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Abstract

A difference preorder is a (possibly incomplete) preorder on a space of state
changes (rather than the states themselves); it encodes information about prefer-
ence intensity, in addition to ordinal preferences. We find necessary and sufficient
conditions for a difference preorder to be representable by a family of cardinal utility
functions which take values in linearly ordered abelian groups. This has applications
to interpersonal comparisons, social welfare, and decisions under uncertainty.
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1 Introduction

Let X be a set of states or alternatives available to some agent (either an individual or a
group). Suppose that, for at least some states x1, x2, y1, y2 ∈ X , it is possible to make the
judgement:

“The net benefit in changing from state x1 to state x2 is greater than
the net benefit in changing from state y1 to y2.”

(1)

For example, one interpretation of this statement would be that a (1
2
, 1
2
) lottery between

states y1 and x2 is preferable to a (1
2
, 1
2
) lottery between x1 and y2. Another interpretation

might be that, in a two-period intertemporal decision (with no discounting), the history
(x2, y1) is preferable to the history (x1, y2).

Statements like (1) arise frequently in welfare economics. For example, let X be the set
of all possible “personal states” which any person could experience at a moment in time.
Suppose that an element x ∈ X encodes all the factors which could influence a person’s
wellbeing or happiness; this may include both psychological factors (e.g. beliefs, values,
desires, personality, memories, etc.) and physical factors (e.g. health, physical location,
consumption bundle, etc.). Then statement (1) becomes “The net gain in wellbeing in
changing from personal state x1 to personal state x2 is greater than the net gain in wellbeing
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in changing from state y1 to y2.” Such judgements involve interpersonal comparisons of
wellbeing (because x1 and y1 might describe different people), so they may not always be
possible. Nevertheless, we may suppose that at least some interpersonal comparisons are
possible. For example, it seems obvious that giving a bowl of rice to a starving man will
cause a greater increase in wellbeing than giving the same bowl of rice to a well-nourished
man who has just eaten a feast.

Alternately, X could be the set of all possible states for an entire society. Suppose an
element of X encodes enough information about the personal states of all individuals in
that society to allow us to compute overall social welfare. Thus, statement (1) becomes
“The net gain in social welfare in changing from social state x1 to social state x2 is greater
than the net gain in social welfare in changing from state y1 to y2.” This is often a
difficult ethical judgement, involving tradeoffs between the interests of different individuals
(and hence, interpersonal comparisons); thus, such judgements are not always possible.
Nevertheless, at least some ethical judgements are possible. For example, most ethical
systems would agree that it is better to choose a policy which slightly harms 5% of the
population and greatly benefits the other 95%, rather than a policy which greatly harms
95% of the population and slightly benefits the other 5%. Interpersonal comparisons and
social welfare judgements of the form (1) are considered in (Pivato, 2012b).

Another application is decision-making under uncertainty. For example, let I be a set
of possible “states of nature”, and let X ⊆ RI ; each element of X represents a “prospect”,
which will yield a real-valued payoff (say, of money or cardinal utility) in each state of
nature. Suppose we are endowed with the pair of prospects (x1, y1) (either representing a
(1
2
, 1
2
) lottery between the two prospects, or representing a sequence of two prospects in two

consecutive time periods), and we have the option to either change x1 to x2, or change y1
to y2 (but not both). Then statement (1) becomes “It would be better to change prospect
x1 to x2, rather than change y1 to y2.” Presumably this judgement arises from some beliefs
about the likelihoods of the different elements of I. If we had a well-defined subjective
probability distribution on I, and we were expected-utility maximizers, then statement
(1) would be equivalent to “EU(x2)−EU(x1) ≥ EU(y2)−EU(y1)” (where EU represents
expected utility). However, in a situation of genuine ambiguity, we may not have such
a subjective probability distribution. Nevertheless, we may still be able to estimate the
approximate likelihoods of certain events (i.e. certain subsets of I), and this will allow
us to make judgements like (1) in at least some cases. For example, we would prefer to
exchange prospects in a way which has a very high likelihood of greatly increasing our
payoff, and otherwise only a small likelihood of slightly reducing it, rather than exchange
prospects in a way which has a very high likelihood of greatly reducing our payoff, and
otherwise only a small likelihood of slightly increasing it.

