete preorders, as corsiddis,5,17,4]. As to the
spatial efficiency issue, we show that our representatioguiages are strictly more
compact than the language of explicit representations lamthhguage of interval
representations of such orders. Then we investigate th@leaity of a number of
decision problems pertaining to the exploitation of insrerders represented by
weighted bases. We show that several key decision probleomsparing alterna-
tives, determining whether an alternative is feasible)aiertractable when interval
orders are represented by weighted bases, while some @yeekision problems
(determining whether an alternative is undominated) bectmildly” hard (i.e.,
at the first level of the polynomial hierarchy); this appeasshe price to be paid
for the gain in spatial efficiency offered by our represantatanguages. Interest-
ingly, our results show that in many cases the additionatesgive power offered
by our approach does not lead to a complexity shift, compiaréue penalty-based
approach to complete preorders representation.

The rest of the paper is organized as follows. Some forméihpirearies are given
in Section 2. How interval orders can be represented in alsimmdular way by
weighted bases is shown in Section 3. The expressivenesspatidl efficiency
issues are addressed in Section 4. Complexity results axédpd in Section 5.
Section 6 concludes the paper and gives some perspectiviesstieer research.

2 Formal Preliminaries

2.1 Propositional logic

We consider a propositional languag&O Pps generated in the usual way from
a finite setPS of propositional atoms, the connectives A, Vv, =, <, and the
Boolean constantsue (verum), false (falsum). For every formul& from PRO Ppg,
Var(X) denotes the set of all atoms frofS occurring inX. The size/X| of any
formula: is the number of symbols (atoms and connectives) used te it

A world over PS is a total function (i.e., a mapping) from PS to {0, 1}, which



can be represented as a bit vector (once a total, strictingdever P.S has been
specified). For instance, #S = {z,y, z} ordered in this way, then01 represents
the worldw such thatv(z) = 1, w(y) = 0 andw(z) = 1. The set of all worlds is
denoted by,

The notion of satisfaction is defined in the standard truticfional way. When a
world w satisfies a formula, we writew | ¢ and say thatv is a model ofp.
Mod(¢) denotes the set of all models of Inference is defined as model contain-
ment, a la Tarski= denotes logical equivalence.

2.2 Binary relations, scales and intervals

Let A be asetandt C A x A be a relation over; we consider:

e The relation/r over A defined byVa,,a; € A, (a1,a2) € Ig if and only if
(a1,a9) € Rand(az,a;) € R (note that/ is the symmetric part oR).

e The relationPy over A defined byVa,,ay € A, (a1,a2) € Py if and only if
(a1,a2) € Rand(ay, a1) ¢ R (hencePy is the asymmetric part aR).

Clearly enough, we havB = I U Pg andii N Pr = 0.

By construction,/; is a symmetric relation ané’z an asymmetric oné. If R is
interpreted as a preference relation such thata,) € R if and only if ¢, is at least
as preferred as,, thenIy is the associated indifference relatidiay(, as) € I if
and only ifa; anda, are equally preferred) anfé; is the associated strict preference
relation (a1, ay) € Pg if and only if a, is strictly preferred ta,).

A scaleS is a totally ordered set which has a least elemeand a greatest element
T such thatT # 1. < denotes the corresponding (complete) order.-Letenote
the identity relation ovef. We denote by, >, > the binary relations oves given
respectively bys; < sy ifandonlyifs; < s, and not §; = s5), s; > s, ifand only

if not (s; < s3), ands; > s, if and only if not (s; < s3), whatever the elements
ands, of S.

Theset of all intervalover S is Intg given by
Ints = {[s1, s2], [s1, S2), (51, 52, (51, S2) | 1,52 € S},
where:
so] is a notation fos € S | s; < s < s9};

° [81,
e [s1,59)isanotationfofs € S | s; < s < sy}
e (s1,s9] isanotationfofs € S | s1 < s < sy}

4" A binary relationP is asymmetric iffva, b € A, if (a,b) € P, then(b,a) ¢ P



e (s1,52) isanotation fofs € S| s1 < s < s2}.

For anyi of Intg of the formi = [sy, s3], [s1,82), (s1, S2], OF (s1,s2), We note
[(i) = s; andu(i) = so. lc(i) (resp.rc(i)) is the proposition stating thatis left-
closed (resp. right-closed), i.e., of the foifm, s5] or [sy, s2) (resp. of the form
[s1, S2] OF (81, 52]).

Each of the pairgsy, so], [s1, s2), (s1,52], (s1,$2) must be considered as a con-
cisenotationfor a (possibly infinite) set. However, a given interval ogescaleS
(viewed as a connected subseff S, i.e., a subset of such that every element of
S lying between two elements of the subset belons to the sabsetll) may easily
have more than one pair representation. This is rather abvar the empty inter-
val (i.e., the empty set) which can be represented by anywyg@eres,; > s,, but
also for non-empty intervals in some cases. For instancgidfthe set of integers,
its subset3,4, 5} can be represented by the pgir6) but also by the pai3, 5].

In order to avoid any ambiguity, we can associate to everypapresenting an
interval over a scalé a normal representation |. This calls for the notions of
successor and predecessor. keand y two elements ofS; we say thaty is the
successoof x, notedsuces () = y, if and only ify > = and there isna € S
such thaty > z > z. Similarly, we say that is the predecessoof z, noted
pres(z) = y, if and only if x > y and there is na € S such thatr > z > .
Obviously enough, it can be the case that an element of a baal@o successor
and/or no predecessor (just consider the sRale{—oo, +0o} and any element of

it).

Given a pairi from Intg, one can associate tthe normal representation € Intg
of the corresponding interval. | is defined ag] if the corresponding interval is
empty; otherwise; | is defined as follows:

(il) = 13) if lc(7) or
[(i) does not have a successor

suces (I(i)) otherwise

le(i ]) le() if le(7) or

[(i) does not have a successor

true otherwise

u(@ ) = wu) if rc(i) or
u(7) does not have a predecessor

= pres(u(i)) otherwise



re(i) if re(i) or

re(i )
u(i) does not have a successor

true otherwise

Considering the previous example again, wheres the set of integers, the pair
i = (2,6) denoting the subs€B, 4,5} of S is such that |= [3,5]. Indeedg is the
successor o and5 is the predecessor 6f

For many scales, normalizing representations of non-enmpéyvals is useless.
Thus, it is easy to show that every pair representation ofraaropty interval over
adensescale is equal to its normal representation (a sSakedense if and only if
for everyz,y € S such thatr < y, thereq exists € S such thatr < z < y; every
dense scale is infinite and no element of it has a successqredacessor). Dense
scales have the interesting feature of always enablingrim¢diate values”.

In the following, without any loss of generality as to ex@igenessye assume that
every pair representation of an interval is its normal repeatation Especially,
whenever we consider a pair representatiohan interval; must be considered as
a short fori |. We could easily ensure this normalization condition bysidering
dense scales, only, but this would restrict the setting cesgarily (especially, some
“natural” scales (e.g. when numbers represent amounts néy)@re not dense.

(Intg, C) is a lattice §) is the least element dints andS = [L, T] is the greatest
one. Let>y,;,, ~mis and>y,,, be the relations fromints x Intg s.t. for every
pair of non-empty intervalg andi,, we have:

® i1 >y, o ifand only if
- (1) > u(iz) if not re(iy) and notle(iy ),
- 1(i1) > u(iz) otherwise;
® iy~ lo ifandonly ifi; Ny # 0;
® zlnts 19 if and Only |f’Ll >Intg 19 OF 74 ~Intg 19.

