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Abstract

We analyze mathematical properties of apportionment functions in the context of allocating seats in the European Parliament.
Some exemplary families of such functions are specified and the corresponding allocations of seats among the Member States
of the European Union are presented. We show that the constitutional constraints for the apportionment are so strong that the
admissible functions lead to rather similar solutions.
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1. Introduction

One of the major mathematical approaches to the problem of
allocating seats in the European Parliament can be described by
the following general scheme. First, one has to choose a con-
crete characterization of the size of a given Member Statei by a
numberpi (for example, equal to the total number of its inhabi-
tants, citizens, or voters1) we call herepopulation, and precisely
define by which means these data should be collected and how
often they should be updated. Then, one needs to transform
these numbers by anallocation(or apportionment) function A
belonging to a given family indexed (usually monotonicallyand
continuously) by someparameterd, whose range of variability
is determined by the requirement that the function fulfills con-
straints imposed by the treaties: isnon-decreasinganddegres-
sively proportional.

Additionally, the apportionment function satisfies certain
boundary conditions,A (p) = m and A (P) = M, where the
population of the smallest and the largest state equals, respec-
tively, p andP, and the smallest and the largest number of seats
are predetermined as, respectively,mandM. (In the case of the
European Parliament these quantities are explicitly bounded by
the treaty,m ≥ Mmin = 6 andM ≤ Mmax = 96.) To obtain
integer numbers of seats in the Parliament one has to round the
values of the allocation function, e.g., using one of three stan-
dard rounding methods(upward, downward or to the nearest
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1Of course, other more exotic choices are also possible. According to the

original text of the Constitution of the United States (Article I, Section 2) ‘Rep-
resentatives (...) shall be apportioned among the several States which may be
included within this Union, according to their respective Numbers, which shall
be determined by adding to the whole Number of free Persons, (...) three fifths
of all other Persons.’ The words ‘other Persons’ here mean the slaves. The rule
was the result of the so called ‘Three-Fifths compromise’ between Southern
and Northern states during the Constitutional Convention in 1787.

integer). Finally, one has to choose the parameterd in such
a way that the sum of the seat numbers of all Member States
equals the given Parliament sizeS, solving (if possible) ind the
equation

N
∑

i=1

[

Ad (pi)
]

= S , (1)

whereN stands for the number of Member States,pi for the
population of thei-th state (i = 1, . . . ,N), and [·] denotes
the rounded number. Though usually there is a whole inter-
val of parameters satisfying this requirement, nonetheless, in a
generic case, the distribution of seats established in thisway
is unique. Thus, this technique bears a resemblance to divi-
sor methods in the proportional apportionment problem applied
first by Thomas Jefferson in 1792 (Balinski & Young, 1978,
Toplak, 2009).

The crucial role in this apportionment scheme plays the no-
tion of degressive proportionality. The principle of degressive
proportionality enshrined in the Lisbon Treaty was probably
borrowed from the discussions on the taxation rules, where the
term has appeared already in the nineteenth century, when many
countries introduced income tax for the first time in their history
(Young, 1994). It was already included in the debate on the ap-
portionment in the Parliament in late 1980s, but at first, it was
a rather vague idea that gradually evolved into a formal legal
(and mathematical) term in the report Lamassoure & Severin
(2007) adopted by the European Parliament. There were also
suggestions to apply this general principle to other parliamen-
tary or quasi-parliamentary bodies like the projected Parliamen-
tary Assembly of the United Nations (Bummel, 2010).

In fact the entire problem of apportionment of seats in the
Parliament is mathematically similar (not counting rounding)
to the taxation problem, what is illustrated in the table below.

In consequence, the similar mathematical tools can be
used to solve both of them; see for instance Young
(1987), Thomson (2003), Kaminski (2006), Hougaard (2009),

Preprint submitted to Mathematical Social Sciences November 18, 2018

http://arxiv.org/abs/1110.1468v2


apportionment taxation

Member States Tax payers
Population Income

Seats Post-tax income
Allocation function Post-tax income function

Parliament size Total disposable income
Aeats monotonicity Income order preservation

Degressivity of seats distribution Progressivity of tax distribution
Subadditivity of seats distribution Merging-proofness

Ju & Moreno-Ternero (2011), and Moreno-Ternero (2011),
where the authors use the above presented scheme to consider
possible parametric solutions of the taxation problem or the
dual profit-sharing problem. Of course, the analogy has clear
limitations since income and post-tax income are calculated in
the same units, whereas population and seats are not. Moreover,
money is (at least theoretically) infinitely divisible, while seats
are indivisible.

Although quite a novelty in politics, nevertheless, the concept
of degressive proportionality is not entirely new in mathemat-
ics. It was already analysed in late 1940s under the name of
‘quasi-homogeneity’ by Rosenbaum (1950, Definition 1.4.1),
see also Kuczma (2009, p. 480), and since then studied also
under the name of ‘subhomogeneity’, see e.g. Burai & Száz
(2005). Moreover, an increasing function such that its inverse
is degressively proportional (and so it is an allocation function)
is called ‘star-shaped’ (with respect to the origin) in the math-
ematical literature. In other words, the function is degressively
proportional if and only if the lines joining points lying below
its graph with the origin do not cross the graph. Star-shaped
functions were introduced in Bruckner & Ostrow (1962), and
since then have been studied in many areas of pure and ap-
plied mathematics, see e.g. Ding & Wolfstetter (2009), Dahm
(2010). Thus, the results concerning this class of functions can
be applied,mutatis mutandis, to degressively proportional func-
tions.

