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g.ll. Introduction integer). Finally, one has to choose the paramdtar such

(&) a way that the sum of the seat numbers of all Member States

O - oneofthe major mathematical approaches to the problem afquals the given Parliament si@esolving (if possible) ird the
. allocating seats in the European Parliament can be deddsibe equation
() the following general scheme. First, one has to choose a con-
L_J crete characterization of the size of a given Member Stayea N
(/) 'numberp; (for example, equal to the total number of its inhabi- Z [Aa(p)] =S, (1)
tants, citizens, or voteﬂ}swe call hergoopulationand precisely =t
define by which means these data should be collected and hohereN stands for the number of Member States for the
_~=often they should be updated. Then, one needs to transforRPPulation of thei-th state { = 1,...,N), and f] denotes
these numbers by amllocation(or apportionmentfunction A the rounded number. Though usually there is a whole inter-
O\l belonging to a given family indexed (usually monotonicaihd ~ val of parameters satisfying this requirement, nonetiseiesa
continuously) by somparameted, whose range of variability generic case, the distribution of seats established inwhis
is determined by the requirement that the function fulfibgc IS unique. Thus, this technique bears a resemblance to divi-
straints imposed by the treaties:risn-decreasingnddegres- ~ SOr methods in the proportional apportionment problemiegpl

<t sively proportional first by Thomas Jéerson in 1792|(Balinski & Yound, 1978,
F! Additionally, the apportionment function satisfies certai ToPlak,2009). _
o boundary conditionsA(p) = mandA(P) = M, where the The crucial role in this apportionment scheme plays the no-

1 population of the smallest and the largest state equalseces tion of degressive proportionalityThe principle of degressive
tively, p andP, and the smallest and the largest number of seatBroportionality enshrined in the Lisbon Treaty was propabl
are predetermined as, respectiveiyandM. (In the case of the borrowed from the discussions on the taxation rules, wheze t
= European Parliament these quantities are explicitly bediry €M has appeared already in the nineteenth century, whey ma
~ the treatym > Mpin = 6 andM < Mpax = 96.) To obtain countries introduced income tax for the first time in thestbry
> integer numbers of seats in the Parliament one has to roend tYoung, 1994). ltwas already included in the debate on the ap
(O values of the allocation function, e.g., using one of thtaes  Portionmentin the Parliament in late 1980s, but at first,asw
dard rounding methodgupward, downward or to the nearest & rather vague idea that gradually evolved into a formalllega
(and mathematical) term in the report Lamassoure & Severin
(2007) adopted by the European Parliament. There were also
*Corresponding author suggestions to apply this general principle to other padia-
Email addresswojciech.slomczynski@im.uj.edu.pl (Wojciech tary or quasi-parliamentary bodies like the projectediBaugn-

Stomczynski) o . . tary Assembly of the United Nations (Bummel, 2010).
Of course, other more exotic choices are also possible. oap to the N

original text of the Constitution of the United States (&kil, Section 2) ‘Rep- In. fact th.e entire prOb_Iem of apportionment Qf seats in the
resentatives (...) shall be apportioned among the seveatésSwhich may be ~ Parliament is mathematically similar (not counting rouny)i
included within this Union, according to their respectivarhbers, which shall  tg the taxation problem, what is illustrated in the tableolel

be determined by adding to the whole Number of free Persansthree fifths In consequence. the similar mathematical tools can be
of all other Persons.” The words ‘other Persons’ here measlves. The rule q !

was the result of the so called ‘Three-Fifths compromiséieen Southern Used to_solve both  of them; See for instance Young
and Northern states during the Constitutional Conventioh787. (1987),. Thomsaon (2003), Kaminski (2006), Hougaard (2009),
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apportionment taxation ality, see tyko et &l.[(2010), Cegietka (2011), Florek (2011
Member States Tax payers Ramirez Gonzalez etlal. (2011), and Serafini (2011).
Population Income In this paper we describe several exemplary families of
Seats Post-tax income

allocation functions and discuss their fundamental proper
ties. Mathematical technicalities collected in Sect. 36 be
skipped by more practically oriented readers, who may dce
to Sect[®, in which general results are applied to the Eunope
Parliament.

Post-tax income function
Total disposable income
Income order preservation
Progressivity of tagtdbution
Merging-proofness

Allocation function
Parliament size
Aeats monotonicity
Degressivity of seats distribution
Subadditivity of seats distribution

Ju & Moreno-Ternero | (2011), and Moreno-Ternero (2011)2. Allocation functions - definition and examples
where the authors use the above presented scheme to consider
possible parametric solutions of the taxation problem @r th Before selecting an allocation functidnone needs to spec-
dual profit-sharing problem. Of course, the analogy hasr cledfy the boundary conditionsrandM, which denote the number
limitations since income and post-tax income are calcdlate  Of seats for the smallest and the largest member state, wfith p
the same units, whereas population and seats are not. Mareovulationp andP, respectively. In the case of the European Parlia-
money is (at least theoretically) infinitely divisible, idseats ~ment, the treaty sets the following bounds omy> Mmin = 6
are indivisible. andM < Mpmax = 96.

