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Abstract

If the social network structure among the voters in an election is known, how
should this be taken into account by the voting rule? In this brief article, I argue,
via the maximum likelihood approach to voting, that it is optimal to ignore the
social network structure altogether—one person, one vote.

1 Introduction

The maximum likelihood framework provides a natural approach to determining an
“optimal” voting rule. Under this approach, we suppose that there exists a “correct”
outcome, which cannot be directly observed; however, voters’ votes are noisy estimates
of this correct outcome. For example, in an election between two alternatives, we may
suppose that one of the alternatives is better in some objective sense, and each voter is
more likely to vote for the correct (better) alternative than for the incorrect alternative.
To make this concrete, suppose that there is a fixed p > 1/2 such that each voter,
independently, votes for the correct alternative with probability p, and for the incorrect
one with probability 1 — p.

Under such a model, it makes sense to choose the maximum likelihood estimate of
the correct outcome. For example, suppose that we have a specific profile in which
there are n, votes for alternative a, and n;, votes for alternative b. The likelihood of
this particular profile happening given that a is the correct outcome is p™= (1 — p)™®,
and given that b is the correct outcome it is (1 —p)™=p™. If n, > np, then the former is
larger, so a is the maximum likelihood estimate; and vice versa. That is, the maximum
likelihood estimate here is obtained by applying the majority rule: the alternative with
more votes wins.

The study of this maximum likelihood approach to voting dates back to Con-
dorcet [4], who proposed a noise model that generalizes the one above to more than
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two alternatives. Two centuries later, Young [11, 12] showed that the maximum like-
lihood solution for this model coincides with the Kemeny rule [8]. A recent body
of work has been devoted to the investigation of how alternative noise models lead
to different rules [5, 3, 10, 2]. There is also a literature on strategic voting in such
contexts—e.g., [1, 7]—but we will not consider such issues here. Another recent pa-
per [6] explores the relationship between the maximum likelihood framework and the
distance rationalizability framework, where we find the closest “consensus” election
that has a clear winner, for some definition of consensus and some distance function,
and choose its winner.

A common assumption in the existing work on the maximum likelihood approach
is that votes are drawn independently (conditional on the correct outcome). It is easy to
dispute this assumption. Voters do not make up their minds in a vacuum: they generally
discuss the matter with others, and this is likely to affect their votes. Specifically, voters
that talk to each other are more likely to reach the same conclusion, whether right or
wrong.

This brief article considers elections in which there is some social network struc-
ture among the voters, representing which voters interact with which other voters (as
well as how frequently or intensively they do so); and, moreover, this social network
structure is known to the election designer. Hence, the voting rule can take the social
network into account. This is not always as impractical as it may sound. For example,
Facebook, Inc. decided to allow its users to vote on its future terms of use [13]. Nat-
urally, Facebook knows the social network structure among its users very accurately.
But, in order for the general idea to make sense, it is not necessary to have this level
of detailed knowledge of the social network structure among the voters. For example,
we may simply observe that the residents of the state of Hawaii are in some ways dis-
connected from the continental United States, so that there is perhaps less interaction
between the two groups; and perhaps it makes sense to somehow take this into account
in the design of a voting rule. Making such a statement can hardly be considered a
taboo, since a voter’s state of residence is already taken into account via the electoral
college. In fact, one may even go so far as to wonder whether a version of the elec-
toral college is perhaps the maximum likelihood solution for a particular probabilistic
model.

So, given that we know the social network structure (or some estimate thereof), how
should this affect the voting rule? We can state various suggestive intuitive arguments,
such as the following.

1. Well-connected voters benefit from the insight of others so they are more likely to
get the answer right. They should be weighed more heavily.

2. Well-connected voters do not give the issue much independent thought, the rea-
sons for their votes are already reflected in their neighbors’ votes. They should
be weighed less heavily.

3. It is oversimplifying matters to discuss the matter merely in terms of voters’
weights. We can do better by considering richer options, such as an electoral
college.



In this brief article, I will argue that all of these three suggestions are wrong—or,
arguably, 1 and 2 are both correct, but cancel each other out. That is, optimal rules
ignore the social network structure altogether, affirming the familiar principle of one
person, one vote. The mathematical result is quite trivial once the model has been set

up.