Note that in the original definition of the degressive pro-
portionality formulated in Lamassoure & Severin (2007) it was
postulated that this property holds for the number of seatsafter
rounding the values of the allocation function to whole num-
bers. However, one can show that there exist such distribu-
tions of population that there is no solution of the apportion-
ment problem satisfying so understood degressive proportion-
ality (Ramı́rez González, 2010, Grimmett et al., 2011a). In par-
ticular, such difficulty arises in situations where there are a
number of Member States having similar populations. Con-
sequently, in Grimmett et al. (2011a) it was recommended to
weaken this condition and to amend the definition of degressive
proportionality assuming that ‘the ratio between the population
and the number of seats of each Member Statebefore rounding
to whole numbers must vary in relation to their respective pop-
ulations in such a way that each Member from a more populous
Member State represents more citizens than each Member from
a less populous Member State’. This proposal has been recently
approved by the The Constitutional Affairs’ Committee of the
European Parliament (AFCO). For the detailed mathematical
analysis of the original definition of the degressive proportion-

ality, see Łyko et al. (2010), Cegiełka (2011), Florek (2011),
Ramı́rez González et al. (2011), and Serafini (2011).

In this paper we describe several exemplary families of
allocation functions and discuss their fundamental proper-
ties. Mathematical technicalities collected in Sect. 3-5 can be
skipped by more practically oriented readers, who may proceed
to Sect. 6, in which general results are applied to the European
Parliament.

2. Allocation functions - definition and examples

Before selecting an allocation functionA one needs to spec-
ify the boundary conditionsmandM, which denote the number
of seats for the smallest and the largest member state, with pop-
ulationpandP, respectively. In the case of the European Parlia-
ment, the treaty sets the following bounds only:m ≥ Mmin = 6
andM ≤ Mmax = 96.

Definition 1. Let 0 < p < P, 0 < m < M, andpM < Pm. We
call A :

[

p,P
]

→ [m,M] a (degressive) allocation function, if:

1. (monotonicity)A is non-decreasing;
2. (degressive proportionality)A is degressively propor-

tional, i.e. the functiont→ A (t) /t is non-increasing.

We shall also consider the situation whereP = M = +∞,
assuming then thatA :

[

p,+∞) → [m,+∞). For the sake of
brevity we shall omit the word ‘degressive’ and instead of say-
ing that ‘A is a degressive allocation function’ we shall simply
say that ‘A is an allocation function’.

Below, we consider several families of allocation functions
fulfilling additionally boundary conditions:A (p) = m and
A (P) = M. Each of them depends on one (free) parameter (d)
with its range of variability determined by other assumptions
imposed onA. For instance, in case of the allocation of seats in
the Parliament, the parameterd is set by the constraint (1) that
the total size of the House is fixed.

Note also that the actual value of the constantd changes from
one allocation function to another.

1. base+prop functions - the ‘floor’ version:

A1a(t) := max [m, (t − P) /d+ M] , (2)

where P
M ≤ d ≤ P−p

M−m; then the function is convex; and the
‘cup’ version:

A1b (t) := min
[

m+ (t − p) /d, M
]

, (3)

where p
m ≤ d ≤ P−p

M−m; in this case the function is concave.
Note that not only the choice of the parameterd, but also
the choice of one of two forms of the base+prop function
(A1a or A1b) depends on other constraints (pi , i = 1, . . . ,N,
andS) in (1), see also Sect. 4. Observe further that the
base+prop+floor and base+prop+cup functions are in a
sense extremal allocation functions satisfying boundary
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conditions: A (p) = m and A (P) = M, since it is clear
that every such function must fulfill the inequalities:

max [m, (M/P) t] ≤ A(t) ≤ min
[

(m/p) t, M
]

(4)

for t ∈
[

p,P
]

, and thus it is bounded from below by a
base+prop+floor function (d := P/M), and from above by
a base+prop+cup function (d := p/m).

2. piecewise linearfunctions:

A2a(t) := max
[

m+ (t − p) /d, (M/P) t
]

, (5)

where P−p
M−m ≤ d; the function is convex; or

A2b(t) := min
[

(m/p) t, (t − P) /d+ M
]

, (6)

where P−p
M−m ≤ d; the function is concave. Again, the choice

of one of two forms of the piecewise linear function (A2a

or A2b) depends on constraints in (1).
3. quadratic(parabolic) functions:

A3 (t) :=

(

t − p
P− p

M
P
+

P− t
P− p

m
p

)

t − d (t − p) (P− t) . (7)

Depending on the system constraintsM,m,P, pand the pa-
rameterd determined by the total sizeS of the House, the
function is convex or concave. In particular, if

0 ≤ d− Θ ≤ min(M −m,m− Mp/P)

(P− p)2
, (8)

with Θ := m/p−M/P
P−p , the function (7) is convex. In the case

0 ≥ d− Θ ≥ −min(M −m,mP/p− M)

(P− p)2
(9)

the parabolic allocation function is concave.
4. base+power functions:

A4(t) := M
td − pd

Pd − pd
+m

Pd − td

Pd − pd
, (10)

where either 0< d ≤ 1 and(M/m− 1) d ≤ (P/p)d − 1, or
1 < d and(1−m/M) d ≤ 1− (p/P)d. In the first case the
function is concave, in the second convex. In the limiting
case (d→ 0) we get alogarithmicfunction:

Al(t) :=
ln

(

Pm/pM
)

+ (M −m) ln t

ln (P/p)
, (11)

which is an allocation function, ifM/m− 1 ≤ ln (P/p).
5. homographicfunctions:

A5 (t) :=
M (t/M − d) (t − p) +m(t/m− d) (P− t)

(P/M − d) (t − p) + (p/m− d) (P− t)
,

(12)
where eitherd ≤ p/M or d ≥ P/m. In the first case the
function is concave, in the second convex. In the limiting
case (d→ ±∞) we get a linear function.