Although quite a novelty in politics, nevertheless, theaspt
of degressive proportionality is not entirely new in mattaem Definition1. Let0< p <P, 0 <m< M, andpM < Pm We
ics. It was already analysed in late 1940s under the name &Rl A [p, P] — [m M] a (degressive) allocation functior:
‘quasi-homogeneity’ by Rosenbaum (1950, Definition 1.4.1) o ) .
see also_Kuczma (2009, p. 480), and since then studied alsol- (monotonicity)Ais non-decreasing;
under the name of ‘subhomogeneity’, see €.g. Burai &/Szaz 2- (degressive proportionalityp is degressively propor-
(2005). Moreover, an increasing function such that its isee tional i.e. the functiort — A(t) /t is non-increasing.
is degressively proportional (and so it is an allocatiorcfion)
is called ‘star-shaped’ (with respect to the origin) in thatim
ematical literature. In other words, the function is degnedy

We shall also consider the situation whéte= M = +oo,
assuming then thak : [p, +o) — [m, +o0). For the sake of

proportional if and only if the lines joining points lying losv brevity we shall omit the word ‘degressive’ and instead gf sa

its graph with the origin do not cross the graph. Star- shapelfg that ‘A is a degressive allocation function’ we shall simply
functions were introduced in_Bruckner & Ostiow (1962), and say that Ais an allocation function’.

since then have been studied in many areas of pure and ap-
plied mathematics, see e.g. Ding & Wolfstetter (2009), Dah
(2010). Thus, the results concerning this class of funetizan
be appliedmutatis mutandigo degressively proportional func-
tions.

Note that in the original definition of the degressive pro-
portionality formulated in Lamassoure & Sevelin (2007) &sw
postulgted that this property hOIdS. for the n_umber of safits Note also that the actual value of the consthcihanges from
roundingthe values of the allocation function to whole num-
bers. However, one can show that there exist such distrib2"® allocation function to another.
tions of population that there is no solution of the appartio
ment problem satisfying so understood degressive praporti
ality (Ramirez Gonzalez, 2010, Grimmett etlal., 201 lapdr-
ticular, such dficulty arises in situations where there are a

Below, we consider several families of allocation functon
mfulf|II|ng additionally boundary conditions:A(p) = m and
A(P) = M. Each of them depends on one (free) paramefer (
with its range of variability determined by other assumpsio
imposed onA. For instance, in case of the allocation of seats in
the Parliament, the parametkis set by the constraintl(1) that
the total size of the House is fixed.

1. base-propfunctions - the ‘floor’ version:

Aza(t) := max|m, (t—P)/d+ M], (2)

number of Member States having similar populations. Con-
sequently, in_Grimmett et all (2011a) it was recommended to
weaken this condition and to amend the definition of degvessi
proportionality assuming that ‘the ratio between the patioh

and the number of seats of each Member Statlore rounding

to whole numbers must vary in relation to their respective-po
ulations in such a way that each Member from a more populous
Member State represents more citizens than each Member from
aless populous Member State’. This proposal has been hecent
approved by the The Constitutionaltfairs’ Committee of the
European Parliament (AFCO). For the detailed mathematical
analysis of the original definition of the degressive proipor

Whereﬁ <dc< %; then the function is convex; and the
‘cup’ version:

Agp (1) :=min[m+ (t—p)/d, M] , 3)

where P<cd< ﬁ! in this case the function is concave.
Note that not only the choice of the parameadebut also
the choice of one of two forms of the bag®op function
(Aqq Or Agp) depends on other constraings,( = 1,..., N,
andS) in (1), see also Sedt] 4. Observe further that the
base-prop+floor and baseprop+cup functions are in a

sense extremal allocation functions satisfying boundary



conditions: A(p) = mandA(P) = M, since it is clear All five families discussed above share a common element:
that every such function must fulfill the inequalities: thelinear(affing d%Alin (t) = const> 0) functionAy, : [p, P] —

[m, M] given by the formula
max[m, (M/P)t] < A(t) <min[(m/p)t, M] (4)

) t-p P-t
for t € [p,P], and thus it is bounded from below by a Ain(t) = pr M o (13)
base-prop+floor function @ := P/M), and from above by
a baseprop+cup function ¢ := p/m). On the other hand, I&@ = const< 0, thenA must be a
. piecewise lineafunctions: quadratic function given by17) witth = 0, i.e.,

Az(t) := max[m+ (t - p) /d, (M/P)t] , (5) Aq () = t-pM " P-tm

P-pP P-pp (14)

where: =2 < d; the function is convex; or . . .
M-m Some of the above solutions were already discussed in the
Agp(t) := min[(m/p)t, (t—P)/d+M], (6) literature, also in the context of the European Parliament. _
The baseprop class which seems to lead to the sim-
whereX=2 < d; the function is concave. Again, the choice plest of all these methods was first analysed_in_Pukelsheim