A fourth application is to multiattribute decision-making. Suppose each alternative in
X is a bundle of many “attributes” (e.g. the consumption of different goods, perhaps at
different moments in time). Clearly, statement (1) would be true if the change from x1 to x2

yielded a greater improvement in every attribute than the change from y1 to y2. However,
in most cases, the change from x1 to x2 will be more beneficial for some attributes, while
the change from y1 to y2 will be better for other attributes; in these situations, a judgement
like (1) will be difficult to make. But we might still agree with (1) if, for example, the
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change from x1 to x2 involved a much larger gain, in a much larger number of attributes,
than the change from y1 to y2.

The four previous applications all had a normative or prescriptive flavour; they asked
the question, “How should an agent choose between different state transitions?” How-
ever, in descriptive applications, the question becomes, “How would the agent choose be-
tween different state transitions?” Evidently, an experimental subject’s revealed prefer-
ences are complete, for the simple reason that the experimental protocol typically asks her
to make a choice whenever she is confronted with a pair of alternatives. However, it is
well-documented that these experimentally revealed preferences often violate transitivity
(Camerer, 1995; Rabin, 1998). Presumably, these intransitivities appear in the “hard”
cases, when the agent confronts a great deal of uncertainty or complexity, or a multitude
of attributes, or some ethical dilemma. But the agent’s revealed preferences presumably
would be transitive if we confined our attention to the “easy” cases, where one alternative
is clearly better than another. This would yield an incomplete but transitive subrelation
of the agent’s revealed preference relation. (Mandler (2005) makes a similar argument.)
The model in this paper can be interpreted as a model of this transitive subrelation; the
axioms presented below then become hypotheses which can be empirically tested.

We can represent judgements like (1) with a preorder (�) on the Cartesian product

X × X . (A preorder is a binary relation which is transitive and reflexive, but possibly
incomplete.) We will write an ordered pair (x1, x2) ∈ X × X as “x1 ❀ x2” to emphasize
that it represents a change from x1 to x2. Then statement (1) is represented by the formula
“(x1 ❀ x2)≻ (y1 ❀ y2)”. The preorder (�) must satisfy three consistency conditions:

(INV) For all x1, x2, y1, y2 ∈ X , if (x1 ❀ x2) � (y1 ❀ y2), then (x2 ❀ x1) � (y2 ❀ y1).

(CAT) For all x0, x1, x2 and y0, y1, y2 ∈ X , if (x0 ❀ x1) � (y0 ❀ y1) and (x1 ❀

x2) � (y1 ❀ y2), then (x0 ❀ x2) � (y0 ❀ y2).

(CAT*) For all x0, x1, x2 and y0, y1, y2 ∈ X , if (x0 ❀ x1) � (y1 ❀ y2) and (x1 ❀

x2) � (y0 ❀ y1), then (x0 ❀ x2) � (y0 ❀ y2).

Condition (INV) (“Inversion”) says that if one change is better than another, then the
reversal of the first change is worse than the reversal of the second. Condition (CAT)
(“Concatenation”) prevents “concatenation inconsistencies”, where the concatenation of
two apparently superior small changes yields an inferior large change. Condition (CAT*)
says that the logic of (CAT) is commutative: when aggregating the net gain of two state
changes, the order doesn’t matter. A preorder on X × X satisfying conditions (INV),
(CAT), and (CAT*) will be called a difference preorder on X .

The difference preorder (�) induces an (incomplete) preorder (�
o
) on X , by setting

y�
o
x if and only if (x ❀ y) � (x ❀ x). The preorder (�

o
) encodes “ordinal” judgements

about the relative preferability of various states in X . However, axiom (INV) implies that
(�) cares more about state changes than about the states themselves. Axioms (CAT) and

(CAT*) imply that our preferences are not merely ordinal; they must have some weakly
“cardinal” structure, so that the comparison of state changes can be made in a consistent
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fashion. However, since (�) is generally an incomplete preorder, axioms (INV), (CAT), and
(CAT*) are do not imply the existence of a cardinal utility representation, as the following
examples illustrate.

Example 1.1. (a) Let N ≥ 1 be an integer, let X ⊆ RN be any subset, and for all
x,x′,y,y′ ∈ X , define (x ❀ x′) � (y ❀ y′) if and only if x′

n − xn ≥ y′n − yn for all
n ∈ [1 . . . N ]. Then (�) is a difference preorder.

Interpretation: Suppose the N coordinates of RN represent N different, incommensurable
goods, such that it is impossible for us to judge the desirability of tradeoffs between one
good and another. Thus, the change (x ❀ x′) is as good as (y ❀ y′) if and only if it yields
at least as great an improvement in every one of the N goods.