All five families discussed above share a common element:
thelinear (affine, d

dtAlin (t) ≡ const≥ 0) functionAlin :
[

p,P
]→

[m,M] given by the formula

Alin(t) := M
t − p
P− p

+m
P− t
P− p

. (13)

On the other hand, ifddt
A(t)

t ≡ const ≤ 0, thenA must be a
quadratic function given by (7) withd = 0, i.e.,

Aq (t) :=

(

t − p
P− p

M
P
+

P− t
P− p

m
p

)

t . (14)

Some of the above solutions were already discussed in the
literature, also in the context of the European Parliament.

The base+prop class which seems to lead to the sim-
plest of all these methods was first analysed in Pukelsheim
(2007, 2010), see also Martı́nez-Aroza & Ramı́rez-González
(2008, 2010), and became the basis for the recent proposal,
called ‘Cambridge Compromise’, elaborated in January 2011,
and discussed later by the Committee on Constitutional Af-
fairs (AFCO) of the European Parliament (Grimmett, 2011,
Grimmett et al., 2011a). Here we present this method in
the ‘spline’ form, see Martı́nez-Aroza & Ramı́rez-González
(2008). Likewise, one of the methods of apportionment of seats
in the projected Parliamentary Assembly of the United Nations
is based on this model (Bummel, 2010, p. 25). Note that,
in fact, the composition of the Electoral College that formally
elects the President and Vice President of the United Statesof
America also reflects the base+prop scheme, where each state
is allocated as many electors as it has Senators (equal base)and
Representatives (proportional representation, with at least one
seat per state) in the United States Congress. The idea of com-
bining these two approaches to the apportionment problem was
first put forward by one of the Founding Fathers of the United
States and the future American President, James Madison in
1788 (Madison, 1788).

The quadratic (parabolic) method was proposed and ad-
vocated by Ramı́rez González and his co-workers in a series
of papers (Ramı́rez González, 2004, Ramı́rez González etal.,
2006, Martı́nez-Aroza & Ramı́rez-González, 2008, 2010,
Ramı́rez González, 2010).

The methods of apportionment of seats in the Eu-
ropean Parliament using base+power functions were
also considered by several authors, see Theil & Schrage
(1977), Ramı́rez González et al. (2006), Arndt (2008),
Martı́nez-Aroza & Ramı́rez-González (2008, 2010),
Słomczyński &Życzkowski (2010), Grimmett et al. (2011b)
and Moberg (2011). Note that a similar method was proposed
for solving the taxation problem already in the nineteenth
century by a Dutch economist Arnold Jacob Cohen-Stuart
(Cohen-Stuart, 1889). Moreover, the variant of this method
(using the square-root function) was also considered in
Bummel (2010, p. 27).

As far as we know, out of five families presented above,
only the piecewise linear family has not yet been analysed
in detail in the European Parliament context, since the ho-
mographic functions have been independently studied under
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the name of projective quotas by Serafini (2011). On the
other hand, yet another class of ‘linear-hyperbolic’ functions
was used both in the apportionment problem for the European
Parliament (Słomczyński &̇Zyczkowski, 2010) as well as in
the tax schedule proposed by a Swedish economist Karl Gus-
tav Cassel at the beginning of the twentieth century (Cassel,
1901). Note, that also the proportional apportionment method
with minimum and maximum requirements (Balinski & Young,
2001, Martı́nez-Aroza & Ramı́rez-González, 2008, p. 133)can
be described within this general framework, taking (neither
concave nor convex) apportionment functionA given byA(t) =
med(m, dt,M), whereM/P < d < m/p, and med stands for the
median value of three.

For a simple and general algorithm of constructing families
of allocation functions see Sect. 5.

3. Allocation functions - necessary and sufficient conditions

In this section we present several simple propositions that
give necessary and sufficient conditions for a functionA :
[

p,P
]

→ [m,M] to be a (degressive) allocation function. Al-
most all these facts belong to mathematical folklore, but we
provide short proofs here for the completeness of presentation.
First of all, observe that an allocation function needs to becon-
tinuous, because, as a non-decreasing function, it can onlyhave
jump discontinuities, but this contradicts degressive proportion-
ality.

We start from a simple characterization of allocation func-
tions.

Proposition 1. A is an allocation function if and only if

A (s)
A (t)

≤ max
(

1,
s
t

)

, (15)

or equivalently

min
(

1,
s
t

)

≤ A (s)
A (t)

(16)

for every s, t ∈
[

p,P
]

.

See also Peetre (1970, p. 327).

Proof. Let s < t, then (15) is equivalent toA (s) /A (t) ≤ 1. On
the other hand fors> t we getA (s) /A (t) ≤ s/t, as desired.