M-m =
of one of two forms of the piecewise linear functiohy{  (2007,12010), see also_Martinez-Aroza & Ramirez-Gagzal
or Az,) depends on constraints [d (1). (2008, 2010), and became the basis for the recent proposal,
. quadratig parabolig functions: called ‘Cambridge Compromiseklaborated in January 2011,

and discussed later by the Committee on Constitutional Af-
_(t=-pM P-tm fairs (AFCO) of the European Parliament (Grimrett, 2011,
D) = P-pP P-pp t=dt=-PP-9- O Gimmetetal, 201la). Here we present this method in
the ‘spline’ form, see_Martinez-Aroza & Ramirez-Gorezal
Depending on the system constraitsm, P, pand the pa-  (2008). Likewise, one of the methods of apportionment ofssea
rameterd determined by the total siZ of the House, the i the projected Parliamentary Assembly of the United Natio
function is convex or concave. In particular, if is based on this model (Bummel, 2010, p. 25). Note that,
. in fact, the composition of the Electoral College that folina
min(M — m m > Mp/P) , (8) elects the President and Vice President of the United Stdites
(P-p) America also reflects the baggrop scheme, where each state
is allocated as many electors as it has Senators (equaldrake)
Representatives (proportional representation, with agtlene
seat per state) in the United States Congress. The idea of com
> (9) bining these two approaches to the apportionment problesn wa
(P-p) first put forward by one of the Founding Fathers of the United
States and the future American President, James Madison in
1788 (Madison, 1788).

0<d-0c<

with ® = W';%“’Q/P, the function[(¥) is convex. In the case

Ozd_@Z_mln(M—m,mP/p—M)

the parabolic allocation function is concave.

. b functions: ; .
asepowertunctions The quadratic (parabolic) method was proposed and ad-
td - pd pd _ td vocated by Ramirez Gonzalez and his co-workers in a series
Aqt) =M P + Mg — o (10)  of papers!(Ramirez Gonzalez, 2004, Ramirez Gonzakz et

2006, | Martinez-Aroza & Ramirez-Gonzélez, 2008, 2010,
where either O< d < 1 and(M/m-1)d < (P/p)? — 1, or  [Ramirez Gonzalez, 2010). _
1< dand(l-m/M)d < 1 - (p/P)°. In the first case the The meth(_)ds of apportionment of seats in the Eu-
function is concave, in the second convex. In the limitingropean Parliament using bageower functions were

case @ — 0) we get dogarithmicfunction: also considered by several authors, see Theil & Schrage
(1977), |Ramirez Gonzalez etal.| (2006), Arndt_ (2008),

In (pm/ pM) +(M-m)Int Martinez-Aroza & Ramirez-Gonzalez (2008, 2010),

At = n(P/p) , (11)  Istomczyhski &Zyczkowski (2010), Grimmett et all (2011b)

and Mobergl(2011). Note that a similar method was proposed

which is an allocation function, ¥/m— 1 < In (P/p). for solving the taxation problem already in the nineteenth
. homographidunctions: century by a Dutch economist Arnold Jacob Cohen-Stuart
(Cohen-Stuart, 1889). Moreover, the variant of this method

Po (1) = M (/M —d)(t—p)+m(t/m-d)(P-t) (using the square-root function) was also considered in

(PM-d)(t-p)+(p/m-d)(P-1t) ' Bummel (2010, p. 27).
(12) As far as we know, out of five families presented above,

where eithed < p/M ord > P/m. In the first case the only the piecewise linear family has not yet been analysed
function is concave, in the second convex. In the limitingin detail in the European Parliament context, since the ho-
case (| — +o0) we get a linear function. mographic functions have been independently studied under



the name of projective quotas by Serafini (2011). On theor each te [p, P], where Aand A denote, respectively, the
other hand, yet another class of ‘linear-hyperbolic’ fumes  greatest convex minorant function and the least concave-maj
was used both in the apportionment problem for the Europearant of A (i.e. the largest convex function smaller than A and
Parliament |(Stomczyhski &yczkowski, 2010) as well as in the smallest concave function larger than A).

the tax schedule proposed by a Swedish economist Karl Gus- _

tav Cassel at the beginning of the twentieth centlry (CasseProof. For t € [p,P] we have A(t) = supXl; LA(t),
1901). Note, that also the proportional apportionment weth Where the sum runs oveti > 0, t € [p,P], n € N,
with minimum and maximum requirements (Balinski & Yoling, satisfying XL, 4 = 1, ¥, A4t = t. From (15) we get
2001, Martinez-Aroza & Ramirez-Gonzélez, 2008, p. 138) Y, LA (L) < A(t) XN, A max(l, tT') < ZF;E;EFPT A(t). Hence
be described within this general framework, taking (neithe (Pop) = 1+ y/p/P—

concave nor convex) apportionment functibgiven byAt) = A1) = spipppAt) = —5—A(t). The proof for the greatest
medfn, dt, M), whereM/P < d < m/p, and med stands for the CONVeX minorantis analogous. O

median value of three. Th ¢ i . icient dition f
For a simple and general algorithm of constructing families € hext proposition gives aBitient condition for a convex
of allocation functions see SeE. 5. or concave non-decreasing function to be an allocation-func

tion.