(b) More abstractly, let X be any set, and let V be a (possibly infinite) set of real-valued
functions on X . For any x1, x2, y1, y2 ∈ X , define (x1 ❀ x2)�

V
(y1 ❀ y2) if and only if

v(x2)− v(x1) ≥ v(y2)− v(y1) for all v ∈ V . Then (�
V
) is a difference preorder.

(c) Let u : X−→R be a real-valued “utility function”, and let ǫ > 0. For all x1, x2, y1, y2 ∈
X , define (x1 ❀ x2)�

u,ǫ
(y1 ❀ y2) if and only if either u(x2)− u(x1) > u(y2)− u(y1)+ 4ǫ, or

x1 = y1 and x2 = y2. Then (�
u,ǫ
) is a difference preorder.

Interpretation: Suppose we can measure the utility of each state in X using u. Thus,
the change (x1 ❀ x2) is better than (y1 ❀ y2) if and only if it yields a greater utility
gain. However, our utility measurements are subject to an error of size at most ǫ. Thus, if
x1 6= y1 or x2 6= y2, then we can only be sure that (x1 ❀ x2) yields a greater utility gain
than (y1 ❀ y2) if u(x2)− u(x1) > u(y2)− u(y1) + 4ǫ.

(d) Let X ⊆ RN . Let “>
L
” be the lexicographical order on RN . That is, for any x,y ∈ RN ,

we have x >
L
y if there exists some n ∈ [1 . . . N ] such that x1 = y1, x2 = y2, . . ., and

xn−1 = yn−1, but xn > yn. Now, for all x
1,x2,y2,y2 ∈ X , define (x1

❀ x2)�
L
(y1

❀ y2) if

and only if x1 − x2 >
L
y1 − y2. Then (�

L
) is a complete difference preorder on X .

Interpretation: Each of the N coordinates of RN represents a different good, over which we
have cardinal preferences. However, if n < m, then good n is “infinitely more important”
than good m, so we are willing to sacrifice an arbitrarily large amount of good m to obtain
even a slight increase in good n. ♦

The collection V in Example 1.1(b) is an example of a multiutility representation for a
difference preorder. Pivato (2012b) uses such multiutility representations for a difference
preorder representing interpersonal comparison of wellbeing to define and axiomatically
characterize a class of “quasiutilitarian” difference preorders for making social welfare com-
parisons. The main result of this paper provides a necessary and sufficient conditions for
the existence of such a multiutility representation, via a richness condition called solvability
and a consistency condition called divisibility.
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Prior literature. Alt (1936, 1971) was the first to derive a cardinal utility representa-
tion from some structure of comparisons over state-transitions.1 The literature since Alt
contains cardinal utility representations for several classes of preorders on X ×X which are
very similar in philosophical content to the structures we call “difference preorders” in this
paper, even if they differ in their precise axiomatizations. See in particular Suppes and
Winet (1955, §5), Davidson and Marschak (1956), Scott and Suppes (1958, pp.121-122),
Debreu (1958), Suppes and Zinnes (1963), Kristof (1967), Pfanzagl (1968, Ch.9), Krantz
et al (1971, Theorem 4.2), Doignon and Falmagne (1974), Shapley (1975), Basu (1982),
and Wakker (1988, 1989). Recently, Köbberling (2006) has proved the most general result
of this type, and given an excellent survey of the earlier literature.

This paper departs from this previous literature in three ways. First, it considers in-
complete preorders on X ×X , whereas earlier literature all assumed completeness. Second,
and relatedly, this paper constructs a multiutility representation, whereas the earlier liter-
ature was exclusively concerned representations with a single utility function. Third, this
paper allows utility functions which range over arbitrary linearly ordered abelian groups,
whereas earlier literature considered only real-valued utility functions, which are usually
obtained by imposing some sort of Archimidean or continuity condition on (�).

There is also an extensive literature on real-valued multiutility representations for or-
dinary preorders,2 including Levin (1983), Sprumont (2001), Ok (2002), Mandler (2006),
Knoblauch (2006), Kaminski (2007), Yılmaz (2008), and Evren and Ok (2011). How-
ever, these papers are only concerned with representing ordinal information, rather than
a cardinal structure, so they use quite different methods to the aforementioned litera-
ture on difference preorders. But like that literature, these papers are all concerned with
real-valued multiutility representations; this imposes constraints (e.g. separability) on the
preorder. If we were willing to work with arbitrary linearly ordered abelian groups, these
constraints would vanish. (Indeed, it is relatively easy to prove the that any preorder has
an R-valued multiutility representation, for some linearly ordered abelian group R.)