2 Model

In this section, I give a concrete probabilistic model that takes the social network struc-
ture into account; I will discuss the benefits and drawbacks of this model in the final
section. Let v denote a vertex in the social network graph, corresponding to a voter.
Let N (v) denote v’s neighbors. Let V,, denote voter v’s vote, and Vi, the subprofile
consisting of the votes of all the neighbors of v. Let ¢ denote the “correct” outcome.
For ease of reading, the reader is encouraged to keep the simple example of an elec-
tion between two alternatives in mind, so that there are two outcomes and two possible
votes. However, this is not at all necessary for the main result: there can be arbitrarily
many alternatives, and in fact we will not require any restriction on the outcome space,
on the space of possible votes, or on the relationship between the two. For example,
an outcome could consist of an individual alternative, a subset of the alternatives, or
a ranking of the alternatives; and so could a vote, independently of what an outcome
consists of.

For the maximum likelihood approach, we are interested in the probability of the
full profile of votes, given c. I will assume that this probability can be factored as
I, fo(Va, VN lc), where f,, is a function associated with vertex v. (The dependence
of f on Vi (,) captures that voter v’s vote can be affected by her neighbors’ opinions
(votes)—as opposed to more standard models that take the form [], f,(V,|c).) This
type of factorization assumption is commonly made in undirected graphical models of
probability distributions (Markov random fields).! It is worth noting that, in the special
case where the social network graph is a clique, this assumption is not restrictive at all.
I now make the following assumption which does introduce a restriction that is crucial
for the result.

Assumption 1 For every v, there exist functions g, and h,, so that f, can be factored
as fv(Vm VN(v)|C) = gv(Vv|C) : hv(Vv7 VN(v))-

Here, g, is intended to capture the effect that a voter is more likely to vote for the
correct outcome, and h,, to capture the effect that voters are likely to vote similarly to
their neighbors. The key assumption is that g, does not depend on Vi (), and h,, does
not depend on c. That is, the tendency to vote for the correct outcome is in a sense
independent from the tendency to agree with one’s neighbors.

For example, in the two-alternative case, Assumption 1 precludes models where,
given that all of a vertex’s neighbors vote for the correct outcome, this vertex also does

'In this literature, factors can only be associated with cligues of the graph. In contrast, here, a factor can
be associated with the neighborhood of any vertex. Since any clique is contained in the neighborhood of any
one of its vertices, the model studied here is in a sense less restrictive—though this is in any case not the
main assumption of this article, which follows next.



so with probability 1; but given that all of the neighbors vote for the incorrect outcome,
this vertex still has a positive probability of choosing the correct outcome. If this were
the noise model, then if we found a vertex voting differently from all its neighbors,
we should conclude that that vertex has identified the correct outcome, no matter what
everyone else votes. So, in that case, the social network structure would matter.

3 Detailed example

For concreteness, let us consider a simple example with two vertices (voters) connected
by an edge, voting over two alternatives (so a vote corresponds simply to one of the
alternatives). Let —c denote the alternative other than ¢ and let —v denote the voter
other than v. For each of the two vertices v, we let g,(V, = cl¢) = .7,¢,(V, =
—c|e) = .3, indicating that votes for the correct outcome are more likely. We also let
ho(Vy = ¢,V_y = ¢) = 1.142, hy(V,, = ¢, V_,, = —¢) = .762, indicating that voters
are more likely to agree with each other. We can now calculate that P(V,, = c|c) =
PV,=c¢V_,=clc)+ P(V, =¢,V_, = —¢|c) = .7-1.142- .7-1.142 4+ .7 - 762 -
3 -.762 = .761.

In contrast, a model in which the two voters do not interact can be obtained by
setting h = 1 everywhere; in this model, P(V,, = c¢|¢) = .7. Thus, there is some
truth to the first argument in the introduction: well-connected voters benefit from the
insight of others so they are more likely to get the answer right. However, it does not
yet follow from this that they should be weighed more heavily, and as we will see this
is in fact not the case.

4 Main result

We now arrive at the main result, which states that (under Assumption 1) the social
network structure should not be taken into account by the voting rule.