3. Allocation functions - necessary and dficient conditions  Proposition 3. If A is non-decreasing, concave and fulfills
. ] ] N A(t)/t < A(p)/p forallt e [p, P], or if it is non-decreasing,
. In this section we present sevgr_al simple propositions thatonvex and satisfies( /t > A(P) /P for all t € [p, P], then A
give necessary and Sicient conditions for a functiolA : s an allocation function. In particular, every concave étion

[p.P] — [m, M] to be a (degressive) allocation function. Al- A - [0, +c0) — [0, +0) is an allocation function restricted to
most all these facts belong to mathematical folklore, but We&ny interval[p, P] for 0 < p < P.

provide short proofs here for the completeness of presentat

First of all, observe that an allocation function needs ted®  Proof. In the former case to show thak is degressively
tinuous, because, as a non-decreasing function, it carh@nly  proportional, it is enough to observe tha#(s)/s =
jump discontinuities, but this contradicts degressivepprton- A(tt:_s P+ S;E -t) /s> A(p) A== + A(1) (ts_;pf;s > A(t) /t for

: t- (t-p)s
ality. _ o _ st e [p,P], s<t, as required. The proof for convex functions
We start from a simple characterization of allocation func-is analogous. O
tions.

In fact, if A : [p,P] —» [m, M] is a restriction of the func-
tion defined on the interval [®] such thatA(0) = O, then, to
A(s) < max(l, §) ’ (15) get degressive proportionality, it is enough to assumeAhat

Proposition 1. A is an allocation function if and only if

A) — t concave on average, i.e., that the functioHP> t — a(t) :=
or equivalently %fOtA(s) dse [0, M] is concave, sincé\(t)/t = g’ )+ a(t) /t
) s\ A®9 for 0 < t < P and both components are non-increasing func-
mln(l, {) < 0] (16)  tions oft in this case, see Bruckner & Ostrow (1962, Theorem
5).
forevery st € [p. P]. )We call a functionA : [p,P] — [m M] subadditiveif
See also_Peelre (1970, p. 327). A(s+1t) < A(s) + A(t) holds for everys t, s+t € [p,P]. The

) ) subadditivity is the necessary condition for a functionnigei
Proof. Lets < t, then [I5) is equivalent t&(s) /A(t) < 1. On an allocation function, as the next proposition shows. (Ana
the other hand fos > t we getA(s) /A(t) < s/t, asdesired. I ogously, in taxation progressivity of income tax implies it

Note thatA need not be neither concave nor Convex. (Con_merging-proofness, see Ju & Moreno-Ternero (2011, Cagolla

sider, e.g., the allocation functign: [2,8] — [ V2+1/2,2V2+ 1))

1,/8] given byA(t) = vi+ 1/t .for.2 <t<s, that has an inflec- Proposition 4. If A is an allocation function, then A is subad-
tion point att = 4.) However, ifAis an allocation function, then ditive.

it can be bounded from above by its greatest convex minorant

and from below by its least concave majorant. Because of this See also |_Rosenbaum|_(1950, Theorem 1.4.3) and
it cannot be neither ‘too convex’ nor ‘too concave’. Hille & Phillips (1957, Theorem 7.2.4).

rollary 2. If Ais an all ion function, then . .
Corollary $ an aflocation function, the Proof. Letsit,s+t € [p, P]. From the degressive proportion-

1+ +/p/P— t(P-p) _ ality we getA(s+1t)/(s+t) < min(A(s) /s A(t) /t). Hence

AW < F,(t_p)H(F,_t)A(t)s A7) A(s+1) < (s+0)(H2Q + LA0) = A(9 + AQD). O

At) < t(P-p) AW) < 1+ \/P/pA(t) ’ The converse implication fails in general, but it holds fone
pP-t)+t(t-p)~ 2 - vex and non-decreasing functions.



Corollary 5. If A : [p,+>) — [m. + ) is convex and non- meansT, N 1), keeping ‘constitutional’ parametermi( M, S)
decreasing, then A is an allocation function if and only isit  fixed, reduces the probability of finding concave solution of

subadditive. the apportionment problem. Furthermore, the right hand sid
3 of (21)) is a decreasing function of bothand M (as long as
See Rosenbaum (1950, Theorem 1.4.6). Nm< S < NM, which is both a natural and necessary assump-

Proof. According to Propositiofi]4 it is enough to show that tion) and an increasing function &. In consequence, seek-

convex, non-decreasing and subadditive function is degreéng concave solutions, one has either to en_large the sizeeof t
sively proportional. Letp < s < t. ThenA(t) < SA(9) + House, or to lower the number of seats assigned to the smalles
. . < 3

s s s or to the largest Member State (or both).