The remainder of the paper is organized as follows. Section 2 sets up and states our main
representation result, Theorem 2.1. Section 3 discusses the existence of “strong” utility
functions for a difference preorder. Section 4 discusses the analogs of the Szpilrajn Lemma
and Dushnik-Miller theorems for difference preorders, and shows by counterexample that
they are not true in general. All proofs are in the appendix.

2 Model and main result

A linearly ordered abelian group is a structure (R,+, 0, >), where R is a nonempty set, “+”
is an abelian group operation on R with identity element 0 (i.e. “+” is a binary operation
on R which is associative, commutative, and invertible), and “>” is a linear order on R
(i.e. a complete, antisymmetric, transitive binary relation) which is homogeneous, meaning
that for all r, s ∈ R, if r > 0, then r + s > s.

1See also (Camacho, 1980, §3) for a summary of Alt’s model.
2A real-valued multiutility representation for a preorder (�) on a set X is a collection U of R-valued

utility functions on X such that, for all x, y ∈ X , we have x � y if and only if u(x) ≥ u(y) for all u ∈ U .
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For example: the set R of real numbers is a linearly ordered abelian group (with the
standard ordering and addition operator). So is any subgroup of R (e.g. the group Q

of rational numbers). For any integer N ≥ 1, the space RN is a linearly ordered abelian
group under vector addition and the lexicographic order “>

L
” from Example 1.1(d). From

an economic perspective, a linearly ordered abelian group is the minimum amount of
mathematical structure needed to define some sort of “cardinal” utility function.

Let X be a set, and let (�) be a binary relation on X × X . A weak utility function for

(�) is a function u : X−→R (for some linearly ordered abelian group R) such that, for all

x1, x2, y1, y2 ∈ X , we have

(

(x1 ❀ x2) � (y1 ❀ y2)
)

=⇒
(

u(x2)− u(x1) ≥ u(y2)− u(y1)
)

. (2)

For example, in Example 1.1(a), any of the N coordinate projections from RN to R is
a weak utility function for (�). In Example 1.1(b); any element of V is a weak utility

function for (�
V
). In Example 1.1(d), the projection onto the first coordinate is a weak

utility function for (�
L
), but the projections onto the remaining (N − 1) coordinates are

not weak utility functions.
If the “=⇒” in statement (2) were replaced by “⇐⇒”, then (�) would be a complete

difference preorder, and u would be a cardinal utility function of the kind found in the
prior literature summarized in section 1. But in general this is not the case.

There are at least three reasons for allowing utility functions to range over arbitrary
linearly ordered abelian groups, rather than restricting them to the real numbers. First,
at a technical level, this significantly extends the generality of our results, and simplifies
the proofs. (For instance, it allows us to handle cases like Example 1.1(d).) Second, at a
philosophical level, it allows for “non-Archimidean” or “lexicographical” preferences, where
some desires are given infinite priority over other desires. (We do not take a descriptive
or normative stance on whether agents can or should have such preferences, but nor do
we wish to exclude them a priori.) Finally: non-real-valued utility functions sometimes
arise in the setting of infinite-horizon intertemporal choice and choice under uncertainty
(Pivato, 2012a).

Multiutility representations. A binary relation (�) on X × X has a multiutility rep-

resentation if there is some collection U of weak utility functions for (�) such that, for all

x1, x2, y1, y2 ∈ X ,

(

(x1 ❀ x2) � (y1 ❀ y2)
)

⇐⇒
(

u(x2)− u(x1) ≥ u(y2)− u(y1), for all u ∈ U
)

. (3)

For instance, in Example 1.1(a), the set of all N coordinate projections together yields
a multiutility representation for (�). In Example 1.1(b), the set V yields a multiutility

representation for (�
V
). In Example 1.1(c), define U := {u + ζ; ζ : X−→[−ǫ, ǫ] any

function}. Then U yields a multiutility representation for (�
u,ǫ
).
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It is easy to see that any binary relation (�) which admits a multiutility representation

(3) is a difference preorder (i.e. it satisfies (INV), (CAT), and (CAT*)). However, there
exist many difference preorders without multiutility representations, as we shall see in
sections 3 and 4 below. We will now introduce some conditions on (X ,�) which are
necessary and sufficient to obtain a multiutility representation.

