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Abstract

This paper is centered on the notion of interval order as a model for preferences. We in-
troduce a family of representation languages for such orders, parameterized by a scale and
an aggregation function. We show how interval orders can be represented by elements of
those languages, called weighted bases. We identify the complexity of the main decision
problems to be considered for exploiting such representations of interval orders (includ-
ing the comparison problems and the non-dominance problem). We also show that our
representation of interval orders based on weighted bases encompasses the penalty-based
representation of complete preorders as a specific case.

Key words: Compact representation of preferences, Preferences over combinatorial
domains, Computational complexity

1 Introduction

Dealing with preferences over alternatives is an importantissue in many fields, like
economics, decision theory, and artificial intelligence. Preferences are generally
formulated as binary relations which are related to a notionof “order”. Different
types of models may be used for their representation. Many existing models are
quantitative ones, the quantification of preferences rendering easier the search for
optimal or near-optimal decisions. Much work has been devoted so far to such mod-
els in social choice theory. In the majority of these works, preference is given by a
utility function (i.e., a mapping from the set of alternatives under consideration to
the setR of real numbers). On the other hand, pure qualitative settings are adequate
when quantifying preferences is meaningless1 or when no quantification of prefer-

1 In real life situations, when the preferences are just ordinal, the following type of affir-
mations about preferences intensities can be a non-sense: “the preference of alternativea
over alternativeb is two times the preference of alternativec over alternatived”.
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ences is known. In such settings, a preference relation is typically defined as a com-
plete preorder (i.e., a reflexive and transitive relation) over the set of alternatives.
However, such a model for preferences does not prove adequate to all situations,
and other models (generalizing the complete preorder one) have been pointed out.
In particular, a well-known problem with the complete preorder structure for pref-
erence is that the associated indifference relation is necessarily transitive, and it is
known that such a property may be violated in the presence of thresholds as shown
in the famous example of Luce [18]:

Example 1 Let the set of alternativesA = {c(0), . . . , c(100)} consists of 101 cups
of coffee which are identical except that theith cupc(i) containsi grains of sugar.
Any human agent who wants to compare those alternatives by tasting them is not
able no make any distinction betweenc(i) and c(i + 1), hencec(i) and c(i + 1)
(i ∈ 0 . . . 99) are indifferent for the agent. Assuming such indifferencerelation
transitive would imply thatc(0) and c(100) are indifferent as well, which is not
adequate whenever the agent prefers coffee with sugar.

Among other relational structures like quasi-orders, tolerance orders, split semi-
orders, etc. (for more details, see e.g. [11]), interval orders have been introduced
for handling such scenarios. Indeed, in contrast to the associated strict preference
relation, the indifference relation induced by an intervalorder is not necessarily
transitive.

Once an adequate model for preference has been chosen, the representation issue
has still to be addressed. In this direction many contributions in decision theory are
based on the representational theory of measurement, formalized in [23] and pre-
sented in details in the three-volume set by Krantz et al. [14], Suppes et al. [15] and
Luce et al. [19]. Concerning the interval orders and semiorders (special case of the
first ones), the axiomatic analysis of what is called “interval orders” has been given
by Wiener [27], then the term “semiorders” has been introduced by Luce [18] and
many results about their representations have been obtained by different researchers
(for more details see [10], [22]). In the classical numerical representation of interval
orders, an interval (with a uniform length in the case of semiorders) is associated
to each alternative and each alternative is said to be preferred to another one if and
only if its associated interval is completely to the right ofthe other’s interval. In
the following, this is what we call an interval representation of an interval order.
Doignon [7] has observed that it is possible to define a minimal interval representa-
tion of interval orders and Fishburn [10] has been interested in another optimization
problem about interval orders (minimal number of differentinterval lengths). Isaak
[13] has obtained a minimax theorem for the minimum number ofend points in an
interval representation of an interval order by the help of potentials in digraphs.

Unfortunately, when the set of alternatives is huge, neither the explicit represen-
tation of the interval order (i.e., its representation by pairs) nor its interval repre-
sentations are feasible; especially when the set of alternatives has a combinatorial
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structure, i.e., it is a cartesian product of a finite domain for each one of a set of
variables. For instance, let us imagine that a decision maker is trying to choose a
new computer. A set of variables may be hard disk, ram, screensize, sound card,
DVD reader and DVD writer. In this case the set of alternatives is all the possible
combinations of the evaluations of these variables. In sucha situation the space
of possible alternatives has a size exponential in the number of variables and it is
therefore not feasible (for space reasons) to associate oneinterval to each alterna-
tive. Hence, it is important to define more compact representation languages for
interval orders and to evaluate them.

Generally speaking, by apreference relationover a setA of alternatives, we mean
a binary relation overA. By a representation languagefor preference relations,
we mean a set of symbolic descriptions of such relations, andsome procedures for
exploiting them. For the sake of generality, we do not put anystrong restrictions
on the acceptable representations, except that they must befinite. Thus, within a
representation language, each element of the preference structure is represented
by a word. We define a representation language through analphabetwhich can
be any finite set of symbols; e.g. a language of first-order logic is often expressed
using an alphabet which, besides logical symbols such as connectives∧, ∨, ¬ and
quantifiers∀, ∃ contains elementsx0, x1, x2, . . . playing the role of variables. A
word over an alphabet can be any finite sequence of elements ofthe alphabet. And
finally a language over an alphabet is just a subset of the set of all words over the
alphabet.

For the purpose of evaluating a representation language forpreference relations,
the following three criteria are of great value:

• Simplicity and modularity: a representation language is expected to have a sim-
ple (yet formal) semantics expressing the connection between the representation
and the corresponding (explicit) preference relation; such a connection must be
easy to understand. Modularity is the ability to specify thepreference relation
within the representation language in a piecewise way.

• Complexity issues: they indicate the computational effortwhich must be spent to
realize a number of treatments of interest on the preferencerelation represented
in the chosen language. Such treatments (vote, aggregation, etc.) typically de-
pend on the way preferences have to be exploited in the application under con-
sideration, and are often based on some basic queries and transformations. Some
basic queries consist in determining whether a given alternative is preferred or
not to another and determining whether a given alternative is undominated. The
focus is typically laid on worst case scenarios.

• Expressiveness and spatial efficiency: expressiveness gives the (relative) aptitude
of a representation language to encode a family of preference relations (total
order, preorder, partial order, etc.), while spatial efficiency gives its aptitude to
do it using little space (it refines expressiveness); both notions are formalized as
preorders on the set of all representation languages (see e.g. [5]):
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Definition 1 A representation languageL1 for preference relations is said to
be at least as expressive asa representation languageL2 if and only if every
preference relation which can be represented inL2 can also be represented in
L1.

Definition 2 A representation languageL1 for preference relations is said to be
at least as succinct asa representation languageL2 if and only if there exists
a polynomialp such that every preference relation which can be represented
by an elementr2 in L2 can be represented by an elementr1 in L1 such that
|r1| ≤ p(|r2|). 2

Since the complexity of any algorithm is a function relatingits input size with
the amount of resources (time or space) needed to achieve thecomputation, the
complexity results for treatments based on a given representation language must
be interpreted in light of its spatial efficiency.

The first criterion (simplicity and modularity) is fundamental in the direction of
preference elicitation and other human-computer interactions about the preference
relation. It shows the perspective of preference representation more general than
preference compilation, which mainly consists in turning agiven preference rep-
resentation into another one, so as to optimize at least one of the last two criteria.
For instance, a preference relation (viewed as a binary relation over a set ofn alter-
natives) can be compactly represented as a Boolean functionwith 2⌈log2n⌉ argu-
ments, where the first⌈log2n⌉ bits encodes a first alternativea1 and the last⌈log2n⌉
bits encodes a second alternativea2 and the function takes the value1 if and only
if a1 is at least as preferred asa2; the Boolean function itself can be represented in
many different ways (CNF formulae, Binary Decision Diagrams, etc., see e.g. [6]).
The encoding procedure and/or the definition of the Boolean function (since it may
be complicated) may prevent the resulting data structure from achieving what is
expected from the point of view of simplicity and modularity. For instance, the fol-
lowing formula((¬x1∨x2)∧(x1∨¬x2))∨ ((¬x1∨¬x2)∧(¬x1∨(x3∧¬x4)) ∧((x2∧
(x3 ⇔ ¬x4))∨ (x1∧¬x2∧x3∧¬x4))) can be viewed as a representation of the pre-
orderR = {(a, a), (a, b), (b, a), (b, b), (a, c), (b, c), (a, d), (b, d), (c, d), (c, c), (d, d)}
overA = {a, b, c, d} with the encodinga = 00, b = 11, c = 01, d = 10 3 . Clearly
enough, the connection betweenR and the formula representing it is not so salient.

While much effort has been devoted to the representation issue for utility func-
tions or preorders (complete or partial) for the last years (see among others [9,1–
3,12,17,4]), the compact representation of interval orders has not been addressed
so far (as far as we know).

2 The size|r| of any wordr is the number of symbols in it.
3 For instance we have(a, b) ∈ R since the assignmentx1 = x2 = false andx3 = x4 =
true satisfies the logical proposition
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In this paper, we contribute to fill this gap by showing how interval orders can be
compactly encoded by weighted bases, i.e., multisets of propositional formulae as-
sociated to intervals over a scale. In order to handle a number of different scenarios
and achieve some flexibility, the scale and an aggregation function over this scale
are considered as parameters in our framework; each choice of a scale and aggrega-
tion function gives rise to a specific representation language. We give a simple for-
mal semantics for such languages and show them modular. As tothe expressiveness
issue, we explain how any interval order over a finite set of alternatives can be rep-
resented as a weighted base in some representation languages. We also show that a
language of weighted bases is strictly more expressive thanthe language of penalty-
based representations of complete preorders, as considered in [16,5,17,4]. As to the
spatial efficiency issue, we show that our representation languages are strictly more
compact than the language of explicit representations and the language of interval
representations of such orders. Then we investigate the complexity of a number of
decision problems pertaining to the exploitation of interval orders represented by
weighted bases. We show that several key decision problems (comparing alterna-
tives, determining whether an alternative is feasible) remain tractable when interval
orders are represented by weighted bases, while some other key decision problems
(determining whether an alternative is undominated) become “mildly” hard (i.e.,
at the first level of the polynomial hierarchy); this appearsas the price to be paid
for the gain in spatial efficiency offered by our representation languages. Interest-
ingly, our results show that in many cases the additional expressive power offered
by our approach does not lead to a complexity shift, comparedto the penalty-based
approach to complete preorders representation.