Let S be a scale. Given an elementof S, each relational operator € {=, <,
>, <, >} characterizes the intervals;) = {sy € S | sy r s1} of Ints. Each
setr(s;) consists of the set of all elements frasnwhich are located between two
elements ofS amongs;, T, L, one of them being;:

o = (s1) =[s1,51] = {s1};
o < (s1)=[L,s1];
o > (s1) =[s1, T];
o < (s1)=1[L,s1);
e > (s1) = (81, T]



2.3 Computational complexity

One of the main purposes of complexity theory (see e.g., f@letails) is to
classify problems according to their worst case requirémen computational re-
sources depending on the size of the input. In this frameyvegokoblem is a generic
guestion, i.e., a set of specific instances. Specificallgcistbn problem is one that
has only “yes” and “no” as possible answers. Formally, agiegiproblem can be
considered as a formal language consisting of the set dsdlfés” instances.

It is usually acknowledged that a practicable algorithm ng ¢hat runs in time
polynomial in the size of the input (assuming a standard otieomputation,
e.g., a sequential deterministic Turing machine). Acaagtyi, a decision problem
is considered tractable if and only if there exists an atbarithat can classify every
instance of it in a number of computational steps that is paryial in the size of
the instance.

The class of all decision problems that are solvable in pmtyial time is denoted

by P(TIME). All the remaining ones require exponential time (in preetiand are

considered intractable. In order to determine whether blpno is tractable or not,
it is sufficient to point out an efficient algorithm to solveat to prove that such an
algorithm cannot exist.

Unfortunately, for many problems, no polynomial time alguns are known but
today, nobody knows how to prove that super-polynomial tisreectually required.
For all these problems, the frontier between tractablelprob and intractable ones
is not fine-grained enough to classify them in a computatipnaluable way:
there is a need for more refined classes for problems for wdnehdoes not know
whether they belong tB.

The notion of non-deterministic Turing machine is an impottool to achieve this
goal. Thus, the class of all languages (encoding decisioil@ms) that can be rec-
ognized in polynomial time by such a non-deterministic miagls denoted biNP.
Because a deterministic Turing machine can be considerachas-deterministic
one, the inclusio® C NP is established; however, the converse is the famous open

problem:P Z NP (that is conjectured false).

Among all the problems iNP, the hardest ones are those from which every prob-
lem in NP can bepolynomially many-one reduceduch problems are referred to
asNP-complete If any of them has a polynomial algorithm, then= NP holds.
Accordingly, it is believed that it is impossible to soliP-complete problems

in (deterministic) polynomial timesaAT, the problem of determining whether a
propositional formula in conjunctive normal form is satilie, is the prototypical
NP-complete problem. Its complementary problensAT (determining whether a
propositional formula in conjunctive normal form is unséible) is not necessarily



in NP (in contrast td?, NP is not known to be closed under complementation). It is
assigned to the clag®NP that contains the complementary problems to problems
of NP. Itis conjectured thallP # coNP.

To go further into the classification of non-efficiently salble problems, another
important tool is the notion of Turing machine (determiitistr non-deterministic)
with oracle i.e., a Turing machine with a black box which is able to dedide
membership to some languages in a single operationXlle¢ a class of decision
problems (i.e., language®* (resp.NP¥X) is the class of all decision problems that
can be solved in polynomial time using a deterministic (resm-deterministic)
Turing machine that can use an oracle for deciding the meshigeto any language
from X for “free” (i.e., within a constant, unit time). For instaneNF is the class
of problems solvable in polynomial time by a deterministiaifig machine with
an oracle for any language hP.

On this basis, the classés;, > andII} are defined by:

AP = b =T =P,
AVERES sz’p
7., - NP,
I, = coxl, , = coNP>,

Thus,Al = P, 3} = NP, IT} = coNP and A% = PNP. A5[O(log n)] (also referred
to as©?) is the class of problems which can be decided in polynoria uising
only logarithmically many calls to aNP oracle.

The polynomial hierarchH is the union of all2% (for £ non-negative integer). A
decision problem is said to be at thé level of PH if and only if it belongs ta\}_ ;,
and is either}-hard orII}-hard. While it is easy to check that baftf C X},
Ay CII7,4, X € A}, andIl} C A7, hold for everyk, it is unknown whether
the inclusions are proper or not (but it is conjectured th& the case). Thus, it
is strongly believed that the polynomial hierarchy doesauliapse, i.e., is a truly
infinite hierarchy (for every integér, PH # 7).

All the problems inPH can be solved in (simple) exponential time on deterministic
Turing machines. Nevertheless, the level where a giversieciproblem lies in
the polynomial hierarchy can be viewed as a measure of itptdity, since this
level intuitively corresponds to the number of independsnirces of intractabil-
ity to be dealt with. Especially, removing one source ofantability by focusing

on a restriction where it disappears is not enough to questie other sources of
intractability. Thus the higher a problem in the polynonhigrarchy the more com-
plex, in the sense that more severe restrictions have tofledpo get a tractable
case.

10



3 Representing Interval Orders
3.1 Interval orders

Let us first give a formal definition of interval orders:
Definition 3 Aninterval orderR C A x A is a relation which is:

e Complete¥ay,as € A, (a1,a2) € Ror (az,a1) € R.
e Ferrers:Vay,as, a3, aq € A, if (a1,a9) € Rand(as,ay) € R, then(ay,ay) € R
or (as,asz) € R.

Because they are complete, interval orders are reflexiggoak. However, they are
not necessarily transitive relations (and this is wherg thepart from preorders).
Nevertheless, the strict preference relatigpassociated to an interval ordé&ris
transitive and Ferrers.

Example 2 Let A = {a,b,¢,d} and letR = {(a,a), (a,b), (a,c), (a,d), (b,a),

(b,b), (b,c), (b,d), (c,b), (c,c), (¢,d), (d,c), (d,d)}. R is an interval order over
A (but not a preorder over since e.g., we have:,b) € R and (b,a) € R but

(c,a) ¢ R). We havelg = {(a,a), (a,b), (b,a), (b,b), (b,c), (c,b), (c,c), (c,d),

(d,c), (d,d)} and Pg = {(a, ¢), (a,d), (b,d)}.

The following representation theorem due to Fishburn [b@lgs that any interval
order over a countable set can be characterized by intesvalR:

Proposition 1 [10] Let A be a countable set. A binary relatidd C A x A is an
interval order if and only if there exist a mappiggrom A to R and a mapping;
fromR to R™® such that for any:;, a; € A, we have

(a1,a2) € Rifand only ifg(a;) + q(g(a1)) > g(az).
Indeed, the mappingsandq come down to associating to any elemerdf A an

interval[l, = g(a),u, = g(a) + q(g(a))] overR such that for any:;, as € A, we
have:

(a1,a9) € Prifandonlyifl,, > u,,,

[ J
e (aj,a9) € Igifandonlyifl,, < u,, andl,, < u,,.

Example 3 Let g and ¢ such that:g(a) = 6, g(b) = 4, g(c) = 2, g(d) = 0, and

q(z) = 3 for everyxz € R. (g, q) represents the relatio® given in the previous
example. An interval representation Bfmay be given as a set of pairs where the

> R* is the set of non-negative real numbers.
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first element of each (ordered) pair is an alternative andgbeond one is the inter-
val associated to this alternativeia, [6,9]), (b, [4,7]), (¢, [2,5]), (d,[0,3])} is an
interval representation oR. The following figure illustrates this interval represen-
tation.

—_
b 6 9
—_
4 7
C
E——
2 5
d
—_
0 3

Fig. 1. Interval representation of the example 3

When A is finite, Fishburn’s theorem (Proposition 1) can be spemdl so that
closed intervals oN included in[0,2 x Card(A) — 1] are enough. Indeed, lét
be an interval order defined on the finite set= {ay, as, ..., a,} of alternatives;
taking advantage of Proposition 1, Igt(resp.u,,) be the lower (resp. upper) bound
of the real interval associated to the alternatiyeWe consider now the set of
endpointst = {l,,,u,, | a; € A} naturally ordered and we denote by réihk
(resp. ranku,,)) the number of elements of which are strictly lower thar,,
(resp.uy,) (for instance randl,,) = 0 if and only if Va; € A, 1, < [4;). Then we
have for alla;, a; € A:

e (a;,a;) € Prifandonly if rankl,,) > ranku,,),
e (a;,a;) € Igifand only if rankl,,) < rank(u,,) and rankl,;) < rank(u,,).