A cardinal utility representation is a multiutility representation (3) with |U| = 1. In this
case, (�) is necessarily a complete difference preorder. For instance, in Example 1.1(d),

let R := RN with the lexicographical order (>
L
), and let u : X−→R be the identity

map. Then u is a cardinal utility representation for (�
L
). However, it is easy to see (�

L
)

does not admit any real-valued cardinal utility representation. (Indeed, (�
L
) does not even

admit a real-valued multiutility representation.) The prior literature has essentially been
concerned with the question: When does a complete difference preorder have a (real-valued)
cardinal utility representation? Instead, we will be concerned with the broader question:
When does (possibly incomplete) difference preorder admit a multiutility representation?

Solvability. Let (≈) represent the symmetric part of (�). (That is: (x ❀ x′) ≈ (y ❀ y′)

if both (x ❀ x′) � (y ❀ y′) and (x ❀ x′) � (y ❀ y′).) A difference preorder (�) is solvable

if, for any x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1 ❀ x2)≈(y1 ❀ y2). Solvability is

a “richness” or “continuity” condition which is quite common in the literature summarized
in section 1. For example, if X = RN , then the difference preorders in Example 1.1(a,d)
are both solvable. However, if X ( RN , then these difference preorders are generally not
solvable. By a similar argument, the difference preorder in Example 1.1(b) is generally not
solvable (unless the collection V has certain nice algebraic properties). Finally, Example
1.1(c) is not solvable, for the simple reason that the indifference relation (≈

u,ǫ
) is trivial in

this case —there do not exist any distinct x0, x1, y0, y1 ∈ X such that (x0 ❀ x1)≈
u,ǫ
(y0 ❀ y1).

Divisibility. A standard sequence for (�) is a sequence x0, x1, x2, . . . xN ∈ X such that

(x0 ❀ x1) ≈ (x1 ❀ x2) ≈ · · · ≈ (xN−1 ❀ xN). A difference preorder (�) is divisible if, for

any such standard sequence, we have
(

(x0 ❀ xN) � (x0 ❀ x0)
)

⇐⇒
(

(x0 ❀ x1) � (x0 ❀ x0)
)

.

(The direction “⇐=” is always true, by inductive application of axiom (CAT); the real
content of divisibility is in the “=⇒” direction.) For example, it is easy to see that any
complete difference preorder (e.g. Example 1.1(d)) must be divisible. Also, the difference
preorder in Example 1.1(a) is divisible. To see this, let {xm}Mm=1 be a standard sequence
in RN ; then for all n ∈ [1 . . . N ], the coordinate projection {xm

n }
M
m=1 is an arithmetic

progression in R, so xM
n −x0

n = M ·(x1
n−x0

n). If (x
0
❀ xM) � (x0

❀ x0), then xM
n ≥ x0

n for
all n ∈ [1 . . . N ], and thus, x1

n ≥ x0
n for all n ∈ [1 . . . N ], and thus (x0

❀ x1) � (x0
❀ x0).

By a similar argument, Example 1.1(b) is divisible. (Construct arithmetic progressions
using the utility functions in V rather than the coordinate projections.) Indeed, the same
argument leads to the following observation:
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Any binary relation on X × X with a multiutility representation like (3) is
a divisible difference preorder.

More surprisingly, the difference preorder in Example 1.1(c) also divisible, for the trivial
reason that it has no standard sequences, because the indifference relation (≈

u,ǫ
) is trivial.

(This illustrates a weakness of the definition of divisibility: it only has traction to the
extent that (X ,�) exhibits long standard sequences; we will return to this issue below.)

Embeddings. Let X ′ be another set, let (�′) be a binary relation on X ′ × X ′, and let
f : X−→X ′ be a function. We say that f is an embedding of (X ,�) into (X ′,�′) if f is
injective, and, for all w, x, y, z ∈ X , we have

(

(w ❀ x) � (y ❀ z)
)

⇐⇒
(

(f(w) ❀ f(x)) �′ (f(y) ❀ f(z))
)

.

For example, if X ⊆ X ′, and � is the restriction of �′ to X , then clearly (X ,�) can be
embedded in (X ′,�′). If (�′) is a difference preorder, then it is easy to see that (�) must
also be a difference preorder. If (�′) is divisible, then (�) must also be divisible. We now
come to our main results:

Theorem 2.1 Let (�) be a binary relation on X × X . Then (�) admits a multiutility

representation if and only if it can be embedded in a solvable, divisible difference preorder.

If solvability is assumed, then this characterization takes a simpler form.

Corollary 2.2 Let (�) be a solvable binary relation on X × X . Then (�) admits a mul-

tiutility representation if and only if it is a divisible difference preorder.

This yields a new contribution to the aforementioned literature on cardinal utility repre-
sentations.