Note thatA need not be neither concave nor convex. (Con-
sider, e.g., the allocation functionA : [2, 8]→ [

√
2+1/2, 2

√
2+

1/8] given byA(t) =
√

t + 1/t for 2 ≤ t ≤ 8, that has an inflec-
tion point att = 4.) However, ifA is an allocation function, then
it can be bounded from above by its greatest convex minorant
and from below by its least concave majorant. Because of this,
it cannot be neither ‘too convex’ nor ‘too concave’.

Corollary 2. If A is an allocation function, then

1+
√

p/P

2
A (t) ≤ t (P− p)

P (t − p) + t (P− t)
A (t) ≤ (17)

A (t) ≤ t (P− p)
p (P− t) + t (t − p)

A (t) ≤
1+

√

P/p

2
A (t) ,

for each t ∈
[

p,P
]

, where Aand A denote, respectively, the
greatest convex minorant function and the least concave majo-
rant of A (i.e. the largest convex function smaller than A and
the smallest concave function larger than A).

Proof. For t ∈
[

p,P
]

we have A (t) = sup
∑n

i=1 λiA (ti),
where the sum runs overλi ≥ 0, ti ∈

[

p,P
]

, n ∈ N,
satisfying

∑n
i=1 λi = 1,

∑n
i=1 λi ti = t. From (15) we get

∑n
i=1 λi A (ti) ≤ A (t)

∑n
i=1 λi max

(

1, ti
t

)

≤ 2Pt−Pp−t2

t(P−p) A (t). Hence

A (t) ≥ t(P−p)
2Pt−Pp−t2 A (t) ≥ 1+

√
p/P

2 A (t). The proof for the greatest
convex minorant is analogous.

The next proposition gives a sufficient condition for a convex
or concave non-decreasing function to be an allocation func-
tion.

Proposition 3. If A is non-decreasing, concave and fulfills
A (t) /t ≤ A (p) /p for all t ∈ [

p,P
]

, or if it is non-decreasing,
convex and satisfies A(t) /t ≥ A (P) /P for all t ∈

[

p,P
]

, then A
is an allocation function. In particular, every concave function
A : [0,+∞) → [0,+∞) is an allocation function restricted to
any interval

[

p,P
]

for 0 < p < P.

Proof. In the former case to show thatA is degressively
proportional, it is enough to observe thatA (s) /s =

A
(

t−s
t−p · p+

s−p
t−p · t

)

/s ≥ A (p) t−s
(t−p)s + A (t) s−p

(t−p)s ≥ A (t) /t for
s, t ∈

[

p,P
]

, s < t, as required. The proof for convex functions
is analogous.

In fact, if A :
[

p,P
]

→ [m,M] is a restriction of the func-
tion defined on the interval [0,P] such thatA (0) = 0, then, to
get degressive proportionality, it is enough to assume thatA is
concave on average, i.e., that the function [0,P] ∋ t → a (t) :=
1
t

∫ t

0
A (s) ds ∈ [0,M] is concave, sinceA(t)/t = a′ (t) + a (t) /t

for 0 < t ≤ P and both components are non-increasing func-
tions of t in this case, see Bruckner & Ostrow (1962, Theorem
5).

We call a functionA :
[

p,P
]

→ [m,M] subadditiveif
A (s+ t) ≤ A (s) + A (t) holds for everys, t, s+ t ∈

[

p,P
]

. The
subadditivity is the necessary condition for a function being
an allocation function, as the next proposition shows. (Anal-
ogously, in taxation progressivity of income tax implies its
merging-proofness, see Ju & Moreno-Ternero (2011, Corollary
1).)

Proposition 4. If A is an allocation function, then A is subad-
ditive.

See also Rosenbaum (1950, Theorem 1.4.3) and
Hille & Phillips (1957, Theorem 7.2.4).

Proof. Let s, t, s+ t ∈
[

p,P
]

. From the degressive proportion-
ality we getA (s+ t) / (s+ t) ≤ min(A (s) /s,A (t) /t). Hence
A (s+ t) ≤ (s+ t)

(

s
s+t

A(s)
s +

t
s+t

A(t)
t

)

= A (s) + A (t).

The converse implication fails in general, but it holds for con-
vex and non-decreasing functions.
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Corollary 5. If A :
[

p,+∞) → [m. +∞) is convex and non-
decreasing, then A is an allocation function if and only if itis
subadditive.

See Rosenbaum (1950, Theorem 1.4.6).

Proof. According to Proposition 4 it is enough to show that
convex, non-decreasing and subadditive function is degres-
sively proportional. Letp < s < t. Then A (t) ≤ s

t A (s) +
(

1− s
t

)

A (s+ t) ≤ s
t A (s) +

(

1− s
t

)

(A (s) + A (t)) = A (s) +
(

1− s
t

)

A (t). HenceA (t) /t ≤ A (s) /s, as desired.

4. Allocation functions - concave or convex?

Analyzing possible schemes of allocating seats in the Eu-
ropean Parliament several authors consider only concave allo-
cation functions (Martı́nez-Aroza & Ramı́rez-González,2008,
2010). However, as we have seen above, in the class of de-
gressively proportional functions convex and concave functions
seem to play similar roles, and both types of functions are rep-
resented in each of five basic classes considered.

The affine allocation function (which lies on the border be-
tween the concave and the convex realm) can serve as a solution
of the apportionment problem if and only if

∑N
i=1 Alin (pi) ≈ S.