3.2 Weighted bases

We are now ready to define the notion of weighted base, at titaxsjevel first and
then from a semantical point of view:

Definition 4 Let PS be a finite set of atomic propositions and febe a scale. A
weighted basé3 over P.S and S is a finite multisetB of 5-tuples(¢, r1, s1, 79, $2)
where¢ is a formula ofP RO Ppg, 1 (resp.r,) is a relational operator fron{=, >,
>} (resp.{=, <, <}) ands,, s, are elements af.

At the semantic level, the 4-tuple,, s1, 2, so) represents the interval associated
to the formulag. As in the following example, generally; is less than or equal
to so, in the contrary case we have an empty interval (for moreildgtfease see
Subsection 2.2).

Example 4 Let PS = {z,y,z} andS = [L = 0, T = 100] € R naturally

ordered.B = {(—x, >, 30, <,80), (—z, >, 20, <,60), (z A —y, >,20, <,40), (z A
z,>,50,<,100)} is a weighted base overS and S.
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WhenB is a weighted bas€&/ard(B) is the number of 5-tupleB containsV ar(B)
denotes the set of all atoms fraftt' occurring inB, i.e.,Var(B) = U, s1.r2.50)€B
Var(¢). Finally, the sizéB| of B is equal to the sum of the sizes of each 5-tuple
r1, S1, T2, S2) INit, where the size ofg, 1, s1, 19, $2) is equal to |+ |s1|+ |s2| + 2;

if Sis anumerical scale, then its elements are supposed to fesegped in binary
notation.

Intuitively, 5-tuples(¢, r1, s1, 72, o) must be viewed as pieces of preferential evi-
dence, corresponding to imprecise evaluations of thergitimes under considera-
tion w.r.t. different criteria or w.r.t. different sourcebhus, on the example above,
(—x,>,30,<,80) means that for a given criterion or source, the utility of any
model of -z is between (or equal to) 30 and 80.

Remark 1 In order to alleviate the notations, when one of the endpsirmtr s, of
the interval associated to a formula is also one of the bound§ of the scales, a
triple (¢, r, s) may be used instead Qf, r1, s1, 2, s2). For example the last 5-tuple
of the previous example may be written(as\ z, >, 50) sincel00 is the greatest
element o5 = [0, 100].

Putting the criteria or sources together calls for aggregdtinctions:

Definition 5 Let f be any mapping fronints x Intg to Ints which is associative,
commutative and has a neutral elemente Ints. f is called anS-aggregation
function. It is extended to a mapping from any finite subsét.of to Intg, also

referred to asf, and defined inductively by:

o f(0) =ny,
o f({i}) =1,
L f({llal%v'lN}) :f(zlvf({Z%vZN}))

We are now ready to define the notion of satisfaction of a weijbase by an inter-
pretation. Each interpretation can be viewed as an impeges qualitative utility
function onS. I(w) is the interval where the actual (qualitative) utility of iew
lies. The notion of satisfaction is defined in a compositioma@y and depends on
the choserb-aggregation functiorf:

Definition 6 Let PSS be a finite set of atomic propositions and febe a scale. Let
I be an interpretation ovePS and S, i.e., a mapping from” to Ints. Let f be

an S-aggregation function/ f-satisfiesa weighted basé3 over PS and S, noted

I = Bifand only ifvw € 279, we have

I(w) € f({ri(s1) Nra(sa) | (¢,71,81,72,52) € Bandw = ¢}).

The neutral element of the-aggregation function will be used as the interpretation
of a world which satisfies none of the formulae of the givengh&d base.
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Among the possiblg-aggregation functiong for any scales aren, whose neutral
elementn is S = [L, T] and+ which is such that for any, iy € Intg, iy + iz
is the smallest interval (w.r.EC) containing bothi; andi,. Clearly enough, the
neutral element., is the empty interval, noted[]. It is obvious to show that is
the infimum function for the latticé/nts, C), and thatt is the supremum function
for this lattice.

Simple S-aggregation functions ar@in andmaz: when none of; andi, is the
empty interval,l(i; minisy) is the minimum ofl(i,) and(i2), u(i; Miniy) is the
minimum ofu (i) andu(is),

lC(il minig) le(dy

(in) it 1(i1) < 1(iz)
= lc(zz) if l(lg) < l('ll)
(i1)

= le(iy) orle(ia) otherwise

re(ipy minig) = re(iq) if w(iy) < u(iz)
= ’I“C('l.g) if u(’Lg) < U(ll)
= rc(iy) andre(iy) otherwise

In the remaining case, i.e., if at least oneigfi, is [}, theni; mini, also is the
empty interval (i.e.[] is an absorbing element). We havg;, = [T, T].

When none of; andi, is the empty intervall(i; maxi,) is the maximum of (i, )
andl(iy), u(i; maxiy) is the maximum of(i; ) andu(is),

le(i, maxisy) )
= lc(7,2) if l(lg) > l(’Ll)
)

|
o~
o
—~
~.
—_

= lec(iy) andle(iz) otherwise

re(iy mindg) = re(iy) if w(iy) > u(iz)
= re(ig) if w(io) > u(iy)
= rc(iy) orre(is)  otherwise

In the remaining case, i.e., if at least oneigfi, is [|, theni; maxi, also is the
empty interval. We have,,,,, = [L, L1].

Another simpleS-aggregation function for a numerical scéle= [ L, T] C R U
{—00,+00} (such thatS contains)) is sum: when none of; andi, is the empty
interval ], letls be the sum of(i;) andl(i,) andrs be the sum ofi(i; ) andu(is);
we have:
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l(iysumiy) = [s ifise S

= 1 ifls< L
= T ifls>T
u(ip sumiy) = rs ifrse S
= 1 ifrs<lL
= T ifrs>T
le(i;sumiy) = lc(iy) andlc(i) ifls € S
= true otherwise
re(ip SUMis) = rc(iy) andle(ry) ifrse S
= true otherwise

In the remaining case, i.e., if at least oneigfi, is [|, theni; sumiy also is the
empty interval. We have,,, = [0, 0].

The choice of the5-aggregation function may depend on different notionshsuc
as the nature and properties of order to represent or thextooit decision prob-
lem, etc. For example, “+” may be used in a case where we do aot t® lose
any information and where the accuracy is not very important may be useful
when the precision of the information is cruciahax (resp. “min’) may represent
an optimist (resp. pessimist) viewsuni may be necessary in the case where the
addition of values has a reasonable meaning.

For instance, the weighted baSgea A summer, >, 20), (sea A summer, <,30),
(msea A summer, >,10), (—sea A summer, <,25), (sea, >, —10), (sea, <,—5)}
can be used to represent preferences concerning the petodd summer or not)
and the location (near the sea or not) of future vacationigptes can be concerned
here with two criteria: pleasure and cost (for the last twa)n, min andmax are
(among others) natural ways to aggregate intervals agedcia 5-tuples in this
case.

The weighted basf(electric—guitar, >, 20), (electric—guitar, <,1000), (electric—
guitar, >,200), (electric—guitar, <,500), (electric—guitar, >, 300), (electric—
guitar,<,700)} collects evidence given by three friends about the pricefige
good, yet cheap electric guitar. Hefeis a natural aggregation function if the
sources are all completely reliable (it leads to unceryaiatiuction).