Corollary 2.3 Let (�) be a solvable binary relation on X×X . Then (�) admits a cardinal

utility representation if and only if it is a complete difference preorder.

Semisolvability and induction. Divisibility is necessary to obtain a multiutility repre-
sentation, but solvability is not, as we now show. A difference preorder (�) is semisolvable

if it can be embedded in a solvable difference preorder. For example, if (X ′,�′) is solv-
able, and X ⊆ X ′, and (�) is the restriction of (�′) to X , then (�) is semisolvable. In

particular, for any subset X ⊆ RN , the difference preorder in Example 1.1(a) is semi-
solvable. Indeeed, Theorem 2.1 implies that any difference preorder with a multiutility
representation is semisolvable. It would be nice if Corollary 2.2 was still true with “solv-
able” weakened to “semisolvable”. But a semisolvable system could be an extremely small
subset of a solvable system —so small that the hypothesis of divisibility would have no
traction at all. Thus, we must add some auxiliary condition to ensure that divisibility still
has bite.
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We say that (X ,�) is inductive if, for any x0, x1 ∈ X , there exists an infinite standard
sequence {x0}

∞
n=1 in X which is “generated by” (x0 ❀ x1), in the sense that such that

(xn ❀ xn+1) ≈ (x0 ❀ x1) for all n ∈ N. For example, any solvable system is inductive.
But Example 1.1(c) is clearly not inductive. Divisibility has its strongest grip in inductive
systems.

Proposition 2.4 Suppose (X ,�) is inductive. Then (X ,�) admits a multiutility repre-
sentation if and only if it is divisible and semisolvable.

3 Strong utility functions

Let (�) be a difference preorder, and let (≻) denote the antisymmetric part of (�). Let

(R,+, 0, >) be a linearly ordered abelian group. A strong utility function for (�) is a function

u : X−→R which satisfies condition (2), and also such that, for all x1, x2, y1, y2 ∈ X , we
have (

(x1 ❀ x2) ≻ (y1 ❀ y2)
)

=⇒
(

u(x2)− u(x1) > u(y2)− u(y1)
)

.

This is not as strong as a full multiutility representation, but it is clearly more powerful
than a weak utility function.3 Strong utility functions have useful consequences in welfare
economics (Pivato, 2012b). Thus, it is desirable to find sufficient conditions for their
existence. A difference preorder is semidivisible if, for any standard sequence {xn}

N
n=1, we

have (

(x0 ❀ xN) ≈ (x0 ❀ x0)
)

⇐⇒
(

(x0 ❀ x1) ≈ (x0 ❀ x0)
)

.

For example, any divisible difference preorder is semidivisible.

Proposition 3.1 If (�) can be embedded in a solvable, semidivisible difference preorder,

then (�) has a strong utility function.

Combining Proposition 3.1 with Theorem 2.1, we conclude that any difference preorder
with a multiutility representation has a strong utility function.

To see that the scope of Proposition 3.1 is strictly greater than that of Theorem 2.1, it
suffices to show that not every semidivisible difference preorder is divisible. On the other
hand, to see that the semidivisibility hypothesis is not entirely vacuous, it suffices to show
that not every difference preorder is semidivisible. The next two examples illustrate these
claims.

Example 3.2. (a) Let X = Z (the group of integers). For any x, x′, y, y′ ∈ X , define
(x ❀ x′) � (y ❀ y′) if x′ − x ≥ y′ − y and x′ − x + y − y′ is an even number. It is
easy to check that (�) is a semidivisible difference preorder. But it is not divisible. For

3For example, any constant function is trivially a weak utility function. But it can’t be a strong utility
function unless (�) is trivial.

9



example, {0, 1, 2} is a standard sequence (because (0 ❀ 1) ≈ (1 ❀ 2)), but (0 ❀ 1) is not
comparable to (0 ❀ 0), whereas (0 ❀ 2) ≻ (0 ❀ 0).

(b) Let Z/3 := {0, 1, 2}, and let +3 be the operation of addition mod 3 on Z/3. Let
X = Z × Z/3, and write a generic element as x = (x1, x2). For any x = (x1, x2) and
y = (y1, y2) in X , define x ⊕ y := (x1 + y1, x2 +3 y2); then (X ,⊕) is an abelian group.
For any x,x′,y,y′ ∈ X , define (x ❀ x′) ≻ (y ❀ y′) if (x′

1 − x1) > (y′1 − y1); otherwise,
define (x ❀ x′) ≈ (y ❀ y′) if and only if (x′ ⊖ x) = (y′ ⊖ y). It is easy to verify that
this is a difference preorder. But it is not even semidivisible. For example, {(0, 0), (0, 1),
(0, 2), (0, 0)} is a standard sequence, but the transition (0, 0) ❀ (0, 1) is not comparable
to (0, 0) ❀ (0, 0). ♦

Because they are not divisible, neither of the difference preorders in Example 3.2 admits
a multiutility representation; this shows that the divisibility hypothesis of Theorem 2.1
is not vacuous. However, in Example 3.2(b), suppose we define u : X−→R by setting
u(x1, x2) := x1. Then it is easy to check that u is a strong utility function for (�).