The rest of the paper is organized as follows. Some formal preliminaries are given
in Section 2. How interval orders can be represented in a simple, modular way by
weighted bases is shown in Section 3. The expressiveness andspatial efficiency
issues are addressed in Section 4. Complexity results are provided in Section 5.
Section 6 concludes the paper and gives some perspectives for further research.

2 Formal Preliminaries

2.1 Propositional logic

We consider a propositional languagePROPPS generated in the usual way from
a finite setPS of propositional atoms, the connectives¬, ∧, ∨, ⇒, ⇔, and the
Boolean constantstrue (verum),false (falsum). For every formulaΣ fromPROPPS,
V ar(Σ) denotes the set of all atoms fromPS occurring inΣ. The size|Σ| of any
formulaΣ is the number of symbols (atoms and connectives) used to write it.

A world overPS is a total function (i.e., a mapping)ω from PS to {0, 1}, which
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can be represented as a bit vector (once a total, strict ordering overPS has been
specified). For instance, ifPS = {x, y, z} ordered in this way, then101 represents
the worldω such thatω(x) = 1, ω(y) = 0 andω(z) = 1. The set of all worlds is
denoted by2PS.

The notion of satisfaction is defined in the standard truth functional way. When a
world ω satisfies a formulaφ, we writeω |= φ and say thatω is a model ofφ.
Mod(φ) denotes the set of all models ofφ. Inference is defined as model contain-
ment, à la Tarski.≡ denotes logical equivalence.

2.2 Binary relations, scales and intervals

Let A be a set andR ⊆ A × A be a relation overA; we consider:

• The relationIR over A defined by∀a1, a2 ∈ A, (a1, a2) ∈ IR if and only if
(a1, a2) ∈ R and(a2, a1) ∈ R (note thatIR is the symmetric part ofR).

• The relationPR over A defined by∀a1, a2 ∈ A, (a1, a2) ∈ PR if and only if
(a1, a2) ∈ R and(a2, a1) 6∈ R (hencePR is the asymmetric part ofR).

Clearly enough, we haveR = IR ∪ PR andIR ∩ PR = ∅.

By construction,IR is a symmetric relation andPR an asymmetric one.4 If R is
interpreted as a preference relation such that(a1, a2) ∈ R if and only ifa1 is at least
as preferred asa2, thenIR is the associated indifference relation ((a1, a2) ∈ IR if
and only ifa1 anda2 are equally preferred) andPR is the associated strict preference
relation ((a1, a2) ∈ PR if and only if a1 is strictly preferred toa2).

A scaleS is a totally ordered set which has a least element⊥ and a greatest element
⊤ such that⊤ 6= ⊥. ≤ denotes the corresponding (complete) order. Let= denote
the identity relation overS. We denote by<, >,≥ the binary relations overS given
respectively bys1 < s2 if and only if s1 ≤ s2 and not (s1 = s2), s1 > s2 if and only
if not (s1 ≤ s2), ands1 ≥ s2 if and only if not (s1 < s2), whatever the elementss1

ands2 of S.

Theset of all intervalsoverS is IntS given by

IntS = {[s1, s2], [s1, s2), (s1, s2], (s1, s2) | s1, s2 ∈ S},

where:

• [s1, s2] is a notation for{s ∈ S | s1 ≤ s ≤ s2};
• [s1, s2) is a notation for{s ∈ S | s1 ≤ s < s2};
• (s1, s2] is a notation for{s ∈ S | s1 < s ≤ s2};

4 A binary relationP is asymmetric iff∀a, b ∈ A, if (a, b) ∈ P , then(b, a) 6∈ P
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• (s1, s2) is a notation for{s ∈ S | s1 < s < s2}.

For anyi of IntS of the form i = [s1, s2], [s1, s2), (s1, s2], or (s1, s2), we note
l(i) = s1 andu(i) = s2. lc(i) (resp.rc(i)) is the proposition stating thati is left-
closed (resp. right-closed), i.e., of the form[s1, s2] or [s1, s2) (resp. of the form
[s1, s2] or (s1, s2]).

Each of the pairs[s1, s2], [s1, s2), (s1, s2], (s1, s2) must be considered as a con-
cisenotationfor a (possibly infinite) set. However, a given interval overa scaleS
(viewed as a connected subseti of S, i.e., a subset ofS such that every element of
S lying between two elements of the subset belons to the subsetas well) may easily
have more than one pair representation. This is rather obvious for the empty inter-
val (i.e., the empty set) which can be represented by any pairwheres1 > s2, but
also for non-empty intervals in some cases. For instance, ifS is the set of integers,
its subset{3, 4, 5} can be represented by the pair(2, 6) but also by the pair[3, 5].

In order to avoid any ambiguity, we can associate to every pair i representing an
interval over a scaleS a normal representationi ↓. This calls for the notions of
successor and predecessor. Letx andy two elements ofS; we say thaty is the
successorof x, notedsucc>(x) = y, if and only if y > x and there is noz ∈ S
such thaty > z > x. Similarly, we say thaty is the predecessorof x, noted
pre>(x) = y, if and only if x > y and there is noz ∈ S such thatx > z > y.
Obviously enough, it can be the case that an element of a scalehas no successor
and/or no predecessor (just consider the scaleR ∪ {−∞, +∞} and any element of
it).

Given a pairi from IntS, one can associate toi the normal representationi ↓∈ IntS
of the corresponding interval.i ↓ is defined as[] if the corresponding interval is
empty; otherwise,i ↓ is defined as follows:

l(i ↓) = l(i) if lc(i) or

l(i) does not have a successor

= succ>(l(i)) otherwise

lc(i ↓) = lc(i) if lc(i) or

l(i) does not have a successor

= true otherwise

u(i ↓) = u(i) if rc(i) or

u(i) does not have a predecessor

= pre>(u(i)) otherwise
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rc(i ↓) = rc(i) if rc(i) or

u(i) does not have a successor

= true otherwise

Considering the previous example again, whereS is the set of integers, the pair
i = (2, 6) denoting the subset{3, 4, 5} of S is such thati ↓= [3, 5]. Indeed,3 is the
successor of2 and5 is the predecessor of6.

For many scales, normalizing representations of non-emptyintervals is useless.
Thus, it is easy to show that every pair representation of a non-empty interval over
a densescale is equal to its normal representation (a scaleS is dense if and only if
for everyx, y ∈ S such thatx < y, thereq existsz ∈ S such thatx < z < y; every
dense scale is infinite and no element of it has a successor or apredecessor). Dense
scales have the interesting feature of always enabling “intermediate values”.

In the following, without any loss of generality as to expressiveness,we assume that
every pair representation of an interval is its normal representation. Especially,
whenever we consider a pair representationi of an interval,i must be considered as
a short fori ↓. We could easily ensure this normalization condition by considering
dense scales, only, but this would restrict the setting unnecessarily (especially, some
“natural” scales (e.g. when numbers represent amounts of money) are not dense.

(IntS,⊆) is a lattice,∅ is the least element ofIntS andS = [⊥,⊤] is the greatest
one. Let>IntS , ∼IntS and≥IntS be the relations fromIntS × IntS s.t. for every
pair of non-empty intervalsi1 andi2, we have:

• i1 >IntS i2 if and only if
· l(i1) ≥ u(i2) if not rc(i2) and notlc(i1),
· l(i1) > u(i2) otherwise;

• i1 ∼IntS i2 if and only if i1 ∩ i2 6= ∅;
• i1 ≥IntS i2 if and only if i1 >IntS i2 or i1 ∼IntS i2.

Let S be a scale. Given an elements1 of S, each relational operatorr ∈ {=,≤,
≥, <, >} characterizes the intervalr(s1) = {s2 ∈ S | s2 r s1} of IntS. Each
setr(s1) consists of the set of all elements fromS which are located between two
elements ofS amongs1,⊤,⊥, one of them beings1:

• = (s1) = [s1, s1] = {s1};
• ≤ (s1) = [⊥, s1];
• ≥ (s1) = [s1,⊤];
• < (s1) = [⊥, s1);
• > (s1) = (s1,⊤].
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2.3 Computational complexity

One of the main purposes of complexity theory (see e.g., [21]for details) is to
classify problems according to their worst case requirements on computational re-
sources depending on the size of the input. In this framework, a problem is a generic
question, i.e., a set of specific instances. Specifically, a decision problem is one that
has only “yes” and “no” as possible answers. Formally, a decision problem can be
considered as a formal language consisting of the set of all its “yes” instances.

It is usually acknowledged that a practicable algorithm is one that runs in time
polynomial in the size of the input (assuming a standard model of computation,
e.g., a sequential deterministic Turing machine). Accordingly, a decision problem
is considered tractable if and only if there exists an algorithm that can classify every
instance of it in a number of computational steps that is polynomial in the size of
the instance.

The class of all decision problems that are solvable in polynomial time is denoted
by P(TIME). All the remaining ones require exponential time (in practice) and are
considered intractable. In order to determine whether a problem is tractable or not,
it is sufficient to point out an efficient algorithm to solve it, or to prove that such an
algorithm cannot exist.

Unfortunately, for many problems, no polynomial time algorithms are known but
today, nobody knows how to prove that super-polynomial timeis actually required.
For all these problems, the frontier between tractable problems and intractable ones
is not fine-grained enough to classify them in a computationally valuable way:
there is a need for more refined classes for problems for whichone does not know
whether they belong toP.