The presence of several criteria or several sources expldiy a multiset represen-

tation of weighted bases is more convenient than a set-tmasedt can be the case
that two criteria (or sources) evaluate alternatives insgmme way; while this has
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2PS IB IE Igax Iglin I%um

000 || [30,60] | [20,80] | [30,80] | [20,60] | [50,100]
001 || [30,80] | [30,80] | [30,80] | [30,80] | [30,80]
010 || [30,60] | [20,80] | [30,80] | [20,60] | [50,100]
011 || [30,80] | [30,80] | [30,80] | [30,80] | [30,80]
100 || [20,40] | [20,60] | [20,60] | [20,40] | [40,100]
101 I [20,100] | [50,100] | [20,40] | [70,100]
110 || [20,60] | [20,60] | [20,60] | [20,60] | [20,60]
111 || [50,100] | [50,100] | [50,100] | [50,100] | [50, 100]

Table 1
Canonical interpretations.

no impact when the aggregation function under consideraia@empotent (liken
and+), this is not the case more generally (just considen).

3.3 Canonical interpretations

In the general case, a weighted base can be associated tanterpyetations that
f-satisfy it. However, one of them plays a specific role: fheanonical interpreta-
tion associated t@.

Definition 7 Let PS be a finite set of atomic propositions and febe a scale. Let
f be anyS-aggregation function. Th¢-canonical interpretatiomé associated to
the weighted basB over PS and S and the aggregation functiofiis the interpre-
tation overP.S and S given by: for anyw € 2%,

]g(w) = f({rl(sl) N T?(SZ) | (¢7 71,81, T2, 52) € B andw ): ¢})

Example 5 Let PS = {z,y, z} ordered in this way. Le$ be the scal¢0, 100] C R
naturally ordered.B = {(—x,>,30,<,80), (—z,>,20,<,60), (x A —y, >, 20,
<,40), (z A z,>,50,<,100)} is a weighted base ove?S and S. Table 1 gives
interval representations ofy, 77, I%ax, [min and 1™,

If; can be characterized as the least specific interpretdtisatisfying B, in the
sense that for each interpretatibrf-satisfying3 and for eachu € 27°, we have
I(w) € I(w).

Note that then-canonical interpretation associated to a weighted baseikeast
specific interpretation which satisfies every elemenBof
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Now, a notion of f-equivalencebetween weighted bases oveS and S can be
easily defined: two basds, and B, are said to bg-equivalent when the set of all
interpretationsf-satisfying B; is equal to the set of all interpretatiofissatisfying
Bs. It is easy to prove that two weighted bases gequivalent whenever they are
associated to the sanfecanonical interpretation:

Proposition 2 Let PS be a finite set of atomic propositions and ebe a scale.
Let By, B, be two weighted bases ovétS and S. Let f be anyS-aggregation
function. B, and B, are f-equivalent if and only iff, = I, .

Proof:Obvious.
O

In order to make precise the connection betwégeand the corresponding interval
order, we still need two notions, namely the notionfefonsistent weighted base
and the notion off-possible world.

Obviously enough, the trivial interpretatidp s.t.Vw € 2%, I(w) = [] f-satisfies

any weighted bas&. For this reason, the notion gtconsistency of a weighted
base cannot be defined as the existence of an interpretasatisfying it but has
to be a bit more elaborate:

Definition 8 Let PSS be a finite set of atomic propositions and febe a scale. Let
f be anyS-aggregation function. A weighted bagseover P.S and S is said to be
f-consistenif and only if there exists an interpretatidnover P.S and .S such that
I = Band! # I.

Example 6 The baseB given in Example 5 ig-consistent forf amongn, -+,
max, min and sum.The base{(x, >, 3), (z,=,2), (-z,<,1), (-z,>,3)} is not
N-consistent but is--consistent.

It is easy to see that a weighted bdseés +-consistent if and only iB contains at
least one 5-tuplég, 1, s1, 2, s2) such that(s;) N ra(se) # []. Every weighted
baseB is min-consistentmax-consistent andum-consistent except when it con-
tains a 5-tuple(¢p, r1, s1, 79, s2) such thatr(s;) N ra(s2) = || (i.e., the interval
specified byry, s, 9, s2 IS empty).

Now, the preimage df by ],J; is a subset 02" of worlds which are considered as
impossible givens:

Definition 9 Let PS be a finite set of atomic propositions and febe a scale. Let
B be a weighted base ovétS and S. Let f be anyS-aggregation function. Leb
be a world from2”S. w is said to be-impossiblegiven B if and only if I} (w) = .
w is said to be-possiblewhen it is notf-impossible.
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Possible;(B) denotes the subset @f® consisting of all worlds which arg-
possible givenB. Clearly enough, we havBossibles(B) = 0 if and only if B
is not f-consistent if and only ii’};g = Iy.

Example 7 Let us consider again the bageused in Example 5. We ha¥Assible~(B) =
279\ {101}.

f-possible worlds correspond to feasible alternatives Amnsistency ensures
that at least some alternative is feasible.

For instance, if we step back to the example of a person whtswwaknow whether
she must buy or not an electric guitar, the cdsé&lectric — guitar) = [| means
that the pieces of information given by her three friendsjairgly contradictory,
hence we could not consider this world.

We are now ready to define the preference relations induces wgighted base
and an aggregation function:

Definition 10 Let P.S be a finite set of atomic propositions and fete a scale.
Let f be anyS-aggregation function. LeB be a weighted base ovétS and.S. We
define the binary relations 5, ~% and=%,C Possible;(B) x Possible;(B) by:

letws, wy € Possibles(B),

o wi =% wyifand only if I (w1) > s T (wn);
o w1~ wy if and only ifTf(wi) ~ g Th(wa);
o wy =1 w,ifand only ifw; =% wy OF wy ~% ws.

The next result is a soundness one: it shows that every vesighdse anch-
aggregation function actually specifies an interval order g’

Proposition 3 Let PS be a finite set of atomic propositions and febe a scale.
Let f be anyS-aggregation function. LeB be a weighted base ovérS and S.
>, is an interval order onPossible;(B). ~% (resp.>1%) is its symmetric (resp.
asymmetric) part.

Proof: The result follows directly from Proposition 1.
O

It is obvious that depending on the chosgraggregation function the resulting
interval orderk may differ. For instance, in Example 5, the use of five differe-
aggregation functions leave place to four different indkéorders (see Table 1): all
the worlds are indifferent when “+” andifax” are used (so we obtain a preorder);
with “N”, all the relations, except the one betweldri and100 (111 P 100), are
indifference and with thin”, all the relations, excepltll Pz 100 and111 Py 101,
are indifference and finally withsum”, all the relations, except01 Pg 110, are
indifference. It is easy to remark that in all of the last faases the indifference
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relation associated to the interval order is not transitive

Finally, it is easy to see that twg-equivalent weighted bases specify the same
interval order but the converse is false (i.e., an order nmayepresented by two
different, yet notf-equivalent bases); for instance consider a numericaé dite

R U {—o0, +0}; consider two weighted basdé$ and B, and imagine the case
whereB; is defined likeB; except that all the values are multiplied byFor that
reason we define another, less demanding, notion of eqoix@téat we callf, g)-
order-equivalenceif f is anS;-aggregation function ang is an S,-aggregation
function, then a weighted base, over PS and S; is said to be(f, ¢g)-order-
equivalent to a weighted bag# over PS andS; if and only if tgl ==%,.

3.4 Simplicity and modularity

Basically, in our approach, the connection between the htethbase representa-
tion B of an interval order and the order itself is as follows: Sk, 71, s1, 72, S2)

of B are viewed as pieces of preferential evidence and are agjgregsing a suit-
able functionf; the corresponding-canonical interpretation maps each interpreta-
tion (representing an alternative) to an interval; the eisged interval order follows

in an obvious way once alternatives associated to the emt#gwal have been re-
moved.