(1-f)Als+D < FAEQ + (1-F)(AQ+AWD) = Al9 + Note, however, that the treaties define only the minimal
(1- §)A®). HenceA(t) /t < A(9) /s, as desired. O (Mmin) and maximal fimax) numbers of seats in the Parliament,
requiring merely tham := A(p) > Myn andM = A(P) <
Mmax, as well as the value &. While we have to set the exact
values ofmandM to start the allocation procedure described in

Analyzing possible schemes of allocating seats in the EuSect[1, our choice is formally limited only by these inegual
ropean Parliament several authors consider only concwe al ties. Thus, if we believe that the concavity is a desiratdduiee
cation functions|(Martinez-Aroza & Ramirez-Gonzal@ap8, of an allocation function and it should be possibly incogsed
2010). However, as we have seen above, in the class of dé its definition, we have to agree that the enlargement ggoce
gressively proportional functions convex and concavetions  will result at some point (defined in fact by the equality[idl(R
seem to play similar roles, and both types of functions ape re in lowering the value oM belowMpax. The only other solution
resented in each of five basic classes considered. of this problem one can imagine is to introduce an amendment

The dfine allocation function (which lies on the border be- to the treaty either decreasing the minimal number of ddats
tween the concave and the convex realm) can serve as a solutior increasing the total number of se&s However, these two
of the apportionment problem if and only X\, A, (p) ~ S.  alternatives may be flicult to accept for political reasons, and
This, however, is only an approximate statement because the this case decreasing the numb&seems to be the most fea-
effect is influenced by the rounding procedure. Thus, in a consible solution of the problem within the ‘concave’ realm.
crete case, whether convex or concave functions shoulddek us
in the allocation scheme depends approximately on the dign o
the expressioEiN:l Ain (pi) — S. Taking into account that 5. Degressive proportionality through logarithmic eyes

4. Allocation functions - concave or convex?

N (Py - p) (M) - m) N i it i -
Z}_l Ain (p) - S = ( P) ( ) (u-p), (18) We_ bellt_ave that_ it is sometimes bette_r to analyse allqcatlon
= P-p functions in logarithmic (log-log) coordinates, sincestlap-

proach provides us with a number of benefits, namely:

with
_P-P
p-= P —p (19) e It is more convenient to plot a graph of population-seats
q relationship in these coordinates, and so, to compare dif-
an M — (M) ferent allocation methods, since we have more small than
= —m (20) large member states in the European Union. NB, this is

) ) quite a natural situation from the statistical point of view
where(P) and{M) denote, respectively, the mean population of (the larger the fewer’).

a country and the mean number of seats per country, we see that
the solution of the dilemma depends on which of two numbers o |n this setting it is easier to express our assumptions

is greatep or . If p > u one should use concave functionsfor  (monotonicity and degressive proportionality) in a unifor
resolving the problem, i < i, convex. Since way.
(- p) ((PY = P) (M) - m) N® = e This approach gives us a better framework to analyse cer-
T(M-m—-(S(P-p)—N(mP-Mp)) , tain additional properties of allocation methods.

whereT is the total population of the UnioS is the size of the  pefinition 2. DefineL : [In p,In P] — [In m, In M] by

House, and\ denotes the number of the Member States, the

inequalityp > u can be rewritten in the following formfne in L(nt) := In A(t) (22)
T, S, andN:

for x € [Inp,InP]. In other wordsL = Ino Ao exp orA =

P=p _\.mP=Mp (1)  expoLoln.

T<S.
- M-m M-m

In particular, this implies that any accession of a new stéite ~ The choice of a logarithmic base corresponds to the choice
moderate size (to leaygandP unchanged) to the Union (which of a unit and is not important here.

5



To illustrate this property consider two pairs of member
states, Romanjkrance and Lithuaniblungary, with the sim-
ilar population quotientg/t ~ 1/3) and another such config-

Proposition 6. Assume that a function A[p, P] — [m, M] is
differentiable. Then the following equivalences are true:

A s non-decreasing i L"20 uration: FinlandPortugal and Latvjdreland s/t ~ 1/2). In
A is degressively proportional & L'<1 Tab[1. the values of seat quotients for five methods analypsed
. : . Sect[2 are shown. Note that in all these cases the seat gjuotie
Ais an allocation function < 0<L’'<1

for the ‘smaller’ pair is greater than for the ‘larger’ one.

In particular, the above statement gives us a clear mathemat
ical |nterpretat|0n of degress|ve proportlonallty‘ Nowr(bask Table 1: POpUIatiOn ratio (PQ) for exemplal’y pairS of memdtates and the

corresponding quotients of the number of seats (SQ) in thef&an Parliament
can be reduced to a search for a function [log p, logP] — for five classes of allocation functions: =1baserprop, 2 = piecewise linear

[logm logM] fulfilling 0 < L’ < 1. These can be smoothly 3 - parabolic 4 = base-power, 5 = homographicwith the rounding to the
realized in a three-fold way: nearest integer.

1. Lis afine (i.e.L’ is constant, i.eL’ = c € [0, 1]); ratio PQ SQL  SQ2  SQ3 SQ4  SQ5
2. L is convex (i.e.L’ increases from, say, 0 to 1) (i.& is ROFR 0.332 0376 0.397 0413 0418 0.413
geometrically convexsee Matkowski (1997)); LT/HU 0332 0556 0.632 0.526 0.526 0.526
3. Lis concave (i.eL’ decreases from, say, 1 to 0) (i&.s FI/PT 0503 0.677 0737 0684 0.650 0.684
LV/IE 0,503 0.727 0.769 0.727 0.750 0.727

geometrically concaysee Matkowski (1997)).