This, however, is only an approximate statement because the
effect is influenced by the rounding procedure. Thus, in a con-
crete case, whether convex or concave functions should be used
in the allocation scheme depends approximately on the sign of
the expression

∑N
i=1 Alin (pi) − S. Taking into account that

∑N

i=1
Alin (pi) − S =

(〈P〉 − p) (〈M〉 −m) N
P− p

(µ − ρ) , (18)

with

ρ :=
P− 〈P〉
〈P〉 − p

(19)

and

µ :=
M − 〈M〉
〈M〉 −m

, (20)

where〈P〉 and〈M〉 denote, respectively, the mean population of
a country and the mean number of seats per country, we see that
the solution of the dilemma depends on which of two numbers
is greaterρ or µ. If ρ ≥ µ one should use concave functions for
resolving the problem, ifρ ≤ µ, convex. Since

(µ − ρ) (〈P〉 − p) (〈M〉 −m) N2 =

T (M −m) − (S (P− p) − N (mP− Mp)) ,

whereT is the total population of the Union,S is the size of the
House, andN denotes the number of the Member States, the
inequalityρ ≥ µ can be rewritten in the following form affine in
T, S, andN:

T ≤ S · P− p
M −m

− N · mP− Mp
M −m

. (21)

In particular, this implies that any accession of a new stateof
moderate size (to leavep andP unchanged) to the Union (which

meansT,N ↑), keeping ‘constitutional’ parameters (m, M, S)
fixed, reduces the probability of finding concave solution of
the apportionment problem. Furthermore, the right hand side
of (21) is a decreasing function of bothm and M (as long as
Nm< S < NM, which is both a natural and necessary assump-
tion) and an increasing function ofS. In consequence, seek-
ing concave solutions, one has either to enlarge the size of the
House, or to lower the number of seats assigned to the smallest
or to the largest Member State (or both).

Note, however, that the treaties define only the minimal
(Mmin) and maximal (Mmax) numbers of seats in the Parliament,
requiring merely thatm := A (p) ≥ Mmin and M := A (P) ≤
Mmax, as well as the value ofS. While we have to set the exact
values ofmandM to start the allocation procedure described in
Sect. 1, our choice is formally limited only by these inequali-
ties. Thus, if we believe that the concavity is a desirable feature
of an allocation function and it should be possibly incorporated
to its definition, we have to agree that the enlargement process
will result at some point (defined in fact by the equality in (21))
in lowering the value ofM belowMmax. The only other solution
of this problem one can imagine is to introduce an amendment
to the treaty either decreasing the minimal number of seatsMmin

or increasing the total number of seatsS. However, these two
alternatives may be difficult to accept for political reasons, and
in this case decreasing the numberM seems to be the most fea-
sible solution of the problem within the ‘concave’ realm.

5. Degressive proportionality through logarithmic eyes

We believe that it is sometimes better to analyse allocation
functions in logarithmic (log-log) coordinates, since this ap-
proach provides us with a number of benefits, namely:

• It is more convenient to plot a graph of population-seats
relationship in these coordinates, and so, to compare dif-
ferent allocation methods, since we have more small than
large member states in the European Union. NB, this is
quite a natural situation from the statistical point of view
(‘the larger the fewer’).

• In this setting it is easier to express our assumptions
(monotonicity and degressive proportionality) in a uniform
way.

• This approach gives us a better framework to analyse cer-
tain additional properties of allocation methods.

Definition 2. DefineL :
[

ln p, ln P
]

→ [ln m, ln M] by

L(ln t) := ln A(t) (22)

for x ∈
[

ln p, ln P
]

. In other words,L = ln ◦A ◦ exp orA =
exp◦ L ◦ ln.

The choice of a logarithmic base corresponds to the choice
of a unit and is not important here.
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Proposition 6. Assume that a function A:
[

p,P
]

→ [m,M] is
differentiable. Then the following equivalences are true:

A is non-decreasing ⇔ L′ ≥ 0

A is degressively proportional⇔ L′ ≤ 1

A is an allocation function ⇔ 0 ≤ L′ ≤ 1

.

In particular, the above statement gives us a clear mathemat-
ical interpretation of degressive proportionality. Now, our task
can be reduced to a search for a functionL :

[

log p, logP
]

→
[

logm, log M
]

fulfilling 0 ≤ L′ ≤ 1. These can be smoothly
realized in a three-fold way:

1. L is affine (i.e.L′ is constant, i.e.L′ ≡ c ∈ [0, 1]);
2. L is convex (i.e.L′ increases from, say, 0 to 1) (i.e.A is

geometrically convex, see Matkowski (1997));
3. L is concave (i.e.L′ decreases from, say, 1 to 0) (i.e.A is

geometrically concave, see Matkowski (1997)).

The first scenario leads to thepower function(or in other
words, a base+power function with the base 0) given byA(t) :=
b td∗ , where

d∗ := (ln (M/m)) / (ln (P/p)) (23)

and

b := (M −m) /(Pd − pd) = e[(ln m)(ln P)−(ln M)(ln p)]/ ln(P/p) . (24)

Rather surprisingly, the distinction between the second and
third possibility seems to have a clear interpretation in terms
of properties of allocation functionA, namely, the properties of
sub- and superproportionality. The notion of subproportion-
ality and the dual notion of superproportionality were intro-
duced into the decision theory by Daniel Kahneman, a Nobel
Prize laureate in economy, and Amos Tversky, a mathemati-
cal psychologists, in 1979 (Kahneman & Tversky, 1979) and
since then used by many authors, see e.g. Al-Nowaihi & Dhami
(2010). Let us recall their definition.