In our opinion, this semantics is simple; of course, sinplibas no formal def-
inition but let us stress that the semantics of weighted @sitjpnal formulae (or
penalty-based representations) as considered in [164% Ad used for represent-
ing cardinal preferences is very close to the semantics viret pat. Indeed, in
penalty logic, weighted basd3 are multisets of pairs of the forrfy, o) where

¢ € PROPpg anda € R U {—o00, +00}; v is the penalty to be paid whenewvgis
not satisfied; associated to each weighted Bamea propositional formuld” used

to discriminate impossible worlds: the possible worldsrasdricted to the models
of K. Disutilities o are aggregated in an additive way so that the disutility gf an
worldw € Mod(K) is given byd(w) = X4 a)ep | wieo Q-

The main differences between penalty-based represemsatib cardinal prefer-
ences and our framework are as follows: in penalty-base@septations, the pur-
pose is to represent complete preorders (and not intergtal®); each piece of pref-
erential evidence allows to map worlds (representing radtieres) to values from
a numerical scalé& (disutilities) and not to intervals over ar$y;, sum is the ag-
gregation function (while we consider other functions im famework); finally,

a further propositional formul& is used to discriminate impossible worlds in the
penalty-based approach (while we consider as impossibtetivorlds associated
to the empty interval).

The modularity of the representation in our framework isiaodd, at the syntax
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level, by the multiset representation of weighted baseifles can be considered
in a separate way) and at the semantical level, by the cotnmaeity of the con-
struction of thef-canonical interpretation.

4 Expressiveness and Spatial Efficiency

After the soundness result given by Proposition 3, let us $inew that a com-
pleteness result can be achieved for some specific choicesatdsS, whatever
the chosert-aggregation functiorf. Of specific interest is the scale = [0,2 x
Card(A) — 1] € N.® From Fishburn’s result, it comes that any interval orderove
a finite set of alternatived can be represented by a weighted base in our setting:

Proposition 4 Let A be a finite set of alternatives and an interval order onA.
For everyS-aggregation functiory with S = [0,2 x Card(A) — 1] C N, there
exists a set of propositional atonsS' and a weighted basB over PS and S such
that there is a bijectiob betweenA and Possible(B) and for everyu,, a; € A,

we haver, > as if and only ifb(ay) =% b(as).

Proof: Using Proposition 1, we associate an interjlglu,| to each alternative
a of the setA. We define a set of propositional atom?s$ such asCard(A) <
2Card(PS) “and a weighted basB as follows. We associate a worlg, € 279 to
each alternative in a bijective way (i.e.p(a) = w,). For eachv, we consider a
formula ¢, satisfied only byw, (this is trivially possible), and add t8 (initially
empty) the constrainti,, >, l,, <, u,). It is easy to see that for evety, a, € A,
we havea; > a, if and only if b(a;) =% b(as).

O

Obviously enough, this proposition can be trivially exteddo every case a scale
isomorphic to[0,2 x Card(A) — 1] € N (naturally ordered) is considered. This
proposition also shows that the choice of the aggregatioction has no impact on
the expressiveness issue, as soon as such a scale is cedsider

Contrastingly, imposing strong restrictions on the scalkatever the chosen set
of atoms and the aggregation function) easily leads to ¢p&ifi expressiveness;
for instance, if the scale under consideration is degeaa@that it contains only
the two extremal elements and T, then whatever the choice @&tS and f, the
corresponding languages of weighted bases cannot aclievepresentation of
any interval ordet? for which a Pg-chain with more than two elements exists.

6 Alternatively, we could consider the scafe= R U {—o0, +00} where< extends the
standard ordering on real numbers so that —oc is the least element ¢f andT = +oc0

is the greatest element &f. Our preference to integers instead of reals is motivated by
representational and computational issues.
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Similarly, Card(B) has a strong impact on the expressiveness issue: the interva
representation of the order given B/contains at most“*45) elements, hence

an interval order for which a Pg-chain with more tha¢*45) elements exists
cannot be represented B; whatever the choices ¢fand f.

Let us now show that a language of weighted bases for refnegenterval orders
is strictly more expressive than the language of penalgetaepresentations for
cardinal preferences:

Proposition 5 Every complete preorder on a set of alternatives can be ssmted
in the language of weighted bases usthg- RU{—o0, +oc} as the scale angum
as theS-aggregation function. Contrastingly, it is not the casatthavery interval
order can be represented in the language of penalty logic.

Proof: It is enough to prove the first point since it is known that theguage of
penalty logic can express complete preorders but nothing general (see [5]).
We do it by pointing out a translation from the language ofgignbased rep-
resentations of complete preorders to the language of tesighases. LeP =
{(¢:, ;) | i € 1} be a penalty base and I&t be the associated constraint (a propo-
sitional formula) such that the feasible alternativesespond to the models @
(i.e., the possible worlds are restricted to the model& pfWe associate t& and

K in linear time the weighted base

Bpx = {(=¢i,=, ;) | i € I} U{(-K, <,0), (—K,>,0)}.

Clearly, we have;'" (w) = || for everyw [= K, due to the 3-tuple§- K, <, 0),
(-K,>,0)in Bpk; furthermorefgi”;{(w) = [d(w), d(w)] for everyw € Mod(K)
whered(w) represents the disutility of the world(d(w) = D (csrm i) B | wheghs i
= (40P | wite; % )- AS @ consequence, for any,w, € Mod(K), we have
d(wl) > d(UJQ) if and OnIy if wy =F" W, andd(wl) = d(u)2) if and On'y if

Bp,k

wy ~E Wa. This shows the result of the translation as a faithful repn¢ation of

the complete preorder induced By
O

Let us finally turn to the spatial efficiency issue and briefisynpare our represen-
tation languages using weighted bases to both the expdipresentation and the
interval representations or interval orders.

The explicit representation of interval orders given by Digfin 3 (as sets of or-
dered pairs of alternatives from a finite gBtis just as compact as its representation
using intervals oveR, i.e., as set$; of pairs(a, i) wherea is an alternative antl

an interval. Indeed, from Fishburn’s theorem (see Projosit), we immediately
get that for any paifay, a) of alternatives occurring i}, (aq, a) € R if and only

if 1o, > U, OF (o < ug, andl,, < u,,). Hence from any sef; of pairs(a, i) rep-
resenting an interval orde, deriving the corresponding explicit representation of
R requiresO(|S;]?) time in the worst case (hence a polynomial amount of space).

21



Conversely, the explicit representation of an intervaleorbleing given, an inter-
val representation of this order can be computed in polyabtime. For instance
Doignon [8] pointed out a polynomial time algorithm for coatimg the minimal
interval representation of an interval ordRrover a setA of alternatives; here a
representation oR is a pair(/, «) of mappings fromA to Intp+;a representation
(I*,u*) of R is minimal if and only if for all the representatios «) of R and for
all ain A, I*(a) < Il(a) andu*(a) < u(a).”. In the same vein Isaak [13] gave a
polynomial time algorithm for computing an interval repatation of an interval
order, which minimizes the number of different left and tigbunds of intervals.

Contrastingly, the ability offered by propositional logecrepresent sets of worlds
in a compact way is enough for ensuring that the languagesigfhted bases (at
least those which enable the representation of every iterder) are strictly more
compact than both the explicit representation and thevateepresentations. In-
deed, the problem with the explicit representation and nikerval representations
is that they both require an explicit representation of fkermatives. Assume that
A = 2F5 for a given setPS of n symbols: the explicit representation of any in-
terval orderRR over A contains at leas2” elements; this is also the case for any
interval representation ofl. However, some interval orders ovdrcan be rep-
resented in a much more compact way using a weighted basengtance, if
PS ={xy,...,z,}, B ={(x1 V...V x,=,T)} can be used for representing
a complete preorder where all the models:of . . .V z,, are indifferent but strictly
preferred to the remaining world (where all atoms are sg¢tfee) (it is enough to
considemax as the aggregation function).