Proposition 1 Under Assumption 1, the maximum likelihood estimate does not depend
on the social network structure—more precisely, it does not depend on the functions
h, (assuming they are positive everywhere). Specifically, under these conditions, the
maximum likelihood estimate of the correct outcome is arg max. [ [, g»(Vs|c).

As noted before, the proof is quite trivial:

Proof: By Assumption 1, we can write the likelihood as
H fv(Vm VN(v)|C) = Hgv(Vv‘c)'hv(%a VN(v)) = (H gv(Vv|c))'(H hv<Vv7 VN(v)))

Therefore, the maximum likelihood estimate of the correct outcome is

arg max H Jo(Vo, VNwylc) = arg m?x(H gv(Vv\c))(H ho(V, VN))) = arg max HgU(VU|C)

which does not depend on the h functions. ]



Because of Proposition 1, results derived in the maximum likelihood framework
with the standard independence assumption still hold in our setting. For example:

Corollary 1 In a two-alternative election where Assumption 1 holds, if g, is the same
Sfor all voters v (so g, = g), and g(c|c) > g(—c|c), then the majority rule gives the
maximum likelihood estimate of the correct winner.

Proof: By Proposition 1, the maximum likelihood estimate of the correct winner is
argmax. [ [, g(V,|c) (regardless of the h,, functions). The remainder of the proof is
as described in the introduction, letting p = g(c|c). L]

This also provides justification for the strong-seeming assumption of independence
across voters in the maximum likelihood voting literature, showing that modeling in-
teraction among the voters does not necessarily change the solution.

5 Discussion

As noted earlier, while the result in this brief article is presumably easiest to illustrate
in the context of an election between two alternatives, everything in the article applies
just as well to settings with more alternatives. Also, there is no requirement that votes
have to take any particular form—a vote can be a ranking of the alternatives, a subset
of approved alternatives, or anything else. Similarly, the correct “outcome” can be
an alternative, a ranking of the alternatives, or anything else. Finally, no particular
stucture on the social network graph is required for the result—for example, all voters
may be directly connected to each other. The crucial assumption is Assumption 1,
which separates the correct-outcome effect from the interaction effect. An argument for
voting rules that take social network structure into account could be based on models
that violate Assumption 1.

In this article, I have not proposed any concrete mechanism? by which voters influ-
ence their neighbors’ opinions (for example, voters could sequentially send each other
particular kinds of messages before voting); all that is needed is Assumption 1 on the
distribution. On the one hand, it can be argued that it is an advantage of the model
that it does not rely on such a concrete mechanism, because any analytically tractable
mechanism will presumably be at best a very rough approximation of the truth. On the
other hand, it still seems desirable to propose and analyze such concrete mechanisms,
to see whether they violate the assumptions made here, and, if so, what their effect is
on the maximum likelihood approach. In this sense, this brief article is potentially but
a first step in a richer body of research.

It is instructive to compare the result in this article to a result by Nitzan and Paroush [9].
They consider a model with two alternatives where some voters are more likely to iden-
tify the correct alternative than others, and find that the optimal rule is a weighted ma-
jority rule, where more skillful voters receive a larger weight. In contrast, in the frame-
work of this article, better-connected voters are more likely to vote correctly (as we saw

2“Mechanism” here is in the common sense of the word, not a reference to mechanism design.



in Section 3), but are not given a correspondingly larger weight (Corollary 1). There is
no contradiction here: in the Nitzan-Paroush model, voters vote independently—there
are no edges in the graph. Hence, more skillful voters really do contribute more valu-
able information, and should be weighed more heavily. In contrast, in the framework
of this article, better-connected voters are not really contributing more valuable infor-
mation, because some of their information is already reflected in their neighbors’ votes.
In fact, the Nitzan-Paroush framework can easily be accommodated in the framework
of this article, by reflecting skill in the g functions. If we do so, then there are two
reasons that a voter may be more likely to vote correctly than others: one is being more
skillful, and the other is being better connected. By Proposition 1, the former results
in a larger weight (exactly as in the result by Nitzan and Paroush), but the latter does
not—a generalization of Corollary 1.
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