The notion of non-deterministic Turing machine is an important tool to achieve this
goal. Thus, the class of all languages (encoding decision problems) that can be rec-
ognized in polynomial time by such a non-deterministic machine is denoted byNP.
Because a deterministic Turing machine can be considered asa non-deterministic
one, the inclusionP ⊆ NP is established; however, the converse is the famous open
problem:P ?

= NP (that is conjectured false).

Among all the problems inNP, the hardest ones are those from which every prob-
lem in NP can bepolynomially many-one reduced: such problems are referred to
asNP-complete. If any of them has a polynomial algorithm, thenP = NP holds.
Accordingly, it is believed that it is impossible to solveNP-complete problems
in (deterministic) polynomial time.SAT, the problem of determining whether a
propositional formula in conjunctive normal form is satisfiable, is the prototypical
NP-complete problem. Its complementary problemUNSAT (determining whether a
propositional formula in conjunctive normal form is unsatisfiable) is not necessarily
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in NP (in contrast toP, NP is not known to be closed under complementation). It is
assigned to the classcoNP that contains the complementary problems to problems
of NP. It is conjectured thatNP 6= coNP.

To go further into the classification of non-efficiently solvable problems, another
important tool is the notion of Turing machine (deterministic or non-deterministic)
with oracle, i.e., a Turing machine with a black box which is able to decide the
membership to some languages in a single operation. LetX be a class of decision
problems (i.e., languages).PX (resp.NPX) is the class of all decision problems that
can be solved in polynomial time using a deterministic (resp. non-deterministic)
Turing machine that can use an oracle for deciding the membership to any language
from X for “free” (i.e., within a constant, unit time). For instance PNP is the class
of problems solvable in polynomial time by a deterministic Turing machine with
an oracle for any language inNP.

On this basis, the classes∆p
k, Σp

k andΠp
k are defined by:

• ∆p
0 = Σp

0 = Πp
0 = P,

• ∆p
k+1 = PΣp

k ,
• Σp

k+1 = NPΣp

k ,
• Πp

k+1 = coΣp
k+1 = coNPΣp

k ,

Thus,∆p
1 = P, Σp

1 = NP, Πp
1 = coNP and∆p

2 = PNP. ∆p
2[O(log n)] (also referred

to asΘp
2) is the class of problems which can be decided in polynomial time using

only logarithmically many calls to anNP oracle.

The polynomial hierarchyPH is the union of allΣp
k (for k non-negative integer). A

decision problem is said to be at thekth level ofPH if and only if it belongs to∆p
k+1,

and is eitherΣp
k-hard orΠp

k-hard. While it is easy to check that both∆p
k ⊆ Σp

k+1,
∆p

k ⊆ Πp
k+1, Σp

k ⊆ ∆p
k+1, andΠp

k ⊆ ∆p
k+1 hold for everyk, it is unknown whether

the inclusions are proper or not (but it is conjectured that it is the case). Thus, it
is strongly believed that the polynomial hierarchy does notcollapse, i.e., is a truly
infinite hierarchy (for every integerk, PH 6= Σp

k).

All the problems inPH can be solved in (simple) exponential time on deterministic
Turing machines. Nevertheless, the level where a given decision problem lies in
the polynomial hierarchy can be viewed as a measure of its complexity, since this
level intuitively corresponds to the number of independentsources of intractabil-
ity to be dealt with. Especially, removing one source of intractability by focusing
on a restriction where it disappears is not enough to question the other sources of
intractability. Thus the higher a problem in the polynomialhierarchy the more com-
plex, in the sense that more severe restrictions have to be applied to get a tractable
case.
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3 Representing Interval Orders

3.1 Interval orders

Let us first give a formal definition of interval orders:

Definition 3 An interval orderR ⊆ A × A is a relation which is:

• Complete:∀a1, a2 ∈ A, (a1, a2) ∈ R or (a2, a1) ∈ R.
• Ferrers:∀a1, a2, a3, a4 ∈ A, if (a1, a2) ∈ R and(a3, a4) ∈ R, then(a1, a4) ∈ R

or (a3, a2) ∈ R.

Because they are complete, interval orders are reflexive relations. However, they are
not necessarily transitive relations (and this is where they depart from preorders).
Nevertheless, the strict preference relationPR associated to an interval orderR is
transitive and Ferrers.

Example 2 Let A = {a, b, c, d} and letR = {(a, a), (a, b), (a, c), (a, d), (b, a),
(b, b), (b, c), (b, d), (c, b), (c, c), (c, d), (d, c), (d, d)}. R is an interval order over
A (but not a preorder overA since e.g., we have(c, b) ∈ R and (b, a) ∈ R but
(c, a) 6∈ R). We haveIR = {(a, a), (a, b), (b, a), (b, b), (b, c), (c, b), (c, c), (c, d),
(d, c), (d, d)} andPR = {(a, c), (a, d), (b, d)}.

The following representation theorem due to Fishburn [10] shows that any interval
order over a countable set can be characterized by intervalsoverR:

Proposition 1 [10] Let A be a countable set. A binary relationR ⊆ A × A is an
interval order if and only if there exist a mappingg fromA to R and a mappingq
fromR to R

+ 5 such that for anya1, a2 ∈ A, we have

(a1, a2) ∈ R if and only ifg(a1) + q(g(a1)) ≥ g(a2).

Indeed, the mappingsg andq come down to associating to any elementa of A an
interval [la = g(a), ua = g(a) + q(g(a))] overR such that for anya1, a2 ∈ A, we
have:

• (a1, a2) ∈ PR if and only if la1
> ua2

,
• (a1, a2) ∈ IR if and only if la1

≤ ua2
andla2

≤ ua1
.

Example 3 Let g and q such that:g(a) = 6, g(b) = 4, g(c) = 2, g(d) = 0, and
q(x) = 3 for everyx ∈ R. (g, q) represents the relationR given in the previous
example. An interval representation ofR may be given as a set of pairs where the

5
R

+ is the set of non-negative real numbers.
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first element of each (ordered) pair is an alternative and thesecond one is the inter-
val associated to this alternative:{(a, [6, 9]), (b, [4, 7]), (c, [2, 5]), (d, [0, 3])} is an
interval representation ofR. The following figure illustrates this interval represen-
tation.

0 3

d
2 5

c
4 7

b 6 9

a

Fig. 1. Interval representation of the example 3

WhenA is finite, Fishburn’s theorem (Proposition 1) can be specialized so that
closed intervals ofN included in[0, 2 × Card(A) − 1] are enough. Indeed, letR
be an interval order defined on the finite setA = {a1, a2, . . . , an} of alternatives;
taking advantage of Proposition 1, letlai

(resp.uai
) be the lower (resp. upper) bound

of the real interval associated to the alternativeai. We consider now the set of
endpointsE = {lai

, uai
| ai ∈ A} naturally ordered and we denote by rank(lai

)
(resp. rank(uai

)) the number of elements ofE which are strictly lower thanlai

(resp.uai
) (for instance rank(lai

) = 0 if and only if ∀aj ∈ A, lai
≤ laj

). Then we
have for allai, aj ∈ A:

• (ai, aj) ∈ PR if and only if rank(lai
) > rank(uaj

),
• (ai, aj) ∈ IR if and only if rank(lai

) ≤ rank(uaj
) and rank(laj

) ≤ rank(uai
).

3.2 Weighted bases

We are now ready to define the notion of weighted base, at the syntax level first and
then from a semantical point of view:

Definition 4 Let PS be a finite set of atomic propositions and letS be a scale. A
weighted baseB overPS andS is a finite multisetB of 5-tuples(φ, r1, s1, r2, s2)
whereφ is a formula ofPROPPS, r1 (resp.r2) is a relational operator from{=, >,
≥} (resp.{=, <,≤}) ands1, s2 are elements ofS.

At the semantic level, the 4-tuple(r1, s1, r2, s2) represents the interval associated
to the formulaφ. As in the following example, generallys1 is less than or equal
to s2, in the contrary case we have an empty interval (for more details please see
Subsection 2.2).

Example 4 Let PS = {x, y, z} and S = [⊥ = 0,⊤ = 100] ⊆ R naturally
ordered.B = {(¬x,≥, 30,≤, 80), (¬z,≥, 20,≤, 60), (x ∧ ¬y,≥, 20,≤, 40), (x ∧
z,≥, 50,≤, 100)} is a weighted base overPS andS.
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WhenB is a weighted base,Card(B) is the number of 5-tuplesB contains.V ar(B)
denotes the set of all atoms fromPS occurring inB, i.e.,V ar(B) =

⋃
(φ,r1,s1,r2,s2)∈B

V ar(φ). Finally, the size|B| of B is equal to the sum of the sizes of each 5-tuple(φ,
r1, s1, r2, s2) in it, where the size of(φ, r1, s1, r2, s2) is equal to|φ|+ |s1|+ |s2|+2;
if S is a numerical scale, then its elements are supposed to be represented in binary
notation.

Intuitively, 5-tuples(φ, r1, s1, r2, s2) must be viewed as pieces of preferential evi-
dence, corresponding to imprecise evaluations of the alternatives under considera-
tion w.r.t. different criteria or w.r.t. different sources. Thus, on the example above,
(¬x,≥, 30,≤, 80) means that for a given criterion or source, the utility of any
model of¬x is between (or equal to) 30 and 80.

Remark 1 In order to alleviate the notations, when one of the endpoints1 or s2 of
the interval associated to a formula is also one of the bounds⊥, ⊤ of the scaleS, a
triple (φ, r, s) may be used instead of(φ, r1, s1, r2, s2). For example the last 5-tuple
of the previous example may be written as(x ∧ z,≥, 50) since100 is the greatest
element ofS = [0, 100].