5 Complexity Results

In this section, we investigate the complexity of explajtimeighted bases as inter-
val order representations. We aim at deriving general t&suolthe sense that we do
not focus on specific scalésand aggregation function$s S and f are parameters

of the decision problems we consider (especidlly, which can be infinite — is not

part of the input).

Nevertheless, we need to put some requirements on the abteptand f. We

first assume that a normal representation of any intérgalnts can be computed

in time polynomial in the size of(please see Page 7 for the presentation of a nor-
mal representation). Especially, deciding whether a gguregsentation denotes the
empty interval can be achieved in polynomial time. This agstion is not very de-
manding (dense scales satisfy it and finite scales as wek sirey are isomorphic

to a closed interval of the s&tof non-negative integers). We also assume that

7 In this study, each endpoint ¢f(a) andu*(a) with a € A are defined as integer multi-
ples of a positive real number. As a consequence the "true’ssaa discrete one.
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is a linear time function (i.e., for any andy in the domain off, f(z,y) can be
computed in time linear in the size ofplus the size of)). Under this assumption
(which holds for any of, 4, min, max andsum), it is obvious that for any world
w € 2P5 and any weighted basg, the value ofl}(w) (as a normal interval) can
be computed in time polynomial in the size Bfplus the size ofu. We finally also
assume that the orderingon any scalé can be decided in polynomial time.

The first question to be addressed when taking advantage eighted baséd3 to
represent a non-trivial interval order is whetligis f-consistent.

Definition 11 f-CONSISTENCYIs the decision problem given by

e Input: A weighted basé over P.S andS.
e Question:Is B f-consistent?

Now, since the set of alternatives characterized by a wegghase is not always
equal to the set of all worlds, another important questioto idetermine when a
world is among the alternatives:

Definition 12 f-POSSIBILITY is the decision problem given by

e Input: A weighted basé over P.S and S and a worldw € 279,
e Question:Isw f-possible give3?

Since many different bases share the sgreanonical interpretation in the general
case, it is important to identify the complexity of decidiwbether two given bases
are f-equivalent; indeed, if two bases afeequivalent then they represent the same
interval order:

Definition 13 f-EQUIVALENCE is the decision problem given by

e Input: Two weighted baseB, and B, over PS and S.
e Question: Are B; and B, f-equivalent?

Similarly, it is important to identify the complexity of diging whether a first base

is (f, g)-order-equivalent to a second base (since, as we have sean e the case
that two bases that are ngtequivalent nevertheless represent the same interval
order); we assume here that bothand g are linear time aggregation functions
(possibly over different scales and.Ss,):

Definition 14 (f, g)-ORDER-EQUIVALENCE is the decision problem given by

e Input: A weighted basé3; over PS and .S;, and a weighted basB; over PS
and.S,.
e Question:Is By (f, g)-order-equivalent ta3,?

The following three decision problems are in some sensealgbuoblems when
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dealing with compactly represented interval orders (asdsuech, have been con-
sidered in other papers from the literature dealing with gact representation of
preferences, see [17]); lep be an element of -, -, ~}:

Definition 15 f-coMPARISONop) is the decision problem given by

e Input: A weighted basé over P.S andS and two worlds
wi,ws € Possibles(B).
e Question: Is wjophw, true?

Definition 16 f-NON-DOMINANCE is the decision problem given by:

e Input: A weighted basé over P.S andS and
aworldw € Possibles(B).

e Question: Is w undominated w.r.t>g in the set of all worldsf-possible given
B?

Definition 17 f-CAND-OPT-SAT is the decision problem given by:

e Input: A weighted basé& over PS and S and
aformulagp € PRO Ppg.

e Question: Does there exist an undominated wordw.r.t. =% in the set of all
worlds f-possible giverB s.t.w = ¢?

We have derived the following results:

Theorem 1 f-CONSISTENCYis in NP; it is NP-complete forf = nand inP for
f:+|f:min|f:max’f:8um'

Proof: Membership taNP comes from the following non-deterministic algorithm
running in polynomial time: (1) guess € 2V (3); (2) check that'};(w) # [|.

When f = N, NP-hardness comes from the following reduction from the atis
ability problemsaT: let X be any CNF formula fromP RO Ppg; let us associate
in polynomial time the bas®& = {(true, =, 1), (=%, =, T)} to X. If ¥ is sat-
isfiable, then it has a model; by construction/;(w) = [, L] # [}, henceB is
N-consistent. I is unsatisfiable, thenY: is valid; hence for every worlg € 279,
we haveljj(w) = []; in this caseB is notN-consistent.

Whenf = +, Bis +-consistent if and only i contains a 5-tuplép, r1, s1, 79, $2)
such thatr; (s1) Nra(se) # [], which can be decided in polynomial time. Similarly,
whenf = min, f = max or f = sum, B is f-consistent, except when it contains
a 5-tuple(o, r1, s1, 79, s2) such thatr;(s;) N re(sy) = [] (i.e., the interval specified
by r1, s1, 2, o IS empty). Accordingly, when interval emptiness can be dieatin
polynomial time, this is also the case piconsistency for those functiorfs

O
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Theorem 2 f-POSSIBILITY iSinP.

Proof: Trivial since]}é(w) (as a normal interval) can be computed in polynomial

time whenf is a linear time function.
O

Theorem 3 f-EQUIVALENCE is coNP-complete.

Proof: Membership toNP of the complementary problem comes from the fol-
lowing non-deterministic algorithm running in polynomiane: (1) guessv €
gVar(Br)War(B2): (2) check that'}, (w) # I%, (w).

Hardness comes from the following reduction from the us§ability problem

UNSAT: let X be any CNF formula fronP RO Ppg; to X let us associate in polyno-

mial time the base®, = {(X,=, 1)} andBy; = {(X,=,T)}. If X is satisfiable,

then it has a model; by construction/} (v) = [L, 1] andI% (w) = [T, T],

henceB; and B, are notf-equivalent. IfY is unsatisfiable, then for any world

w € 275, we havelf, (w) = I}, (w) = ny; inthis caseB; andB, are f-equivalent.
O

Theorem 4 (f, g)-ORDER-EQUIVALENCE is CONP-complete

Proof: Membership td\P of the complementary problem comes from the follow-
ing non-deterministic algorithm running in polynomial #8m(1) guessv;,w, €
gVar(B1)uVar(B2). (2) check that one of the following statements hold:

e w; is f-possible given3; andw; is notg-possible givern3s,

e w; IS not f-possible give3; andw; is g-possible givern3s,

e w; andw, are f-possible given3; andg-possible giverB, and
- Wi =, wy andw #£%, w or

© Wil Ngl Wo andwl 7/4!]32 wy.

Hardness comes from the following reduction from the us§ability problem
UNSAT, and holds even in the restricted cage= ¢ (and.S; = S,); let X be
any CNF formula fromP RO Ppg such thatVar(X) = {zy,...,z,}; to X let us
associate in polynomial time the bades= {(X Anew, =, 1), (X A—-new,=,T)}
andBy; = {(X Anew,=,T), (X A —new,=, L)}, wherenew is a fresh atom from
PS\Var(X).If X is satisfiable, then it has a modebver{z, ..., z,}, which can
be extended to a model of X Anew (resp. a model, of 3 A —new) by requiring
that w(new) = 1 (resp.ws(new) = 0); by constructionljg,1 (w) = [L,1] and
I} (wo) = [T, T], while I} (wi) = [T, T] and %, (ws) = [L, L]. Accordingly,
we havew, =% w; andw, =%, ws, henceB, is not(f, g)-order-equivalent td..
In the remaining case (i.e., whehis unsatisfiable), we have that for any pair of
worldsw;, andws, I}, (wi) = I} (wa) = If, (w1) = I%, (ws) = ny, henceB, is
(f, g)-order-equivalent td3s.

O
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Theorem 5 f-COMPARISONop) iSinP.