This shows that the hypothesis of Proposition 3.1 is too strong: semidivisibility is not
necessary to obtain a strong utility function. However, some sort of hypothesis is certainly
necessary; not all difference preorders admit strong utility functions, as we will show in
the next section.

4 Complete extensions

If (≻) and (≻′) are two binary relations on a set X , then we say (≻′) extends (≻) if
(x ≻ y) =⇒ (x ≻′ y), for all x, y ∈ X . If (�) and (�′) are two difference preorders on X ,
then we will say that (�′) strictly extends (�) if (�′) extends (�), and the antisymmetric
part of (�′) extends the antisymmetric part of (�).

A partial order is a binary relation which is transitive and antisymmetric. A linear order

is a transitive, antisymmetric, and complete. Szpilrajn’s Lemma (1930) says that every
partial order on a set can be extended to a linear order. Furthermore, a result of Dushnik
and Miller (1941) says that every partial order is the intersection of all its linear extensions.
By analogy, we will say that a difference preorder (�) is Szpilrajn if it is strictly extended

by some complete difference preorder. We will say that (�) is Dushnik-Miller if it is the

intersection of all the complete difference preorders which extend it.
These properties are closely related to the existence of strong utility functions and

multiutility representations. To see this, let R be a linearly ordered abelian group, and let
u : X−→R be any function. We can define a complete difference preorder (�

u
) on X as

follows. For all x1, x2, y1, y2 ∈ X , stipulate that

(

(x1 ❀ x2)�
u
(y1 ❀ y2)

)

⇐⇒
(

u(x2)− u(x1) ≥ u(y2)− u(y1)
)

. (4)

If (�) is another difference preorder on X , then u is a (strong) utility function for (�) if

and only if (�
u
) (strictly) extends (�). Thus, the existence of a strong utility function
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implies that (�) is Szpilrajn. Furthermore, if (�) has a multiutility representation (3),

then (�) is Dushnik-Miller.

Not all difference preorders are Dushnik-Miller. For example, let X := {x0, x1, x2, y0, y1, y2},
and define the preorder (�) on X × X as follows. Begin with the 36 “trivial” relations of

the form “(xh ❀ xh)≈(xi ❀ xi)≈(yj ❀ yj)≈(yk ❀ yk)”, for any h, i, j, k ∈ {0, 1, 2}. To

this set, add the three relations

(a) (x0 ❀ x1)≈(x1 ❀ x2),

(b) (y0 ❀ y1)≈(y1 ❀ y2), and

(c) (x0 ❀ x2) ≻ (y0 ❀ y2),

along with their “reversals” under Axiom (INV). This yields a system of 42 relations, which
is closed under the application of Axioms (CAT) and (CAT*). Thus, it is a difference
preorder on X . Note that (�) cannot compare (x0 ❀ x1) with (y0 ❀ y1). However, if

(�
c
) is any complete difference preorder which extends (�), then condition (c) implies

that (x0 ❀ x2)�
c
(y0 ❀ y2). Then conditions (a) and (b) and the contrapositive of (CAT)

imply that (x0 ❀ x1)�
c
(y0 ❀ y1). Thus, if ( �

DM
) is the intersection of all the complete

difference preorder extensions of (�), then we must have (x0 ❀ x1) �
DM

(y0 ❀ y1). Thus,

( �
DM

) 6= (�), so (�) is not Dushnik-Miller.

It follows that (�) does not have a multiutility representation. Even worse, however,

is the following case.

Proposition 4.1 For any set X with |X | ≥ 24, there exists a difference preorder (�) on
X which is not Szpilrajn. In particular, it has no strong utility functions.