Putting the criteria or sources together calls for aggregation functions:

Definition 5 Letf be any mapping fromIntS × IntS to IntS which is associative,
commutative and has a neutral elementnf ∈ IntS. f is called anS-aggregation
function. It is extended to a mapping from any finite subset ofIntS to IntS, also
referred to asf , and defined inductively by:

• f(∅) = nf ,
• f({i}) = i,
• f({i1, i2, . . . , in}) = f(i1, f({i2, . . . , in})).

We are now ready to define the notion of satisfaction of a weighted base by an inter-
pretation. Each interpretation can be viewed as an imprecise, yet qualitative utility
function onS. I(ω) is the interval where the actual (qualitative) utility of world ω
lies. The notion of satisfaction is defined in a compositional way and depends on
the chosenS-aggregation functionf :

Definition 6 LetPS be a finite set of atomic propositions and letS be a scale. Let
I be an interpretation overPS andS, i.e., a mapping from2PS to IntS. Letf be
an S-aggregation function.I f-satisfiesa weighted baseB overPS andS, noted
I |=f B if and only if∀ω ∈ 2PS, we have

I(ω) ⊆ f({r1(s1) ∩ r2(s2) | (φ, r1, s1, r2, s2) ∈ B andω |= φ}).

The neutral element of theS-aggregation function will be used as the interpretation
of a world which satisfies none of the formulae of the given weighted base.
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Among the possibleS-aggregation functionsf for any scaleS are∩, whose neutral
elementn∩ is S = [⊥,⊤] and+ which is such that for anyi1, i2 ∈ IntS, i1 + i2
is the smallest interval (w.r.t.⊆) containing bothi1 and i2. Clearly enough, the
neutral elementn+ is the empty interval∅, noted[]. It is obvious to show that∩ is
the infimum function for the lattice(IntS,⊆), and that+ is the supremum function
for this lattice.

SimpleS-aggregation functions aremin andmax: when none ofi1 andi2 is the
empty interval,l(i1 min i2) is the minimum ofl(i1) and l(i2), u(i1 min i2) is the
minimum ofu(i1) andu(i2),

lc(i1 min i2) = lc(i1) if l(i1) < l(i2)

= lc(i2) if l(i2) < l(i1)

= lc(i1) or lc(i2) otherwise

rc(i1 min i2) = rc(i1) if u(i1) < u(i2)

= rc(i2) if u(i2) < u(i1)

= rc(i1) andrc(i2) otherwise

In the remaining case, i.e., if at least one ofi1, i2 is [], theni1 min i2 also is the
empty interval (i.e.,[] is an absorbing element). We havenmin = [⊤,⊤].

When none ofi1 andi2 is the empty interval,l(i1 maxi2) is the maximum ofl(i1)
andl(i2), u(i1 maxi2) is the maximum ofu(i1) andu(i2),

lc(i1 maxi2) = lc(i1) if l(i1) > l(i2)

= lc(i2) if l(i2) > l(i1)

= lc(i1) andlc(i2) otherwise

rc(i1 min i2) = rc(i1) if u(i1) > u(i2)

= rc(i2) if u(i2) > u(i1)

= rc(i1) or rc(i2) otherwise

In the remaining case, i.e., if at least one ofi1, i2 is [], theni1 maxi2 also is the
empty interval. We havenmax = [⊥,⊥].

Another simpleS-aggregation function for a numerical scaleS = [⊥,⊤] ⊆ R ∪
{−∞, +∞} (such thatS contains0) is sum: when none ofi1 andi2 is the empty
interval[], let ls be the sum ofl(i1) andl(i2) andrs be the sum ofu(i1) andu(i2);
we have:

14



l(i1sumi2) = ls if ls ∈ S

= ⊥ if ls < ⊥

= ⊤ if ls > ⊤

u(i1 sumi2) = rs if rs ∈ S

= ⊥ if rs < ⊥

= ⊤ if rs > ⊤

lc(i1sumi2) = lc(i1) andlc(i2) if ls ∈ S

= true otherwise

rc(i1 sumi2) = rc(i1) andlc(r2) if rs ∈ S

= true otherwise

In the remaining case, i.e., if at least one ofi1, i2 is [], theni1 sumi2 also is the
empty interval. We havensum = [0, 0].

The choice of theS-aggregation function may depend on different notions, such
as the nature and properties of order to represent or the context of decision prob-
lem, etc. For example, “+” may be used in a case where we do not want to lose
any information and where the accuracy is not very important, “∩” may be useful
when the precision of the information is crucial. “max” (resp. “min”) may represent
an optimist (resp. pessimist) view. “sum” may be necessary in the case where the
addition of values has a reasonable meaning.

For instance, the weighted base{(sea∧summer,≥, 20), (sea∧summer, ≤, 30),
(¬sea∧ summer,≥, 10), (¬sea∧ summer,≤, 25), (sea,≥,−10), (sea,≤,−5)}
can be used to represent preferences concerning the period (during summer or not)
and the location (near the sea or not) of future vacations; 5-tuples can be concerned
here with two criteria: pleasure and cost (for the last two).sum, min andmax are
(among others) natural ways to aggregate intervals associated to 5-tuples in this
case.

The weighted base{(electric−guitar,≥, 20), (electric−guitar,≤, 1000), (electric−
guitar,≥, 200), (electric−guitar,≤, 500), (electric−guitar,≥, 300), (electric−
guitar,≤, 700)} collects evidence given by three friends about the price of aquite
good, yet cheap electric guitar. Here∩ is a natural aggregation function if the
sources are all completely reliable (it leads to uncertainty reduction).

The presence of several criteria or several sources explains why a multiset represen-
tation of weighted bases is more convenient than a set-basedone: it can be the case
that two criteria (or sources) evaluate alternatives in thesame way; while this has
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2PS I∩B I+
B Imax

B Imin
B Isum

B

000 [30, 60] [20, 80] [30, 80] [20, 60] [50, 100]

001 [30, 80] [30, 80] [30, 80] [30, 80] [30, 80]

010 [30, 60] [20, 80] [30, 80] [20, 60] [50, 100]

011 [30, 80] [30, 80] [30, 80] [30, 80] [30, 80]

100 [20, 40] [20, 60] [20, 60] [20, 40] [40, 100]

101 [] [20, 100] [50, 100] [20, 40] [70, 100]

110 [20, 60] [20, 60] [20, 60] [20, 60] [20, 60]

111 [50, 100] [50, 100] [50, 100] [50, 100] [50, 100]

Table 1
Canonical interpretations.

no impact when the aggregation function under consideration is idempotent (like∩
and+), this is not the case more generally (just considersum).

3.3 Canonical interpretations

In the general case, a weighted base can be associated to manyinterpretations that
f -satisfy it. However, one of them plays a specific role: thef -canonical interpreta-
tion associated toB.

Definition 7 LetPS be a finite set of atomic propositions and letS be a scale. Let
f be anyS-aggregation function. Thef -canonical interpretationIf

B associated to
the weighted baseB overPS andS and the aggregation functionf is the interpre-
tation overPS andS given by: for anyω ∈ 2PS,

If
B(ω) = f({r1(s1) ∩ r2(s2) | (φ, r1, s1, r2, s2) ∈ B andω |= φ}).

Example 5 LetPS = {x, y, z} ordered in this way. LetS be the scale[0, 100] ⊆ R

naturally ordered.B = {(¬x,≥, 30,≤, 80), (¬z,≥, 20,≤, 60), (x ∧ ¬y,≥, 20,
≤, 40), (x ∧ z,≥, 50,≤, 100)} is a weighted base overPS and S. Table 1 gives
interval representations ofI∩

B, I+
B , Imax

B , Imin
B , andIsum

B .

If
B can be characterized as the least specific interpretationf -satisfyingB, in the

sense that for each interpretationI f -satisfyingB and for eachω ∈ 2PS, we have
I(ω) ⊆ If

B(ω).

Note that the∩-canonical interpretation associated to a weighted base isthe least
specific interpretation which satisfies every element ofB.
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Now, a notion off -equivalencebetween weighted bases overPS andS can be
easily defined: two basesB1 andB2 are said to bef -equivalent when the set of all
interpretationsf -satisfyingB1 is equal to the set of all interpretationsf -satisfying
B2. It is easy to prove that two weighted bases aref -equivalent whenever they are
associated to the samef -canonical interpretation:

Proposition 2 Let PS be a finite set of atomic propositions and letS be a scale.
Let B1, B2 be two weighted bases overPS and S. Let f be anyS-aggregation
function.B1 andB2 aref -equivalent if and only ifIf

B1
= If

B2
.

Proof:Obvious.
2

In order to make precise the connection betweenIf
B and the corresponding interval

order, we still need two notions, namely the notion off -consistent weighted base
and the notion off -possible world.

Obviously enough, the trivial interpretationI∅ s.t.∀ω ∈ 2PS, I(ω) = [] f -satisfies
any weighted baseB. For this reason, the notion off -consistency of a weighted
base cannot be defined as the existence of an interpretationf -satisfying it but has
to be a bit more elaborate:

Definition 8 LetPS be a finite set of atomic propositions and letS be a scale. Let
f be anyS-aggregation function. A weighted baseB overPS andS is said to be
f-consistentif and only if there exists an interpretationI overPS andS such that
I |=f B andI 6= I∅.

Example 6 The baseB given in Example 5 isf -consistent forf among∩, +,
max, min and sum.The base{(x, >, 3), (x, =, 2), (¬x, <, 1), (¬x, >, 3)} is not
∩-consistent but is+-consistent.

It is easy to see that a weighted baseB is +-consistent if and only ifB contains at
least one 5-tuple(φ, r1, s1, r2, s2) such thatr1(s1) ∩ r2(s2) 6= []. Every weighted
baseB is min-consistent,max-consistent andsum-consistent except when it con-
tains a 5-tuple(φ, r1, s1, r2, s2) such thatr1(s1) ∩ r2(s2) = [] (i.e., the interval
specified byr1, s1, r2, s2 is empty).