Proof: Obvious given that each normal intern)(w;) and I} (w,) can be com-

puted in polynomial time whetf is a linear time function.
O

Theorem 6 f-NON-DOMINANCE is cONP-complete.

Proof: As to membership, we consider the complementary problenshad that
it is in NP thanks to the following non-deterministic algorithm rungiin polyno-
mial time: (1) guess,’ € 2V"(B); (2) computel};(w) and I} (w'); (3) check that
IL(w') # [ and that’ =4, w.

Hardness comes from the following reduction from the us§ability problem
UNSAT: let 3 be any CNF formula fromP RO Ppg; to X let us associate in poly-
nomial time the bas® = {(—=(X A new),=, 1), (X A new,=, T)} (Wherenew
is a fresh atom fronPS \ Var (X)), and any worldo over2Ve ®)W{new} gych that
w(new) = 0; by construction, we havé),(w) = [L, 1]. If ¥ is satisfiable, then it
has a model’ such that.’(new) = 1; by construction, we havg}(w') = [T, T].
As a consequence, we havé ~% w: w is dominated w.r.t-%. Finally, if © is
unsatisfiable, the® is f-equivalent to the basf(true, =, 1)}, which interprets

all the worlds in the same way: is not dominated w.r.t-%.
O

Theorem 7 f-CAND-OPT-SAT is in X5. It is bothNP-hard andcoNP-hard (hence
it is not in NP U coNP unless the polynomial hierarchy collapses). For more spe-
cific cases we have the following results:

i. If card(S) > card(B), f-CAND-OPT-SAT is ©%-hard.

ii. Let Pg; be the set of potential (normal) intervals givBrand f defined as the
subset of nts given by{ f({r1(s1) Nra(sa) | (¢, 71, 51,72,52) € B'} | B' C
B). If a superset of Pg can be (explicitly) computed in polynomial time in
the size of3, then f-CAND-OPT-SAT is in ©5.

iii. If B can be turned in polynomial time into(g, sum)-order-equivalent base
B’ over PS and S’ s.t. every 5-tupléo¢, rq, 1,79, $2) Satisfiesr; => and
ry =<, and S’ is a closed interval oN containing0, thensum-CAND-OPT
SATis in AL.

Proof:

e Membership ta2} comes from the following non-deterministic polytime algo-
rithm using arNP-oracle: (1) guess € 2V%(5); (2) check thatv is f-possible;
(3) check thatv is not dominated W.r.bg using one call to atNP-oracle; (4)
check thatv |~ ¢.

e NP-hardness comes from the following reduction from the 8abdity problem
SAT: let X be any CNF formula fronP RO Ppg; to X let us associate in polyno-
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mial time the basé& = {(true, =, T)} and the formula = X. By construction,
¥ is satisfiable if and only if there exists a undominated warld.r.t. >4 in the
set of all worldsf-possible giverB such thatv = ¢. Indeed, any mode} of 3
does the job.

coNP-hardness comes from a straightforward polynomial redacfrom f-
NON-DOMINANCE: w is not dominated w.r.t-4 if and only if there exists a
undominated world> w.r.t. >§ in the set of all worldsf-possible givenB such
thatw = ¢ with ¢ = w.

More specific cases:

i. When card(S) > card(B), ©5-hardness comes from a polynomial reduc-

tion from PARITY-SAT [26]: given a sequence, ..., ¢, of formulae from
PROPpg such that for alk € {1,...,n — 1}, if ¢; is unsatisfiable then, .,

is unsatisfiable, is the maximum indéguch that; is satisfiable an odd num-
ber?n = 2m is assumed even without loss of generality. The reducti@sis
follows: to ¢4, ..., ¢, € PROPpg, let us associate in polynomial time the
baseB = {(¢; A new; A N\j_1_, j2 —new;,=,s;) | i € {1,...,n}} where
{s1,...,8,} € Sissuchthati,j € {1,...,n},ifi < jthens; < s;, and
the formulag = v;:ol ¢2;+1. By construction, the maximum indéxsuch that
¢, is satisfiable is odd if and only if there exists a modebdf ¢ which is not
dominated w.r.t-7%.

. Let us now show the membership ¢fCAND-OPT-SAT to ©} in a restricted
case. Roughly, the approach consists in determining arvaitg,, of Intg
which is maximal w.r.t>,,;, and such that there exists a woddsatisfying
I (w) = imas; this is done using binary search andR-oracle; then it is
enough to check using one call to HiP-oracle that there exists a modebf
¢ S.LIL(W) ~ints ima-

The difficulty here lies in binary searching since,,;, is not necessarily
complete; especially, it can be the case that, is not unique. In order to
overcome it, we refrain from considering,,,, directly, but a complete, strict
ordering >~ closely related to it. Formally, let be the binary relation over
the set of all non-empty intervals frofmts defined by:; > i, if and only
if 1(i1) > (i) or (I(i1) = I(i2) and ({c(i1) and notic(iz)) or u(iy) > wu(iz)
or (u(iy) = wu(iz) andre(iy) and notrc(iz)))). For any non-empty subsét
of Ints consisting of non-empty intervalsyaz(E, =) is a singleton{:Z 1.

It is obvious thatVi,,i, € E, if i1 >, 42 theni; > i;. We also have
maz(E, >1s) = {i € E | i ~mu, i2,,.} (see Lemma 1 on the appendix
for the proof).

One can now design a polynomial time algorithLSE- f-CAND-OPT-
SAT-1 for decidingf-CAND-OPT-SAT (under the requirements given in the
proposition), using a logarithmic number of calls tolR-oracle (please see
Algorithm 1 on the appendix). It mainly consists in binanasghing {2 __
in the set of potential intervals (or the given supersetpfiere, £ = {i €
P\{[]} | 3w € 2Ver®BWVaerd) st TL(w) = i} (for the definition of rank used
in the allgorithm, please see Subsection 3.1).

The evaluation of the condition of each conditional i0L8E- f-CAND-
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OPT-SAT-1 requires one call to awP-oracle. The total number of calls to
such an oracle is thus upper bounded by, Card(P)] + 1; the result then
follows immediately sinc&'ard(P) is upper bounded by(|B|) wherep is a
polynomial such thatP| = p(| B|).

ii. Let us now finally show the membership gFCAND-OPT-SAT to A} in a
second restricted case. Roughly, the algorithm\&- f-CAND-OPT-SAT-
2 used to prove it consists in first computidgj, then in binary searching
m =12, with E = {i € Intg\{[]} | Jw € 2VerBWVar) st 19, (w) = i},
in the intervall0, M = >, » o, < s,)ep s2] € S’ (please see Algorithm 2 on
the appendix). Indeed, for any intervat Ints, we have that ~p,,;, il if
and only ifm € 4.

The evaluation of the condition of each conditional i0L8E- f-CAND-
OPT-SAT-2 requires one call to aP-oracle. The total number of calls to
such an oracle is thus upper bounded2by [logs M + 1] + 1. Finally, the
number of bits in the binary representation of apyn B’ is upper bounded by
p(|B|) wherep is a polynomial such tha®3’| = p(| B|); similarly, the cardinal
of B’ is upper bounded by(|B|), and as a consequence the number of bits
in the binary representation af/ is upper bounded bg x p(|B|); it comes
that the value of\/ is upper bounded bg?*r(5D); thus, the total number of
calls to anNP-oracle in LVE-f-CAND-OPT-SAT-2 is upper bounded by
2 x [logy (22%PUBD) 411 +1 = 2x [2x p(|B|) + 1] + 1, hence by a polynomial
in the input size, and the result follows.

O

To conclude with the complexity results, observe that the{§g, s,], [s1, s2),
(s1, 2], (s1,82) | (3r,s(é1,r1,81,7,8) € Borsy € {L, T})and(3r, s(¢pa, 7, 5,79,
s9) € Borsy, € {1, T})} is a superset of botl?y, P3, Prin and P2* and it
can be computed in time polynomial in the size®f this shows that-CcAND-
OPT-SAT, +-CAND-OPT-SAT, min-CAND-OPTSAT andmaz-CAND-OPT-SAT are
in ©5.