Definition 3. We say thatA is superproportional(subpropor-
tional) iff for everys, t ∈ dom(A), s≤ t and 0≤ r ≤ 1 such that
rs, rt ∈ dom(A) we have

A(rs)
A(rt)

≥ A(s)
A(t)

(

A(rs)
A(rt)

≤ A(s)
A(t)

)

. (25)

Proposition 7. Let L :
[

log p, logP
]

→
[

logm, log M
]

and A=
exp◦L ◦ log. The following equivalences hold:

• L is convex iff A is superproportional;

• L is concave iff A is subproportional.

Proof. Note thatA is superproportional iff L(b + a) − L(b) ≤
L(c + a) − L(c) for log p ≤ b ≤ c ≤ c + a ≤ logP. This prop-
erty is equivalent to convexity ofL. The proof of the second
equivalence is analogous.

To illustrate this property consider two pairs of member
states, Romania/France and Lithuania/Hungary, with the sim-
ilar population quotient (s/t ≈ 1/3) and another such config-
uration: Finland/Portugal and Latvia/Ireland (s/t ≈ 1/2). In
Tab. 1. the values of seat quotients for five methods analysedin
Sect. 2 are shown. Note that in all these cases the seat quotient
for the ‘smaller’ pair is greater than for the ‘larger’ one.

Table 1: Population ratio (PQ) for exemplary pairs of memberstates and the
corresponding quotients of the number of seats (SQ) in the European Parliament
for five classes of allocation functions: 1= base+prop, 2 = piecewise linear,
3 = parabolic, 4 = base+power, 5 = homographicwith the rounding to the
nearest integer.

ratio PQ SQ1 SQ2 SQ3 SQ4 SQ5

RO/FR 0.332 0.376 0.397 0.413 0.418 0.413
LT/HU 0.332 0.556 0.632 0.526 0.526 0.526
Fl/PT 0.503 0.677 0.737 0.684 0.650 0.684
LV /IE 0.503 0.727 0.769 0.727 0.750 0.727

Using other words, asuperproportional methodleads to the
following property of an allocation system (at least before
rounding):

The smaller a pair of states is, the larger is the gain
of the small member in the pair over the large one.

Thus, this is in fact a kind ofdegressive-degressive propor-
tionality. It is easy to show that if an allocation functionA is
subproportional, then it must be concave, and if it is convexit
is necessarily superproportional.

This approach leads also to a simple algorithm for construct-
ing allocation functions, see also Al-Nowaihi & Dhami (2010,
Sect. 4). Choose a continuous functionh :

[

p,P
]

→ [0, 1] such
that

∫ P

p

h(s)
s

ds= ln (M/m) . (26)

Solving the first-order homogeneous linear differential equation
of the form

A′ (x) =
h(x)

x
A (x) (27)

with the initial conditionA (p) = m we get the allocation func-
tion given by the formula

A(t) = mexp

(∫ t

p

h(s)
s

ds

)

(28)

that fulfills also the final conditionA(P) = M. In fact, every dif-
ferentiable allocation function can be obtain in this way. More-
over,A is superproportional (resp. subproportional) iff h is in-
creasing (resp. decreasing), which provides a simple test for
checking superproportionality.

To illustrate this technique consider the functionh :
[

p,P
]

→
[0, 1] given by

h (t) =
d

1+ ct−d
, (29)
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where the exact value ofc := mPd−Mpd

M−m is determined by the
integral condition (26), and we assume additionally that either
d1 < d ≤ 1, where

d1 := inf{0 < d < 1 : (M/m− 1) d ≤ (P/p)d − 1} , (30)

or 1< d < d2, where

d2 := sup{d > 1 : (1−m/M) d ≤ 1− (p/P)d} , (31)

in order to ensure that 0≤ h ≤ 1. Applying (28) we get a
base+power functionA given by (10).

Clearly, the functionh defined by (29) is increasing forc > 0
and decreasing forc < 0, and so the necessary and sufficient
condition forA being superproportional (resp. subproportional)
in this case is thatc > 0 (resp.c < 0) or equivalentlyd > d∗
(resp.d < d∗), whered∗ is given by (23) andd1 < d∗ < 1.

Summarizing, we have five possible forms of the
base+power allocation function:

• concave and subproportional function ford1 < d < d∗;

• power function ford = d∗;

• concave and superproportional function ford∗ < d < 1;

• affine function ford = 1;

• convex and superproportional function for 1< d < d2.

Note, however, that in a concrete situation the choice of the
value ofd is determined by the constraint (1).

6. The European Parliament

For the European Parliament we have the following values
of parameters:p = 412 970,Mmin = 6, P = 81 802 257,
Mmax = 96,T = 501 103 425,S = 751, andN = 27. Assuming
that the upper and the lower bounds are saturated,m = Mmin

and M = Mmax we obtainρ ≈ 3. 485 ≥ 3. 126 ≈ µ, so our
choice of an allocation function is limited to concave functions.
However, it follows from (21) that for the Parliament of size703
or less we would have to find the solution of the apportionment
problem in the realm of convex functions or otherwise to relax
the constraints considering someM < Mmax. (Due to rounding,
this number may be somewhat smaller, cf. Kellermann (2011).)
This means also that, in fact, we have currently only about fifty
seats to allocate freely besides the linear (or, saying morepre-
cisely, affine) distribution.