The first scenario leads to thmower function(or in other
words, a basepower function with the base 0) given Byt) :=
bt%, where

Using other words, auperproportional methogads to the
following property of an allocation system (at least before
rounding):

d. := (In(M/m)) / (In(P/p)) (23)
The smaller a pair of states is, the larger is the gain

and
of the small member in the pair over the large one.

b:= (M _ m) /(Pd _ pd) — e[(ln m)(In P)—(In M)(In p)]/ In(P/p) ) (24)
Thus, this is in fact a kind oflegressive-degressive propor-

Rather surprisingly, the distinction between the secorttl antionality. It is easy to show that if an allocation functidnis
third possibility seems to have a clear interpretation ine  subproportional, then it must be concave, and if it is corivex
of properties of allocation functioA, namely, the properties of is necessarily superproportional.
sub-and superproportionality The notion of subproportion- This approach leads also to a simple algorithm for construct
ality and the dual notion of superproportionality were @atr ing allocation functions, see also Al-Nowaihi & Dharmi (2010
duced into the decision theory by Daniel Kahneman, a NobeBect. 4). Choose a continuous functlon[p, P] — [0, 1] such
Prize laureate in economy, and Amos Tversky, a mathematthat o

f @ds= In(M/m) .
p S

cal psychologists, in 1979 (Kahneman & Tversky, 1979) and
Solving the first-order homogeneous linedteliential equation

since then used by many authors, seele.g. Al-Nowaihi & Dhami (26)
of the form

(2010). Let us recall their definition.

Definition 3. We say thatA is superproportionalsubpropor-
tional) iff for everys;t e dom(A), s< tand 0<r < 1 such that
rs,rt € dom(A) we have

Alrs) | A9 (@ < @)
A~ AN (A T AD)

, h(X
A9 =" @)
with the initial conditionA (p) = mwe get the allocation func-

tion given by the formula

At) = mexp(j’;t &Ss)ds)

that fulfills also the final conditioA(P) = M. In fact, every dif-
ferentiable allocation function can be obtain in this wayrist
over, A is superproportional (resp. subproportionélhiis in-
creasing (resp. decreasing), which provides a simple test f
checking superproportionality.

(25)

Proposition 7. Let L : [log p,logP] — [logm,logM] and A= (28)

expolL o log. The following equivalences hold:

e L is convexf A is superproportional;

e L is concaveff A is subproportional.

Proof. Note thatA is superproportionaki L(b + a) — L(b) <
L(c+a) - L(c)forlogp < b < c < c+a<logP. This prop-
erty is equivalent to convexity df. The proof of the second
equivalence is analogous. O

To illustrate this technique consider the function[p, P] —
[0, 1] given by
d

ht) = —
® 1+ctd’

(29)



where the exact value af := % is determined by the functions is advantageous for large countries, and thecehufi

integral condition[(26), and we assume additionally thtitexi  the piecewise linear functions seems to be beneficial foilsma
di <d <1, where countries.
The influence of the choice of a rounding method on the dis-
di:==infl0<d<1:(M/m-1)d<(P/p)®-1}, (30) tribution of seats is a non-trivial mathematical problerarefor
proportional apportionment (Balinski & Young, 2001, Jamso
or1<d <dy, where 2011), where it was proven that, statistically, the rougdin
) ) downwards is more often advantageous for large countrigs an
d :=supld > 1: (1-myM)d < 1 (p/P)%}, (31) the rounding upwards for small countries, see Schuster et al
(2003), Drton & Schwingenschlogl (2005), Schwingeneghl”
(2008). In the case of the European Parliament one can abserv
a similar dfect for the baselinear, parabolic, basgower and
homographic functions, where the rounding downwards is the

condition forA being superproportional (resp. subproportional)beSt ppssibility and the rounding upwards is the worst ingda
in this case is that > 0 (resp.c < 0) or equivalentlyd > d, countries (from the Netherlands to France), whereas fotlsma

(resp.d < d.), whered, is given by [2B) and < d. < 1 countries (from Malta to Austria) the situation is reversed

Summarizing, we have five possible forms of the]Ic-|owever, for the p()jleceyw_se Ilner?r class v;/]e find comrp])_lete‘ly di
base-power allocation function: erent pattern, and so it is not clear to what extent this aple

plies to degressively proportional apportionment.

in order to ensure that & h < 1. Applying (28) we get a
base-power functionA given by [10).