Now, the preimage of∅ by If
B is a subset of2PS of worlds which are considered as

impossible givenB:

Definition 9 LetPS be a finite set of atomic propositions and letS be a scale. Let
B be a weighted base overPS andS. Letf be anyS-aggregation function. Letω
be a world from2PS. ω is said to bef-impossiblegivenB if and only ifIf

B(ω) = [].
ω is said to bef-possiblewhen it is notf -impossible.
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Possiblef (B) denotes the subset of2PS consisting of all worlds which aref -
possible givenB. Clearly enough, we havePossiblef (B) = ∅ if and only if B

is notf -consistent if and only ifIf
B = I∅.

Example 7 Let us consider again the baseB used in Example 5. We havePossible∩(B) =
2PS \ {101}.

f -possible worlds correspond to feasible alternatives andf -consistency ensures
that at least some alternative is feasible.

For instance, if we step back to the example of a person who wants to know whether
she must buy or not an electric guitar, the caseI∩

B(electric − guitar) = [] means
that the pieces of information given by her three friends arejointly contradictory,
hence we could not consider this world.

We are now ready to define the preference relations induced bya weighted base
and an aggregation function:

Definition 10 Let PS be a finite set of atomic propositions and letS be a scale.
Letf be anyS-aggregation function. LetB be a weighted base overPS andS. We
define the binary relations≻f

B, ∼f
B and�f

B⊆ Possiblef (B) × Possiblef (B) by:
let ω1, ω2 ∈ Possiblef (B),

• ω1 ≻
f
B ω2 if and only ifIf

B(ω1) >IntS If
B(ω2);

• ω1 ∼
f
B ω2 if and only ifIf

B(ω1) ∼IntS If
B(ω2);

• ω1 �
f
B ω2 if and only ifω1 ≻

f
B ω2 or ω1 ∼

f
B ω2.

The next result is a soundness one: it shows that every weighted base andS-
aggregation function actually specifies an interval order overS:

Proposition 3 Let PS be a finite set of atomic propositions and letS be a scale.
Let f be anyS-aggregation function. LetB be a weighted base overPS and S.
�f

B is an interval order onPossiblef (B). ∼f
B (resp.≻f

B) is its symmetric (resp.
asymmetric) part.

Proof: The result follows directly from Proposition 1.
2

It is obvious that depending on the chosenS-aggregation function the resulting
interval orderR may differ. For instance, in Example 5, the use of five different S-
aggregation functions leave place to four different interval orders (see Table 1): all
the worlds are indifferent when “+” and “max” are used (so we obtain a preorder);
with “∩”, all the relations, except the one between111 and100 (111 PR 100), are
indifference and with “min”, all the relations, except111 PR 100 and111 PR 101,
are indifference and finally with “sum”, all the relations, except101 PR 110, are
indifference. It is easy to remark that in all of the last fourcases the indifference
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relation associated to the interval order is not transitive.

Finally, it is easy to see that twof -equivalent weighted bases specify the same
interval order but the converse is false (i.e., an order may be represented by two
different, yet notf -equivalent bases); for instance consider a numerical scale like
R ∪ {−∞, +∞}; consider two weighted basesB1 andB2 and imagine the case
whereB2 is defined likeB1 except that all the values are multiplied by2. For that
reason we define another, less demanding, notion of equivalence that we call(f, g)-
order-equivalence: if f is anS1-aggregation function andg is anS2-aggregation
function, then a weighted baseB1 over PS and S1 is said to be(f, g)-order-
equivalent to a weighted baseB2 overPS andS2 if and only if�f

B1
= �g

B2
.

3.4 Simplicity and modularity

Basically, in our approach, the connection between the weighted base representa-
tionB of an interval order and the order itself is as follows: 5-tuples(φ, r1, s1, r2, s2)
of B are viewed as pieces of preferential evidence and are aggregated using a suit-
able functionf ; the correspondingf -canonical interpretation maps each interpreta-
tion (representing an alternative) to an interval; the associated interval order follows
in an obvious way once alternatives associated to the empty interval have been re-
moved.

In our opinion, this semantics is simple; of course, simplicity has no formal def-
inition but let us stress that the semantics of weighted propositional formulae (or
penalty-based representations) as considered in [16,5,17,4] and used for represent-
ing cardinal preferences is very close to the semantics we point out. Indeed, in
penalty logic, weighted basesP are multisets of pairs of the form(φ, α) where
φ ∈ PROPPS andα ∈ R ∪ {−∞, +∞}; α is the penalty to be paid wheneverφ is
not satisfied; associated to each weighted baseP is a propositional formulaK used
to discriminate impossible worlds: the possible worlds arerestricted to the models
of K. Disutilitiesα are aggregated in an additive way so that the disutility of any
world ω ∈ Mod(K) is given byd(ω) =

∑
(φ,α)∈P | ω 6|=φ α.

The main differences between penalty-based representations of cardinal prefer-
ences and our framework are as follows: in penalty-based representations, the pur-
pose is to represent complete preorders (and not interval orders); each piece of pref-
erential evidence allows to map worlds (representing alternatives) to values from
a numerical scaleS (disutilities) and not to intervals over anyS; sum is the ag-
gregation function (while we consider other functions in our framework); finally,
a further propositional formulaK is used to discriminate impossible worlds in the
penalty-based approach (while we consider as impossible those worlds associated
to the empty interval).

The modularity of the representation in our framework is achieved, at the syntax
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level, by the multiset representation of weighted base (5-tuples can be considered
in a separate way) and at the semantical level, by the compositionality of the con-
struction of thef -canonical interpretation.

4 Expressiveness and Spatial Efficiency

After the soundness result given by Proposition 3, let us first show that a com-
pleteness result can be achieved for some specific choices ofscalesS, whatever
the chosenS-aggregation functionf . Of specific interest is the scaleS = [0, 2 ×
Card(A) − 1] ⊆ N. 6 From Fishburn’s result, it comes that any interval order over
a finite set of alternativesA can be represented by a weighted base in our setting:

Proposition 4 Let A be a finite set of alternatives and� an interval order onA.
For everyS-aggregation functionf with S = [0, 2 × Card(A) − 1] ⊆ N, there
exists a set of propositional atomsPS and a weighted baseB overPS andS such
that there is a bijectionb betweenA andPossiblef(B) and for everya1, a2 ∈ A,
we havea1 � a2 if and only ifb(a1) �

f
B b(a2).

Proof: Using Proposition 1, we associate an interval[la, ua] to each alternative
a of the setA. We define a set of propositional atomsPS such asCard(A) ≤
2Card(PS), and a weighted baseB as follows. We associate a worldωa ∈ 2PS to
each alternativea in a bijective way (i.e.,b(a) = ωa). For eachωa we consider a
formulaφa satisfied only byωa (this is trivially possible), and add toB (initially
empty) the constraint (φa,≥, la,≤, ua). It is easy to see that for everya1, a2 ∈ A,
we havea1 � a2 if and only if b(a1) �

f
B b(a2).

2

Obviously enough, this proposition can be trivially extended to every case a scale
isomorphic to[0, 2 × Card(A) − 1] ⊆ N (naturally ordered) is considered. This
proposition also shows that the choice of the aggregation function has no impact on
the expressiveness issue, as soon as such a scale is considered.

Contrastingly, imposing strong restrictions on the scale (whatever the chosen set
of atoms and the aggregation function) easily leads to losing full expressiveness;
for instance, if the scale under consideration is degenerate so that it contains only
the two extremal elements⊥ and⊤, then whatever the choice ofPS andf , the
corresponding languages of weighted bases cannot achieve the representation of
any interval orderR for which aPR-chain with more than two elements exists.

6 Alternatively, we could consider the scaleS = R ∪ {−∞,+∞} where≤ extends the
standard ordering on real numbers so that⊥ = −∞ is the least element ofS and⊤ = +∞
is the greatest element ofS. Our preference to integers instead of reals is motivated by
representational and computational issues.
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Similarly, Card(B) has a strong impact on the expressiveness issue: the interval
representation of the order given byB contains at most2Card(B) elements, hence
an interval orderR for which aPR-chain with more than2Card(B) elements exists
cannot be represented byB, whatever the choices ofS andf .

Let us now show that a language of weighted bases for representing interval orders
is strictly more expressive than the language of penalty-based representations for
cardinal preferences:

Proposition 5 Every complete preorder on a set of alternatives can be represented
in the language of weighted bases usingS = R∪{−∞, +∞} as the scale andsum
as theS-aggregation function. Contrastingly, it is not the case that every interval
order can be represented in the language of penalty logic.

Proof: It is enough to prove the first point since it is known that the language of
penalty logic can express complete preorders but nothing more general (see [5]).
We do it by pointing out a translation from the language of penalty-based rep-
resentations of complete preorders to the language of weighted bases. LetP =
{(φi, αi) | i ∈ I} be a penalty base and letK be the associated constraint (a propo-
sitional formula) such that the feasible alternatives correspond to the models ofK
(i.e., the possible worlds are restricted to the models ofK). We associate toP and
K in linear time the weighted base

BP,K = {(¬φi, =, αi) | i ∈ I} ∪ {(¬K, <, 0), (¬K, >, 0)}.

Clearly, we haveIsum
BP,K

(ω) = [] for everyω 6|= K, due to the 3-tuples(¬K, <, 0),
(¬K, >, 0) in BP,K ; furthermoreIsum

BP,K
(ω) = [d(ω), d(ω)] for everyω ∈ Mod(K)

whered(ω) represents the disutility of the worldω (d(ω) =
∑

(¬φi,=,αi)∈BP,K | ω|=¬φi
αi

=
∑

(φi,αi)∈P | ω 6|=φi
αi ). As a consequence, for anyω1, ω2 ∈ Mod(K), we have

d(ω1) > d(ω2) if and only if ω1 ≻sum
BP,K

ω2, andd(ω1) = d(ω2) if and only if
ω1 ∼

sum
BP,K

ω2. This shows the result of the translation as a faithful representation of
the complete preorder induced byd.

2

Let us finally turn to the spatial efficiency issue and briefly compare our represen-
tation languages using weighted bases to both the explicit representation and the
interval representations or interval orders.