Analyzing five families of allocation functions and three
rounding methods we get fifteen possible solutions for the ap-
portionment problem, see Tab. 2.

Observe that all these solutions are quite similar, which is
a consequence of the fact that our choice is limited by two
factors: the predetermined shape of the graph of an allocation
function, and the fact that more than ninety percent of seatsare
in a sense distributed in advance. More precisely, the results for
the parabolic, base+power, and homographic allocation func-
tions are almost identical, whereas the choice of the base+prop

functions is advantageous for large countries, and the choice of
the piecewise linear functions seems to be beneficial for small
countries.

The influence of the choice of a rounding method on the dis-
tribution of seats is a non-trivial mathematical problem even for
proportional apportionment (Balinski & Young, 2001, Janson,
2011), where it was proven that, statistically, the rounding
downwards is more often advantageous for large countries and
the rounding upwards for small countries, see Schuster et al.
(2003), Drton & Schwingenschlögl (2005), Schwingenschl¨ogl
(2008). In the case of the European Parliament one can observe
a similar effect for the base+linear, parabolic, base+power and
homographic functions, where the rounding downwards is the
best possibility and the rounding upwards is the worst for large
countries (from the Netherlands to France), whereas for small
countries (from Malta to Austria) the situation is reversed.
However, for the piecewise linear class we find completely dif-
ferent pattern, and so it is not clear to what extent this ruleap-
plies to degressively proportional apportionment.

As regards superproportionality, the base+prop method is su-
perproportional in the ‘affine’ part of its domain, i.e. for all
countries but the largest one, the piecewise linear method for all
countries but two smallest ones, and the parabolic (resp. homo-
graphic) method are superproportional for small and medium
countries and subproportional for large five (resp. six) ones.

The only one of the five methods that is superproportional
in the whole domain

[

p,P
]

is the base+power method. In
fact, we showed that this method is superproportional as long
as d > d∗, whered∗ is given by (23). In the analysed case
d∗ ≈ 0. 524 andd = 0.865, 0.894, 0.922 depending on the
rounding method chosen, so the condition is clearly fulfilled.
Though it is not known whether superproportionality is what
the authors of the Lisbon Treaty really intended, when they for-
mulated the ‘degressive proportionality’ rule, we think that it is
worth to realize that the base+power method fulfills it for all
pairs, whereas the other methods can violate it for some coun-
tries. Thus base+power method is in a sense more degressively
proportional, or one can say degressively proportional in more
perfect way, than other methods analysed above. Incidentally,
the base+power solution withc = 0.5 (the square root) results
(with downward rounding) in a round number of 1000 members
of the Parliament.

In Grimmett et al. (2011a) the authors decided to select the
method called ‘Cambridge Compromise’, which is in this case
equivalent to the base+prop method (as defined above) with
the rounding to the nearest integer, mainly because of its ob-
vious simplicity. However, this solution has been criticized for
being ‘not enough degressively proportional’ (Moberg, 2011)
and departing too much from thestatus quo. In Grimmett et al.
(2011b) the solution very similar to the base+power method
discussed here is considered ‘as a step along a continuous tran-
sition from the negotiated status quo composition to the con-
stitutionally principled Cambridge Compromise.’ (Indeedthis
method is closest to thestatus quoout of all methods analyzed
in Tab. 2.) The crucial point in these discussions seems to be
the meaning of the term ‘degressive proportionality’. Is itonly a
lame form of (pure) proportionality, as it was actually suggested
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Table 2: Fifteen solutions of the apportionment problem forthe European Parliament (five classes of allocation functions: 1= base+prop, 2 = piecewise linear, 3= parabolic, 4= base+power, 5 = homographic;
three rounding methods:d = downwards, m= to the nearest integer, u = upwards); LT = the distribution of seats under the Lisbon Treaty; population figures are taken from the Eurostat website (OJ 22.12.2010L
338/47).

Country Population LT 1d 1m 1u 2d 2m 2u 3d 3m 3u 4d 4m 4u 5d 5m 5u

Germany 81802257 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
France 64714074 74 86 85 83 77 78 78 81 80 80 79 79 79 80 80 80

United Kingdom 62008048 73 82 81 80 74 75 75 78 78 77 76 76 76 77 7777
Italy 60340328 73 80 79 78 73 73 73 76 76 75 74 74 74 76 76 75
Spain 45989016 54 62 62 61 57 57 58 62 61 60 60 59 59 61 61 60
Poland 38167329 51 53 52 51 49 49 49 53 52 52 52 51 51 53 52 51

Romania 21462186 33 32 32 32 31 31 31 33 33 32 33 33 32 33 33 32
Netherlands 16574989 26 26 26 26 26 26 26 27 27 26 27 27 27 27 27 26

Greece 11305118 22 19 19 19 20 20 20 20 20 20 21 21 20 20 20 20
Belgium 10839905 22 19 19 19 20 20 19 20 20 20 20 20 20 20 20 20
Portugal 10637713 22 18 18 19 19 19 19 19 19 19 20 20 20 20 19 19