In light of our results, it turns out that several key deansproblems when deal-
ing with preferencesf-cCOMPARISONop), f-POSSIBILITY) remain tractable when
interval orders are represented by weighted bases, whihe sther key decision
problems (-NON-DOMINANCE, f-EQUIVALENCE, (f, g)-ORDEREQUIVALENCE,
f-CONSISTENCY) become “mildly” harder (i.e., at the first level of the pobmial
hierarchy) than the corresponding problems based on éxmlimterval represen-
tations (which are tractable). Remember that a decisioblenois at the first level
of PH if and only if it belongs toAf and it is eithemMNP-hard orcoNP-hard (for
more details on the polynomial hierarchy please see SubseB). This appears
as the price to be paid for the gain in spatial efficiency effieby our represen-
tation languages. Nevertheless, this complexity shifhatgroblem level does not
imply a complexity shift at the instance level, i.e., whetuatruntimes are consid-

28



ered; indeed, as explained before, the sizes of the expoiesentations of some
interval orders are exponential in the size of some weightesgs representations
of the same interval orders. Hence, a (deterministic) &lgor running in (sim-
ple) exponential time for deciding any problem amofiglON-DOMINANCE, f-
EQUIVALENCE, (f, g)-ORDEREQUIVALENCE, f-CONSISTENCY can easily prove
more efficient on some instances than a polytime algorithnthi® “corresponding
problem”, i.e., when the explicit representation of an rivék order is considered
instead of a weighted base one.

We do not know whethef-CAND-OPT-SAT is at the first level of the polynomial
hierarchy or at the second level in the general case but sultseshow it at the first
level of the polynomial hierarchy for many interesting case

Finally, our results show that the additional expressivergrooffered by our ap-
proach does not lead to a complexity shift compared to thalpebased ap-
proach to complete preorders representation. Indeed otihelexity results forf-
POSSIBILITY, f-COMPARISONop) and f-NON-DOMINANCE as given above coin-
cide with the complexity results for the corresponding feats reported in [17]. In
contrast to our framework, the complexity OAND-OPT-SAT in the penalty-based
approach is imA} while this is not ensured in our approach; the difficulty ceme
from the fact that not only the scale is not necessarily nigakin our setting, but
itis not part of the input of the decision problem (hencedtisno way to compute
a notion of “mean” value, which is required for binary seangi.

6 Conclusion

In this paper, we have shown how interval orders can be excagleeighted bases,
a subject, to our knowledge, that has not been studied befanepresentation is
simple and general in the sense that aggregation functi@an be used are not
fixed but just have to satisfy some basic properties. We gave simple examples
of the use of such weighted bases when different aggreglatimtions are consid-
ered. Among other things, we have shown that all intervadrdan be represented
using some weighted bases and we have identified the cortyptdfxa number of
decision problems pertaining to the exploitation of contlyaepresented interval
orders.

This work calls for a number of directions of future work. Omiethem consists
in designing compact representations for other preferegleéions, including par-
tially ordered intervals an@@I interval orders.PQI interval orders are prefer-
ence structures with three relatioRs(strict preference relationy) (weak prefer-
ence relation) and (indifference). They have been introduced and charae@riz
by Tsoukias and Vincke [24,25FP Q1 interval orders have an interval representa-
tion: strict preference holds when one interval is comyetethe right of the other
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one, weak preference holds when two intervals have a nonyaniprsection with-

out inclusion and finally indifference holds in case of irgthn. Concerning their
numerical representation Ngo The and Tsoukias ([20]) lyawen two algorithms,

the first one inO(n?) determines a general representation of these structudes an
the second one i@ (n) minimizes the representation given by the first algorithm.
Our weighted base representation appears appropriatesee structures. It is suf-
ficient to determine the three relatiof*s() and/ as we did for the preference and
indifference relations in Definition 10.

A second perspective consists in investigating furtherettfressiveness and spa-
tial efficiency issues within the family of representatianduages we pointed out.
Indeed, the choice &f and f has a clear impact on both issues in the general case.
It turns out that some spatial efficiency results from [5]domplete preorders can

be easily extended to the case of interval orders (for imstawhen a numerical
scale is considered, the inability of compactly encodingie@xponentially long
Pr-chains usingnin or max can be exploited to show the corresponding languages
less succinct than those for whighm is used). It would prove valuable to deter-
mine the expressiveness landscape and the spatial effidematscape for various
choices of the parametefsand f.
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Appendix

Lemma 1l Let E be any non-empty subset bitg consisting of non-empty inter-
vals. We have:
maz(E, > i) = {i € B | i ~pig il -

Proof:

) Vi € Ints, if i <pg iL,, theni & max(E, >r1,,): it is easy to see that if
i <tntg 2., theni ¢ max(E, >r,,). On the other hand >, & is not

max

possible since by the definition ¢f ,, we havel(:Z, ) > 1(i) or ((iZ ) = 1(7)

and ((lc(ipn,,) and notic(i)) or u(iy,,) > u(i) or (u(in,,) = u(i) andrc(i,,,)
and notrc(i)))). And u(iZ ) being greater than or equal t6Z ), it is not
possible to havé(i) > wu(:Z, ) whenrc(iZ ) ori(i) > u(if,) when not
reil ).
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i) Vi € Intg, if i ~pu, 12, thenVj we havej ~r,;, @ OF j <pn, i We show
that it is impossible to havg >, i. Suppose that there exisfssuch that
J >Ints ¢ Then we haveé(j) > (i) if rc(i) (orl(j) > u(i) if =rc(é)). On the
other hand sincé ~,;, iZ, . we havel(i) < ((iZ ) < u(i). So we will have
(i) < 1(Z ) < u(i) < I(j), which is in contradiction with the definition of
Z’E

max "

Algorithm 1 : Polytime algorithm forf-CAND-OPT-SAT using logarithmically
many calls to afNP-oracle

procedure SOLVE-f-CAND-OPT-SAT-1
Data : A weighted bas®& over PS andS and a formulap € PRO Ppg

Result :1 if a model of¢ undominated w.r.t-%, exists,0 otherwise
begin
ComputeP = Pé (or a superset of it) in time polynomial i3] ;
O = the set obtained by removing fromthe empty interva]| (if present) ;
SortO w.r.t. > ;
while O is not a singletor{i,,,,, } do
i = the interval of rank Card(0)/2] in O ;
if Jw € 2Var(BWVaer9) sych thatl},(w) € O and I}(w) > i then
‘ Remove from0 every intervalj such thatl/(w) - j
else
| Remove fromO every intervalj such thatj - i

if Jw € 2V (BIWVaerd) such thaty = ¢ and IL(w) ~rnt imae then
‘ return 1
else

L return 0

end
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Algorithm 2 : Polytime algorithm forf-CAND-OPT-SAT using anNP-oracle

procedure SOLVE-f-CAND-OPT-SAT-2

Data : A weighted bas®& over PS andS and a formulap € PRO Ppg

Result :1 if a model of¢) undominated w.r.t-4, exists,0 otherwise

begin

ComputeB’ over PS and a closed intervad’ of N such thatB’ is (f, sum)-
order-equivalent t@ ;

[=0;
U= D (g,2,51,<,2)€B" 52 3
while [ # u do
if 3w € 2Var(BIWVar(9) guch that/™ (w) # [] andi(15™(w)) > m then
‘ l=m+1
else
if Jw € 2Ver(BIWar(@) sych thatn € I5™(w) then
l=u=m
else
L u=m

if Jw € 2Ver(BIWVar(@) sych thatw = ¢ andm € I3 (w) then
‘ return 1

else

L return 0

end
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