The explicit representation of interval orders given by Definition 3 (as sets of or-
dered pairs of alternatives from a finite setA) is just as compact as its representation
using intervals overR, i.e., as setsSI of pairs(a, i) wherea is an alternative andi
an interval. Indeed, from Fishburn’s theorem (see Proposition 1), we immediately
get that for any pair(a1, a2) of alternatives occurring inSI , (a1, a2) ∈ R if and only
if la1

> ua2
or (la1

≤ ua2
andla2

≤ ua1
). Hence from any setSI of pairs(a, i) rep-

resenting an interval orderR, deriving the corresponding explicit representation of
R requiresO(|SI |

2) time in the worst case (hence a polynomial amount of space).
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Conversely, the explicit representation of an interval order being given, an inter-
val representation of this order can be computed in polynomial time. For instance
Doignon [8] pointed out a polynomial time algorithm for computing the minimal
interval representation of an interval orderR over a setA of alternatives; here a
representation ofR is a pair(l, u) of mappings fromA to Int

R
+ ; a representation

(l∗, u∗) of R is minimal if and only if for all the representations(l, u) of R and for
all a in A, l∗(a) ≤ l(a) andu∗(a) ≤ u(a). 7 . In the same vein Isaak [13] gave a
polynomial time algorithm for computing an interval representation of an interval
order, which minimizes the number of different left and right bounds of intervals.

Contrastingly, the ability offered by propositional logicto represent sets of worlds
in a compact way is enough for ensuring that the languages of weighted bases (at
least those which enable the representation of every interval order) are strictly more
compact than both the explicit representation and the interval representations. In-
deed, the problem with the explicit representation and the interval representations
is that they both require an explicit representation of the alternatives. Assume that
A = 2PS for a given setPS of n symbols: the explicit representation of any in-
terval orderR over A contains at least2n elements; this is also the case for any
interval representation ofA. However, some interval orders overA can be rep-
resented in a much more compact way using a weighted base. Forinstance, if
PS = {x1, . . . , xn}, B = {(x1 ∨ . . . ∨ xn, =,⊤)} can be used for representing
a complete preorder where all the models ofx1∨ . . .∨xn are indifferent but strictly
preferred to the remaining world (where all atoms are set tofalse) (it is enough to
considermax as the aggregation function).

5 Complexity Results

In this section, we investigate the complexity of exploiting weighted bases as inter-
val order representations. We aim at deriving general results, in the sense that we do
not focus on specific scalesS and aggregation functionsf . S andf are parameters
of the decision problems we consider (especially,S – which can be infinite – is not
part of the input).

Nevertheless, we need to put some requirements on the acceptableS andf . We
first assume that a normal representation of any intervali ∈ IntS can be computed
in time polynomial in the size ofi(please see Page 7 for the presentation of a nor-
mal representation). Especially, deciding whether a pair representation denotes the
empty interval can be achieved in polynomial time. This assumption is not very de-
manding (dense scales satisfy it and finite scales as well since they are isomorphic
to a closed interval of the setNof non-negative integers). We also assume thatf

7 In this study, each endpoint ofl∗(a) andu∗(a) with a ∈ A are defined as integer multi-
ples of a positive real number. As a consequence the ”true scale” is a discrete one.
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is a linear time function (i.e., for anyx andy in the domain off , f(x, y) can be
computed in time linear in the size ofx plus the size ofy). Under this assumption
(which holds for any of∩, +, min, max andsum), it is obvious that for any world
ω ∈ 2PS and any weighted baseB, the value ofIf

B(ω) (as a normal interval) can
be computed in time polynomial in the size ofB plus the size ofω. We finally also
assume that the ordering≤ on any scaleS can be decided in polynomial time.

The first question to be addressed when taking advantage of a weighted baseB to
represent a non-trivial interval order is whetherB is f -consistent.

Definition 11 f -CONSISTENCY is the decision problem given by

• Input: A weighted baseB overPS andS.
• Question: Is B f -consistent?

Now, since the set of alternatives characterized by a weighted base is not always
equal to the set of all worlds, another important question isto determine when a
world is among the alternatives:

Definition 12 f -POSSIBILITY is the decision problem given by

• Input: A weighted baseB overPS andS and a worldω ∈ 2PS.
• Question: Is ω f -possible givenB?

Since many different bases share the samef -canonical interpretation in the general
case, it is important to identify the complexity of decidingwhether two given bases
aref -equivalent; indeed, if two bases aref -equivalent then they represent the same
interval order:

Definition 13 f -EQUIVALENCE is the decision problem given by

• Input: Two weighted basesB1 andB2 overPS andS.
• Question:AreB1 andB2 f -equivalent?

Similarly, it is important to identify the complexity of deciding whether a first base
is (f, g)-order-equivalent to a second base (since, as we have seen, it can be the case
that two bases that are notf -equivalent nevertheless represent the same interval
order); we assume here that bothf and g are linear time aggregation functions
(possibly over different scalesS1 andS2):

Definition 14 (f, g)-ORDER-EQUIVALENCE is the decision problem given by

• Input: A weighted baseB1 overPS andS1, and a weighted baseB2 overPS
andS2.

• Question: Is B1 (f, g)-order-equivalent toB2?

The following three decision problems are in some sense natural problems when
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dealing with compactly represented interval orders (and, as such, have been con-
sidered in other papers from the literature dealing with compact representation of
preferences, see [17]); letop be an element of{�, ≻, ∼}:

Definition 15 f -COMPARISON(op) is the decision problem given by

• Input: A weighted baseB overPS andS and two worlds
ω1, ω2 ∈ Possiblef (B).

• Question: Is ω1op
f
Bω2 true?

Definition 16 f -NON-DOMINANCE is the decision problem given by:

• Input: A weighted baseB overPS andS and
a worldω ∈ Possiblef (B).

• Question: Is ω undominated w.r.t.≻f
B in the set of all worldsf -possible given

B?

Definition 17 f -CAND-OPT-SAT is the decision problem given by:

• Input: A weighted baseB overPS andS and
a formulaφ ∈ PROPPS.

• Question: Does there exist an undominated worldω w.r.t. ≻f
B in the set of all

worldsf -possible givenB s.t.ω |= φ?

We have derived the following results:

Theorem 1 f -CONSISTENCY is in NP; it is NP-complete forf = ∩ and inP for
f = +, f = min, f = max, f = sum.

Proof: Membership toNP comes from the following non-deterministic algorithm
running in polynomial time: (1) guessω ∈ 2V ar(B); (2) check thatIf

B(ω) 6= [].

Whenf = ∩, NP-hardness comes from the following reduction from the satisfi-
ability problemSAT: let Σ be any CNF formula fromPROPPS; let us associate
in polynomial time the baseB = {(true, =, ⊥), (¬Σ, =, ⊤)} to Σ. If Σ is sat-
isfiable, then it has a modelω; by construction,I∩

B(ω) = [⊥,⊥] 6= [], henceB is
∩-consistent. IfΣ is unsatisfiable, then¬Σ is valid; hence for every worldω ∈ 2PS,
we haveI∩

B(ω) = []; in this case,B is not∩-consistent.

Whenf = +, B is +-consistent if and only ifB contains a 5-tuple(φ, r1, s1, r2, s2)
such thatr1(s1) ∩ r2(s2) 6= [], which can be decided in polynomial time. Similarly,
whenf = min, f = max or f = sum, B is f -consistent, except when it contains
a 5-tuple(φ, r1, s1, r2, s2) such thatr1(s1) ∩ r2(s2) = [] (i.e., the interval specified
by r1, s1, r2, s2 is empty). Accordingly, when interval emptiness can be decided in
polynomial time, this is also the case off -consistency for those functionsf .

2
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Theorem 2 f -POSSIBILITY is in P.

Proof: Trivial sinceIf
B(ω) (as a normal interval) can be computed in polynomial

time whenf is a linear time function.
2

Theorem 3 f -EQUIVALENCE is coNP-complete.

Proof: Membership toNP of the complementary problem comes from the fol-
lowing non-deterministic algorithm running in polynomialtime: (1) guessω ∈
2V ar(B1)∪V ar(B2); (2) check thatIf

B1
(ω) 6= If

B2
(ω).

Hardness comes from the following reduction from the unsatisfiability problem
UNSAT: let Σ be any CNF formula fromPROPPS; to Σ let us associate in polyno-
mial time the basesB1 = {(Σ, =,⊥)} andB2 = {(Σ, =,⊤)}. If Σ is satisfiable,
then it has a modelω; by construction,If

B1
(ω) = [⊥,⊥] andIf

B2
(ω) = [⊤,⊤],

henceB1 andB2 are notf -equivalent. IfΣ is unsatisfiable, then for any world
ω ∈ 2PS, we haveIf

B1
(ω) = If

B2
(ω) = nf ; in this case,B1 andB2 aref -equivalent.

2

Theorem 4 (f, g)-ORDER-EQUIVALENCE is coNP-complete

Proof: Membership toNP of the complementary problem comes from the follow-
ing non-deterministic algorithm running in polynomial time: (1) guessω1, ω2 ∈
2V ar(B1)∪V ar(B2); (2) check that one of the following statements hold:

• ω1 is f -possible givenB1 andω1 is notg-possible givenB2,
• ω1 is notf -possible givenB1 andω1 is g-possible givenB2,
• ω1 andω2 aref -possible givenB1 andg-possible givenB2 and

· ω1 ≻
f
B1

ω2 andω1 6≻
g
B2

ω2 or
· ω1 ∼

f
B1

ω2 andω1 6∼
g
B2

ω2.