Clearly, the functiorh defined by[(2DB) is increasing for> 0
and decreasing far < 0, and so the necessary andfgient

« concave and subproportional function thr< d < d,; As regards superproportionality, the bapeop method is su-
perproportional in the fine’ part of its domain, i.e. for all
e power function ford = d,; countries but the largest one, the piecewise linear meiboalif

countries but two smallest ones, and the parabolic (respoho
graphic) method are superproportional for small and medium

concave and superproportional function fior< d < 1;

o affine function ford = 1: countries and subproportional for large five (resp. six)sone
The only one of the five methods that is superproportional
e convex and superproportional function fok1d < d,. in the whole domain{p, P] is the basepower method. In

] o ) fact, we showed that this method is superproportional ag lon
Note, however, that in a concrete situation the choice of thgsq ~ d,, whered, is given by [28). In the analysed case

value ofd is determined by the constraiii (1). d. ~ 0.524 andd = 0.865, 0894, 0922 depending on the
rounding method chosen, so the condition is clearly futfille
6. The European Parliament Though it is not known whether superproportionality is what

the authors of the Lisbon Treaty really intended, when tioey f

For the European Parliament we have the following valuesnulated the ‘degressive proportionality’ rule, we thinktht is
of parameters:p = 412970,Mny, = 6, P = 81802257, worth to realize that the baspower method fulfills it for all
Mmax = 96, T = 5011034255 = 751, and\ = 27. Assuming pairs, whereas the other methods can violate it for some-coun
that the upper and the lower bounds are saturated, M,  tries. Thus basepower method is in a sense more degressively
and M = Mpax We obtainp ~ 3.485 > 3.126 ~ u, so our proportional, or one can say degressively proportional @mem
choice of an allocation function is limited to concave fuons.  perfect way, than other methods analysed above. Incidgntal
However, it follows from[(21L) that for the Parliament of siz@3  the basepower solution withc = 0.5 (the square root) results
or less we would have to find the solution of the apportionmenfwith downward rounding) in a round number of 1000 members
problem in the realm of convex functions or otherwise toxela of the Parliament.
the constraints considering sote< Mpax. (Due to rounding, In|Grimmett et al.[(2011a) the authors decided to select the
this number may be somewhat smaller| cf. Kellermann (2911).method called ‘Cambridge Compromise’, which is in this case
This means also that, in fact, we have currently only abotyt fif equivalent to the basg@rop method (as defined above) with
seats to allocate freely besides the linear (or, saying ie  the rounding to the nearest integer, mainly because of its ob
cisely, dfine) distribution. vious simplicity. However, this solution has been critexzAfor

Analyzing five families of allocation functions and three being ‘not enough degressively proportional’ (Moberg, 201
rounding methods we get fifteen possible solutions for the apand departing too much from tlstatus quoIn|Grimmett et al.
portionment problem, see Tab. 2. (2011b) the solution very similar to the bagmwer method

Observe that all these solutions are quite similar, which igliscussed here is considered ‘as a step along a contin@us tr
a consequence of the fact that our choice is limited by twasition from the negotiated status quo composition to the con
factors: the predetermined shape of the graph of an altmtati stitutionally principled Cambridge Compromise.’ (Indebis
function, and the fact that more than ninety percent of se@ts method is closest to th&atus quaut of all methods analyzed
in a sense distributed in advance. More precisely, theteful  in Tab.[2.) The crucial point in these discussions seems to be
the parabolic, basgower, and homographic allocation func- the meaning of the term ‘degressive proportionality’. sty a
tions are almost identical, whereas the choice of the-hasw  lame form of (pure) proportionality, as it was actually segged



Table 2: Fifteen solutions of the apportionment problemttier European Parliament (five classes of allocation funstid = baserprop, 2 = piecewise linear3 = parabolic 4 = baserpower, 5 = homographic
three rounding methodst = downwardsm = to the nearest integeu = upwardg; LT = the distribution of seats under the Lisbon Treaty; popoiafigures are taken from the Eurostat website (OJ 22.12.2010

33g47).

Country Populaton LT 1d 1Im 1u 2d 2m 2u 3d 3m 3u 4d 4m 4u 5d 5m 5u
Germany 81802257 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
France 64714074 74 86 8 83 77 78 78 81 8 8 79 79 79 80 80 80
United Kingdom 62008048 73 82 81 80 74 75 75 78 78 77 76 76 76 77 70
Italy 60340328 73 80 79 78 73 73 73 76 76 75 74 74 74 76 76 75
Spain 45989016 54 62 62 61 57 57 58 62 61 60 60 59 59 61 61 60
Poland 38167329 51 53 52 51 49 49 49 53 52 52 52 51 51 53 52 51
Romania 21462186 33 32 32 32 31 31 31 33 33 32 3 33 32 33 33 32
Netherlands 16574989 26 26 26 26 26 26 26 27 27 26 27 27 27 27 27 26
Greece 11305118 22 19 19 19 20 20 20 20 20 20 212 212 20 20 20 20
Belgium 10839905 22 19 19 19 20 20 19 20 20 20 20 20 20 20 20 20
Portugal 10637713 22 18 18 19 19 19 19 19 19 19 20 20 20 20 19 19
Czech Republic 10506813 22 18 18 18 19 19 19 19 19 19 20 20 19 19 19 ©
Hungary 10014324 22 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19
Sweden 9340682 20 17y 17 17 18 18 18 18 18 18 18 18 18 18 18 18
Austria 8375290 19 15 16 16 17 17 17 16 16 16 17 17 17 17 17 17
Bulgaria 7563710 18 14 15 15 16 16 16 15 15 15 16 16 16 15 15 15
Denmark 5534738 3 12 12 13 14 14 14 13 13 13 13 13 13 13 13 13
Slovakia 5424925 3 12 12 12 14 14 14 12 13 13 13 13 13 13 13 13
Finland 5351427 3 12 12 12 14 14 14 12 13 13 13 13 13 12 13 13
Ireland 4467854 12 11 11 12 13 13 13 11 11 12 12 12 12 11 11 12
Lithuania 3329039 12 9 0 10 12 12 112 10 10 10 10 10 112 10 10 10
Latvia 2248374 9 8 8 9 11 10 10 8 8 9 9 9 9 8 8 9
Slovenia 2046976 8 8 8 8 10 10 10 8 8 9 8 9 9 8 8 9
Estonia 1340127 6 7 7 8 10 9 9 7 7 8 7 7 8 7 7 8
Cyprus 803147 6 6 6 7 9 9 9 6 7 7 6 7 7 6 7 7
Luxembourg 502066 6 6 6 7 7 7 8 6 6 7 6 6 7 6 6 7
Malta 412970 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
EU-27 501103425 751 751 751 751 751 751 751 751 751 751 751 751 751 751 751
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10 30 50 70 10 30 50 70