Czech Republic 10506813 22 18 18 18 19 19 19 19 19 19 20 20 19 19 1919
Hungary 10014324 22 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19
Sweden 9340682 20 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18
Austria 8375290 19 15 16 16 17 17 17 16 16 16 17 17 17 17 17 17
Bulgaria 7563710 18 14 15 15 16 16 16 15 15 15 16 16 16 15 15 15
Denmark 5534738 13 12 12 13 14 14 14 13 13 13 13 13 13 13 13 13
Slovakia 5424925 13 12 12 12 14 14 14 12 13 13 13 13 13 13 13 13
Finland 5351427 13 12 12 12 14 14 14 12 13 13 13 13 13 12 13 13
Ireland 4467854 12 11 11 11 13 13 13 11 11 12 12 12 12 11 11 12

Lithuania 3329039 12 9 10 10 12 12 11 10 10 10 10 10 11 10 10 10
Latvia 2248374 9 8 8 9 11 10 10 8 8 9 9 9 9 8 8 9

Slovenia 2046976 8 8 8 8 10 10 10 8 8 9 8 9 9 8 8 9
Estonia 1340127 6 7 7 8 10 9 9 7 7 8 7 7 8 7 7 8
Cyprus 803147 6 6 6 7 9 9 9 6 7 7 6 7 7 6 7 7

Luxembourg 502066 6 6 6 7 7 7 8 6 6 7 6 6 7 6 6 7
Malta 412970 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
EU-27 501103425 751 751 751 751 751 751 751 751 751 751 751 751 751 751 751 751
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Figure 1: Allocation functions applied to the European Parliament: panel a) concavebase+prop function (3) (solid line),piecewise linearfunction (6) (∗), and
parabolic function (7) (+); panel b) function (3) drawn as a reference solid line,base+power function (10) (∗), andhomographicfunction (12) (+). The argument
t denotes the population of a state in millions, whileA is scaled to determine the corresponding number of seats in the Parliament consisting ofS = 751 members
with the constraintsm= 6 andM = 96 seats.

in Grimmett et al. (2011b) or is it a separate notion that requires
distinct mathematical and political solutions, as Moberg (2011)
claims? In this paper we have tried to shed new light on this
debate, analyzing mathematical properties of degressively pro-
portional allocation functions and indicating the differences be-
tween various classes of such functions.

If we are looking for a degressively proportional (resp. de-
gressively proportional and superproportional) and increasing
function, in the log-log realm we have to find a function (resp.
convex function) with the derivative contained between 0 and
1. Adding to this, three constraints related to the minimum and
maximum number of seats and to the size of the House, we see
that our choice is in fact very limited and all the solution satis-
fying these conditions must look quite similar – see Fig. 2.

The key possibility to vary the allocation schemes consid-
erably is to change the numberM of the seats allotted to the
largest member state. As specified in the Treaty of Lisbon the
upper bound readsMmax = 96, but this bound needs not to be
saturated and one may also takeM < Mmax. By doing so, one
introduces more freedom into the space of possible solutions,
as more seats can be allotted besides the affine distribution.

Note also that by extending the Union and keeping the num-
berM fixed (which is, however, in the ‘concave realm’, doable
only up to a certain total population of the Union), the seats
for the new member states are donated by all but the largest
state. If any further enlargement of the Union was performed
according to this scheme, the ratio of the seats in the European
Parliament allocated to the largest state would remain constant.
In consequence, as the numberN of the member states was in-
creased, the voting power of the largest state in the European
Union would grow.

These arguments show that the choice of the numberM se-
lected to design an allocation system is crucial. The issue:un-
der what conditions the constraintM = Mmax should be relaxed

seems to be equally important as the choice of the actual form
of allocation function. As regards the latter, it is rather difficult
task to distinguish in practice one of them. From an academic
perspective, however, it would be interesting to base the so-
lution of the ‘degressive’ allocation problem on an axiomatic
approach, possibly considering some additional properties of
allocation functions as concavity and superproportionality.
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Martı́nez-Aroza, J., & Ramı́rez-González, V. (2008). Several methods for de-
gressively proportional allotments. A case study.Mathematical and Com-
puter Modelling,48, 1439–1445.
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ment. In M. Cichocki, & K.Życzkowski (Eds.),Institutional Design and
Voting Power in the European Union(pp. 255-267). London: Ashgate.

Matkowski, J. (1997). Iteration groups with generalized convex and concave
elements.Grazer Mathematische Berichte,334, 199–216.

Moberg, A. (2011). EP seats: The politics behind the math.Mathematical So-
cial Sciences,This issue.

Moreno-Ternero, J. D. (2011). Voting over piece-wise linear tax methods.Jour-
nal of Mathematical Economics,47, 29–36.

Peetre, J. (1970). Concave majorants of positive functions. Mathematica
Academiae Scientiarum Hungaricae,21, 327–333.

Pukelsheim, F. (2007).A Parliament of Degressive Representativeness?Institut
für Mathematik, Universität Augsburg, Preprint Nr. 015/2007.

Pukelsheim, F. (2010). Putting citizens first: Representation and power in the
European Union. In M. Cichocki, & K.̇Zyczkowski (Eds.),Institutional
Design and Voting Power in the European Union(pp. 235-253). London:
Ashgate.
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Ramı́rez González, V., Palomares Bautista, A., & MárquezGarcı́a, M. (2011).
Spline methods for degressive proportionality in the composition of Euro-
pean Parliament.Mathematical Social Sciences,This issue.

Rosenbaum, R. A. (1950). Sub-additive functions.Duke Mathematical Journal,
17, 227–247.

Schuster, K., Pukelsheim, F., Drton, M., & Draper, N. R. (2003). Seat biases of
apportionment methods for proportional representation.Electoral Studies,
22, 651–676.
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