Hardness comes from the following reduction from the unsatisfiability problem
UNSAT, and holds even in the restricted casef = g (and S1 = S2); let Σ be
any CNF formula fromPROPPS such thatV ar(Σ) = {x1, . . . , xn}; to Σ let us
associate in polynomial time the basesB1 = {(Σ∧new, =,⊥), (Σ∧¬new, =,⊤)}
andB2 = {(Σ ∧ new, =,⊤), (Σ ∧ ¬new, =,⊥)}, wherenew is a fresh atom from
PS\V ar(Σ). If Σ is satisfiable, then it has a modelω over{x1, . . . , xn}, which can
be extended to a modelω1 of Σ∧new (resp. a modelω2 of Σ∧¬new) by requiring
that ω1(new) = 1 (resp.ω2(new) = 0); by construction,If

B1
(ω1) = [⊥,⊥] and

If
B1

(ω2) = [⊤,⊤], while If
B2

(ω1) = [⊤,⊤] andIf
B2

(ω2) = [⊥,⊥]. Accordingly,
we haveω2 ≻f

B1
ω1 andω1 ≻f

B2
ω2, henceB1 is not(f, g)-order-equivalent toB2.

In the remaining case (i.e., whenΣ is unsatisfiable), we have that for any pair of
worlds ω1 andω2, If

B1
(ω1) = If

B1
(ω2) = If

B2
(ω1) = If

B2
(ω2) = nf , henceB1 is

(f, g)-order-equivalent toB2.
2
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Theorem 5 f -COMPARISON(op) is in P.

Proof: Obvious given that each normal intervalIf
B(ω1) andIf

B(ω2) can be com-
puted in polynomial time whenf is a linear time function.

2

Theorem 6 f -NON-DOMINANCE is coNP-complete.

Proof: As to membership, we consider the complementary problem andshow that
it is in NP thanks to the following non-deterministic algorithm running in polyno-
mial time: (1) guessω′ ∈ 2V ar(B); (2) computeIf

B(ω) andIf
B(ω′); (3) check that

If
B(ω′) 6= [] and thatω′ ≻f

B ω.

Hardness comes from the following reduction from the unsatisfiability problem
UNSAT: let Σ be any CNF formula fromPROPPS; to Σ let us associate in poly-
nomial time the baseB = {(¬(Σ ∧ new), =,⊥), (Σ ∧ new, =,⊤)} (wherenew
is a fresh atom fromPS \ V ar(Σ)), and any worldω over2V ar(Σ)∪{new} such that
ω(new) = 0; by construction, we haveIf

B(ω) = [⊥,⊥]. If Σ is satisfiable, then it
has a modelω′ such thatω′(new) = 1; by construction, we haveIf

B(ω′) = [⊤,⊤].
As a consequence, we haveω′ ≻f

B ω: ω is dominated w.r.t.≻f
B. Finally, if Σ is

unsatisfiable, thenB is f -equivalent to the base{(true, =,⊥)}, which interprets
all the worlds in the same way:ω is not dominated w.r.t.≻f

B .
2

Theorem 7 f -CAND-OPT-SAT is in Σp
2. It is bothNP-hard andcoNP-hard (hence

it is not in NP ∪ coNP unless the polynomial hierarchy collapses). For more spe-
cific cases we have the following results:

i. If card(S) ≥ card(B), f -CAND-OPT-SAT is Θp
2-hard.

ii. Let P f
B be the set of potential (normal) intervals givenB andf defined as the

subset ofIntS given by{f({r1(s1) ∩ r2(s2) | (φ, r1, s1, r2, s2) ∈ B′} | B′ ⊆
B). If a supersetP of P f

B can be (explicitly) computed in polynomial time in
the size ofB, thenf -CAND-OPT-SAT is in Θp

2.
iii. If B can be turned in polynomial time into a(f, sum)-order-equivalent base

B′ over PS and S ′ s.t. every 5-tuple(φ, r1, s1, r2, s2) satisfiesr1 =≥ and
r2 =≤, andS ′ is a closed interval ofN containing0, thensum-CAND-OPT-
SAT is in ∆p

2.

Proof:

• Membership toΣp
2 comes from the following non-deterministic polytime algo-

rithm using anNP-oracle: (1) guessω ∈ 2V ar(B); (2) check thatω is f -possible;
(3) check thatω is not dominated w.r.t.≻f

B using one call to anNP-oracle; (4)
check thatω |= φ.

• NP-hardness comes from the following reduction from the satisfiability problem
SAT: let Σ be any CNF formula fromPROPPS; to Σ let us associate in polyno-
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mial time the baseB = {(true, =,⊤)} and the formulaφ = Σ. By construction,
Σ is satisfiable if and only if there exists a undominated worldω w.r.t.≻f

B in the
set of all worldsf -possible givenB such thatω |= φ. Indeed, any modelω of Σ
does the job.

• coNP-hardness comes from a straightforward polynomial reduction from f -
NON-DOMINANCE: ω is not dominated w.r.t.≻f

B if and only if there exists a
undominated worldω w.r.t.≻f

B in the set of all worldsf -possible givenB such
thatω |= φ with φ = ω.

• More specific cases:
i. When card(S) ≥ card(B), Θp

2-hardness comes from a polynomial reduc-
tion from PARITY-SAT [26]: given a sequenceφ1, . . ., φn of formulae from
PROPPS such that for alli ∈ {1, . . . , n − 1}, if φi is unsatisfiable thenφi+1

is unsatisfiable, is the maximum indexi such thatφi is satisfiable an odd num-
ber?n = 2m is assumed even without loss of generality. The reduction isas
follows: to φ1, . . ., φn ∈ PROPPS, let us associate in polynomial time the
baseB = {(φi ∧ newi ∧

∧
j=1...n,j 6=i ¬newj , =, si) | i ∈ {1, . . . , n}} where

{s1, . . . , sn} ⊆ S is such that∀i, j ∈ {1, . . . , n}, if i ≤ j thensi ≤ sj, and
the formulaφ =

∨m−1
j=0 φ2j+1. By construction, the maximum indexi such that

φi is satisfiable is odd if and only if there exists a modelω of φ which is not
dominated w.r.t.≻f

B.
ii. Let us now show the membership off -CAND-OPT-SAT to Θp

2 in a restricted
case. Roughly, the approach consists in determining an interval imax of IntS
which is maximal w.r.t.>IntS and such that there exists a worldω satisfying
If
B(ω) = imax; this is done using binary search and anNP-oracle; then it is

enough to check using one call to anNP-oracle that there exists a modelω of
φ s.t.If

B(ω) ∼IntS imax.
The difficulty here lies in binary searching since>IntS is not necessarily

complete; especially, it can be the case thatimax is not unique. In order to
overcome it, we refrain from considering>IntS directly, but a complete, strict
ordering≻ closely related to it. Formally, let≻ be the binary relation over
the set of all non-empty intervals fromIntS defined byi1 ≻ i2 if and only
if l(i1) > l(i2) or (l(i1) = l(i2) and ((lc(i1) and notlc(i2)) or u(i1) > u(i2)
or (u(i1) = u(i2) andrc(i1) and notrc(i2)))). For any non-empty subsetE
of IntS consisting of non-empty intervals,max(E,≻) is a singleton{iEmax}.
It is obvious that∀i1, i2 ∈ E, if i1 >IntS i2 then i1 ≻ i2. We also have
max(E, >IntS) = {i ∈ E | i ∼IntS iEmax} (see Lemma 1 on the appendix
for the proof).

One can now design a polynomial time algorithm SOLVE-f -CAND-OPT-
SAT-1 for decidingf -CAND-OPT-SAT (under the requirements given in the
proposition), using a logarithmic number of calls to anNP-oracle (please see
Algorithm 1 on the appendix). It mainly consists in binary searching{iEmax}
in the set of potential intervals (or the given superset of it); here,E = {i ∈
P \ {[]} | ∃ω ∈ 2V ar(B)∪V ar(φ) s.t.If

B(ω) = i} (for the definition of rank used
in the allgorithm, please see Subsection 3.1).

The evaluation of the condition of each conditional in SOLVE-f -CAND-
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OPT-SAT-1 requires one call to anNP-oracle. The total number of calls to
such an oracle is thus upper bounded by⌈log2 Card(P )⌉ + 1; the result then
follows immediately sinceCard(P ) is upper bounded byp(|B|) wherep is a
polynomial such that|P | = p(|B|).

iii. Let us now finally show the membership off -CAND-OPT-SAT to ∆p
2 in a

second restricted case. Roughly, the algorithm SOLVE-f -CAND-OPT-SAT-
2 used to prove it consists in first computingB′, then in binary searching
m = l(iEmax) with E = {i ∈ IntS′\{[]} | ∃ω ∈ 2V ar(B′)∪V ar(φ) s.t.Ig

B′(ω) = i},
in the interval[0, M =

∑
(φ,≥,s1,≤,s2)∈B′ s2] ⊆ S ′ (please see Algorithm 2 on

the appendix). Indeed, for any intervali ∈ IntS′, we have thati ∼IntS′
iEmax if

and only ifm ∈ i.
The evaluation of the condition of each conditional in SOLVE-f -CAND-

OPT-SAT-2 requires one call to anNP-oracle. The total number of calls to
such an oracle is thus upper bounded by2 × ⌈log2 M + 1⌉ + 1. Finally, the
number of bits in the binary representation of anys2 in B′ is upper bounded by
p(|B|) wherep is a polynomial such that|B′| = p(|B|); similarly, the cardinal
of B′ is upper bounded byp(|B|), and as a consequence the number of bits
in the binary representation ofM is upper bounded by2 × p(|B|); it comes
that the value ofM is upper bounded by22×p(|B|); thus, the total number of
calls to anNP-oracle in SOLVE-f -CAND-OPT-SAT-2 is upper bounded by
2×⌈log2 (22×p(|B|))+1⌉+1 = 2×⌈2×p(|B|)+1⌉+1, hence by a polynomial
in the input size, and the result follows.

2

To conclude with the complexity results, observe that the set {[s1, s2], [s1, s2),
(s1, s2], (s1, s2) | (∃r, s(φ1, r1, s1, r, s) ∈ B or s1 ∈ {⊥, ⊤}) and(∃r, s(φ2, r, s, r2,
s2) ∈ B or s2 ∈ {⊥,⊤})} is a superset of bothP ∩

B , P+
B , P min

B andP max
B and it

can be computed in time polynomial in the size ofB; this shows that∩-CAND-
OPT-SAT, +-CAND-OPT-SAT, min-CAND-OPT-SAT andmax-CAND-OPT-SAT are
in Θp

2.