t [M]

Figure 1: Allocation functions applied to the European igaxent: panel a) concadeaserprop function [3) (solid line),piecewise linearfunction [8) &), and
parabolic function [@) ¢); panel b) function[{B) drawn as a reference solid lin@se-powerfunction [I0) &), andhomographidunction [12) ¢). The argument
t denotes the population of a state in millions, whilés scaled to determine the corresponding number of seat® iRarliament consisting & = 751 members
with the constrainten = 6 andM = 96 seats.

inlGrimmett et al.[(2011b) oris it a separate notion thatiegu  seems to be equally important as the choice of the actual form
distinct mathematical and political solutions| as Mob2@l(1)  of allocation function. As regards the latter, it is rath&fidult
claims? In this paper we have tried to shed new light on thigask to distinguish in practice one of them. From an academic
debate, analyzing mathematical properties of degreggivel  perspective, however, it would be interesting to base the so
portional allocation functions and indicating théfdirences be- lution of the ‘degressive’ allocation problem on an axioimat
tween various classes of such functions. approach, possibly considering some additional propgedfe
If we are looking for a degressively proportional (resp. de-allocation functions as concavity and superproportidpali
gressively proportional and superproportional) and iasirey
function, in the log-log realm we have to find a function (resp
convex function) with the derivative contained between @ an
1. Adding to this, three constraints related to the minimunah a
maximum number of seats and to the size of the House, we s
that our choice is in fact very limited and all the solutiotisa
fying these conditions must look quite similar — see Fig. 2.
The key possibility to vary the allocation schemes consid-
erably is to change the numbbt of the seats allotted to the
largest member state. As specified in the Treaty of Lisbon th&eferences
upper bound readSlmax = 96, but this bound needs not to be ajnowaini, A, & Dhami, S. (2010). A value function that elgins the mag-
saturated and one may also tdle< Mmax. By doing so, one nitude and sign fects.Economics Letters|05, 224-229.
introduces more freedom into the space of possib'e Somtion Arndt, F. (2008). Ausrechnen statt aushandeln: Raticiafiewinne durch

. [ : ein formalisiertes Modell fir die Bestimmung der Zusamsetmung
as more seats can be allotted besides theeadistribution. des Europaischen Parlaments (with English summargitschrift fur

Note also that by extending the Union and keeping the num- ysjandisches gentliches Recht und Volkerrecht - Heidelberg Journal of
berM fixed (which is, however, in the ‘concave realm’, doable International Law,68, 247-279.

only up to a certain total population of the Union), the seatBalinski, M. L. & Young, H. P. (1978). The fierson method of apportionment,

SIAM Review20, 278-284.
for the new member states are donated by all but the Iarge%&llinski, M. L. & Young, H. P. (2001)Fair Representation. Meeting the Ideal

state. If any further enlargement of the Union was performed of one Man, One Vot¢2nd ed.). Washington: Brookings Institution Press.
according to this scheme, the ratio of the seats in the Earope Bruckner, A. M., & Ostrow, E. (1962). Some function classekated to the
Parliament allocated to the Iargest state would remaintaohs class of convex function®acific Journal of Mathematicg,2, 1203-1215.

| h beof th b . Bummel, A. (2010).The Composition of a Parliamentary Assembly at the
n consequence, as the numiéof the member states was in- United Nations Berlin: Committee for a Democratic U.N., Background Pa-

creased, the voting power of the largest state in the Europea per no. 3.
Union would grow. Burai, P., & Szaz, A. (2005). Relationships between homeig, subad-

: _ ditivity and convex propertiesJniverzitet u Beogradu. Publikacije Elek-
These arguments show that the choice of the nurivbee trotehnickog Fakulteta, Serija Matematikis, 77-87.

lected to deSig_r_] an allocation system is crucial. The isB0€:  cassel, K. G. (1901). The theory of progressive taxatidre Economic Jour-
der what conditions the constraifit = M4y Should be relaxed nal, 11, 481-491.
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