In light of our results, it turns out that several key decision problems when deal-
ing with preferences (f -COMPARISON(op), f -POSSIBILITY) remain tractable when
interval orders are represented by weighted bases, while some other key decision
problems (f -NON-DOMINANCE, f -EQUIVALENCE, (f, g)-ORDER-EQUIVALENCE,
f -CONSISTENCY) become “mildly” harder (i.e., at the first level of the polynomial
hierarchy) than the corresponding problems based on explicit or interval represen-
tations (which are tractable). Remember that a decision problem is at the first level
of PH if and only if it belongs to∆p

2 and it is eitherNP-hard orcoNP-hard (for
more details on the polynomial hierarchy please see Subsection 2.3). This appears
as the price to be paid for the gain in spatial efficiency offered by our represen-
tation languages. Nevertheless, this complexity shift at the problem level does not
imply a complexity shift at the instance level, i.e., when actual runtimes are consid-
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ered; indeed, as explained before, the sizes of the explicitrepresentations of some
interval orders are exponential in the size of some weightedbases representations
of the same interval orders. Hence, a (deterministic) algorithm running in (sim-
ple) exponential time for deciding any problem amongf -NON-DOMINANCE, f -
EQUIVALENCE, (f, g)-ORDER-EQUIVALENCE, f -CONSISTENCYcan easily prove
more efficient on some instances than a polytime algorithm for the “corresponding
problem”, i.e., when the explicit representation of an interval order is considered
instead of a weighted base one.

We do not know whetherf -CAND-OPT-SAT is at the first level of the polynomial
hierarchy or at the second level in the general case but our results show it at the first
level of the polynomial hierarchy for many interesting cases.

Finally, our results show that the additional expressive power offered by our ap-
proach does not lead to a complexity shift compared to the penalty-based ap-
proach to complete preorders representation. Indeed, the complexity results forf -
POSSIBILITY, f -COMPARISON(op) andf -NON-DOMINANCE as given above coin-
cide with the complexity results for the corresponding problems reported in [17]. In
contrast to our framework, the complexity ofCAND-OPT-SAT in the penalty-based
approach is in∆p

2 while this is not ensured in our approach; the difficulty comes
from the fact that not only the scale is not necessarily numerical in our setting, but
it is not part of the input of the decision problem (hence there is no way to compute
a notion of “mean” value, which is required for binary searching).

6 Conclusion

In this paper, we have shown how interval orders can be encoded as weighted bases,
a subject, to our knowledge, that has not been studied before. Our presentation is
simple and general in the sense that aggregation functions that can be used are not
fixed but just have to satisfy some basic properties. We gave some simple examples
of the use of such weighted bases when different aggregationfunctions are consid-
ered. Among other things, we have shown that all interval orders can be represented
using some weighted bases and we have identified the complexity of a number of
decision problems pertaining to the exploitation of compactly represented interval
orders.

This work calls for a number of directions of future work. Oneof them consists
in designing compact representations for other preferencerelations, including par-
tially ordered intervals andPQI interval orders.PQI interval orders are prefer-
ence structures with three relationsP (strict preference relation),Q (weak prefer-
ence relation) andI (indifference). They have been introduced and characterized
by Tsoukiàs and Vincke [24,25].PQI interval orders have an interval representa-
tion: strict preference holds when one interval is completely to the right of the other
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one, weak preference holds when two intervals have a non-empty intersection with-
out inclusion and finally indifference holds in case of inclusion. Concerning their
numerical representation Ngo The and Tsoukiàs ([20]) havegiven two algorithms,
the first one inO(n2) determines a general representation of these structures and
the second one inO(n) minimizes the representation given by the first algorithm.
Our weighted base representation appears appropriate for these structures. It is suf-
ficient to determine the three relationsP, Q andI as we did for the preference and
indifference relations in Definition 10.

A second perspective consists in investigating further theexpressiveness and spa-
tial efficiency issues within the family of representation languages we pointed out.
Indeed, the choice ofS andf has a clear impact on both issues in the general case.
It turns out that some spatial efficiency results from [5] forcomplete preorders can
be easily extended to the case of interval orders (for instance, when a numerical
scale is considered, the inability of compactly encoding some exponentially long
PR-chains usingmin ormax can be exploited to show the corresponding languages
less succinct than those for whichsum is used). It would prove valuable to deter-
mine the expressiveness landscape and the spatial efficiency landscape for various
choices of the parametersS andf .
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Appendix

Lemma 1 Let E be any non-empty subset ofIntS consisting of non-empty inter-
vals. We have:

max(E, >IntS) = {i ∈ E | i ∼IntS iEmax}.

Proof:

i) ∀i ∈ IntS, if i ≁IntS iEmax then i /∈ max(E, >IntS ): it is easy to see that if
i <IntS iEmax then i /∈ max(E, >IntS). On the other handi >IntS iEmax is not
possible since by the definition ofiEmax we havel(iEmax) > l(i) or (l(iEmax) = l(i)
and (((lc(iEmax) and notlc(i)) or u(iEmax) > u(i) or (u(iEmax) = u(i) andrc(iEmax)
and notrc(i)))). And u(iEmax) being greater than or equal tol(iEmax), it is not
possible to havel(i) > u(iEmax) when rc(iEmax) or l(i) ≥ u(iEmax) when not
rc(iEmax).

30



ii) ∀i ∈ IntS , if i ∼IntS iEmax then∀j we havej ∼IntS i or j <IntS i: we show
that it is impossible to havej >IntS i. Suppose that there existsj such that
j >IntS i. Then we havel(j) > u(i) if rc(i) (or l(j) ≥ u(i) if ¬rc(i)). On the
other hand sincei ∼IntS iEmax we havel(i) < l(iEmax) < u(i). So we will have
l(i) < l(iEmax) < u(i) < l(j), which is in contradiction with the definition of
iEmax.

2

Algorithm 1 : Polytime algorithm forf -CAND-OPT-SAT using logarithmically
many calls to anNP-oracle

procedure SOLVE-f -CAND-OPT-SAT-1
Data : A weighted baseB overPS andS and a formulaφ ∈ PROPPS

Result :1 if a model ofφ undominated w.r.t.≻f
B exists,0 otherwise

begin
ComputeP = P f

B (or a superset of it) in time polynomial in|B| ;
O = the set obtained by removing fromP the empty interval[] (if present) ;
SortO w.r.t.≻ ;
while O is not a singleton{imax} do

i = the interval of rank⌊Card(O)/2⌋ in O ;
if ∃ω ∈ 2V ar(B)∪V ar(φ) such thatIf

B(ω) ∈ O andIf
B(ω) ≻ i then

Remove fromO every intervalj such thatIf
B(ω) ≻ j

else
Remove fromO every intervalj such thatj ≻ i

if ∃ω ∈ 2V ar(B)∪V ar(φ) such thatω |= φ andIf
B(ω) ∼IntS imax then

return 1
else

return 0

end

31



Algorithm 2 : Polytime algorithm forf -CAND-OPT-SAT using anNP-oracle

procedure SOLVE-f -CAND-OPT-SAT-2
Data : A weighted baseB overPS andS and a formulaφ ∈ PROPPS

Result :1 if a model ofφ undominated w.r.t.≻f
B exists,0 otherwise

begin
ComputeB′ overPS and a closed intervalS ′ of N such thatB′ is (f, sum)-
order-equivalent toB ;
l = 0 ;
u =

∑
(φ,≥,s1,≤,s2)∈B′ s2 ;

while l 6= u do
if ∃ω ∈ 2V ar(B′)∪V ar(φ) such thatIsum

B′ (ω) 6= [] andl(Isum
B′ (ω)) > m then

l = m + 1

else
if ∃ω ∈ 2V ar(B′)∪V ar(φ) such thatm ∈ Isum

B′ (ω) then
l = u = m

else
u = m

if ∃ω ∈ 2V ar(B′)∪V ar(φ) such thatω |= φ andm ∈ Isum
B′ (ω) then

return 1
else

return 0

end
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d’intervalles.Mathématiques et Sciences Humaines, 101:49–59, 1988.

[9] J. Doyle and M.P. Wellman. Preferential semantics for goals. InProc. of AAAI’91,
pages 698–703, 1991.

[10] P.C. Fishburn.Interval orders and interval graphs. John Wiley and Sons, 1985.

[11] P.C Fishburn. Generalisations of semiorders: a reviewnote. Journal of Mathematical
Psychology, 41:357–366, 1997.

[12] Ch. Gonzales and P. Perny. GAI networks for utility elicitation. In Proc. of KR’04,
pages 224–234, 2004.

[13] G. Isaak. Bounded discrete representations of interval orders. Discrete Applied
Mathematics, 44:157–183, 1993.

[14] D.H Krantz, R.D Luce, P. Suppes, and A. Tversky.Foundations of measurement,
volume 1: Additive and polynomial representations. Academic Press, New York, 1971.

[15] D.H Krantz, R.D Luce, P. Suppes, and A. Tversky.Foundations of measurement,
volume 2: Geometrical, threshold and probabilistic representations. Academic Press,
New York, 1989.

[16] C. Lafage and J. Lang. Logical representation of preferences for group decision
making. InProc. of KR’00, pages 457–468, 2000.

[17] J. Lang. Logical preference representation and combinatorial vote. Annals of
Mathematics and Artificial Intelligence, 42(1-3):37–71, 2004.

[18] R.D. Luce. Semi-orders and a theory of utility discrimination. Econometrica, 24,
1956.

[19] R.D Luce, D.H Krantz, P. Suppes, and A. Tversky.Foundations of measurement,
volume 3: Representation, axiomatisation and invariance.Academic Press, New York,
1990.
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