The interpretation of these counterexamples depends upon whether we believe the incom-
pleteness of (�) to be epistemic or metaphysical in origin. According to the epistemic

account, precise comparisons between state changes are meaningful in principle; we simply
lack the necessary information to make these comparisons in practice. The incomplete
difference preorder (�) reflects our incomplete knowledge of some unknown, complete dif-

ference preorder (�
∗
), which encodes the “true” ranking of state changes. Thus, (�) should

be Szpilrajn in reality, so we can dismiss the pathology in Proposition 4.1 as merely show-
ing that the axioms (INV), (CAT), and (CAT*) alone are too weak. Furthermore, if a
difference preorder (�) is not Dushnik-Miller (as in the first counterexample), then it can

and should be extended to its “Dushnik-Miller completion”, because any extra comparisons
encoded in this completion must be part of (�

∗
).

According to the metaphysical account, however, certain comparisons are not mean-
ingful, even in principle. Thus, there is no reason to expect (�) to be Szpilrajn. If (�)

is not Szpilrajn, and we have good reason to regard (�) as our best possible model of

interpersonal comparisons, then this provides evidence for the metaphysical account.
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Appendix: Proofs

We begin with two useful lemmas. The first one is a straightforward consequence of axioms
(INV) and (CAT*).

Lemma A.1 Let (�) be a difference preorder on X . For all x, y ∈ X , we have (x ❀

x) ≈ (y ❀ y).

Lemma A.2 Let (�) and (�′) be difference preorders on the sets X and X ′, respectively.

Let f : X−→X ′ be an embedding of of (X ,�) into (X ′,�′).

(a) Let R be a linearly ordered abelian group, and let u : X ′−→R.

(a1) If u is a weak utility function for (�′), then u ◦ f : X−→R is a weak utility
function for (�).

(a2) If u is a strong utility function for (�′), then u ◦ f : X−→R is a strong utility
function for (�).

(b) If (X ′,�′) has a multiutility representation, then so does (X ,�).

Proof. (a) is obvious. To see (b), let U ′ be a set of weak utility functions for (X ′,�′). Define
U := {u′ ◦ f ; u′ ∈ U ′}. Then U is a collection of weak utility functions for (X ,�). We
claim that U yields a multiutility representation. To see this, let w, x, y, z ∈ X . Then
(

(w ❀ x) � (y ❀ z)
)

⇐
(∗)
⇒

(

(f(w) ❀ f(x)) �′ (f(y) ❀ f(z))
)

.

⇐
(†)
⇒

(

u′[f(w)]− u′[f(x)] ≥ u′[f(z)]− u′[f(y)], for all u′ ∈ U ′

)

⇐⇒
(

u(w)− u(x) ≥ u(z)− u(y), for all u ∈ U
)

,

as desired. Here, (∗) is because f is an embedding, and (†) is because u′ is a weak utility
function. ✷

Let X be a set and let (�) be a difference preorder on X . For any x ∈ X , define 〈x〉 :=
{y ∈ X ; (x ❀ y) ≈ (x ❀ x)}. In other words, 〈x〉 is the set of elements in X which are
indifferent to x, in terms of the ordinal preferences on X defined by (�). Say that (X ,�)

is perfect if we have |〈x〉| = |〈y〉| for all x, y ∈ X . The next result says that any difference
preorder can be embedded in a perfect difference preorder.

Lemma A.3 Let X be a set and let (�) be a difference preorder on X . Then (X ,�) can
be embedded in a system (X ′,�′), where (�′) is a perfect difference preorder on X ′.

Furthermore, if (�) is solvable and (semi)divisible, then so is (�′).
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Proof. If X is finite, then let W be any infinite set. If X is infinite, then let W be a larger
infinite set, such that |W| > |X | (for example, we could take |W| = |2W |). Either way,
basic facts about (transfinite) cardinal arithmetic yield the following property:

for any Y ⊆ X , |Y ×W| = |W|. (A1)

Now, let X ′ := X ×W , and define the difference preorder (�′) on X ′ as follows. For all
(x0, w0), (x1, w1), (y0, w

′
0), (y1, w

′
1) in X ′, stipulate that

(

[(x0, w0) ❀ (x1, w1)] �
′ [(y0, w

′
0) ❀ (y1, w

′
1)]

)

⇐⇒
(

(x0 ❀ x1) � (y0 ❀ y1)
)

. (A2)

Fix w ∈ W , and define f : X−→X ′ by setting f(x) := (x, w) for all x ∈ X . It is easy to
see that f is an embedding of (X ,�) into (X ′,�′).

It remains to show that (X ′,�′) is perfect. To see this, let (x, w) ∈ X ′. Then

〈(x, w)〉 := {(y, w′) ∈ X ′ ; [(x, w) ❀ (y, w′)] ≈′ [(x, w) ❀ (x, w)]}

= {(y, w′) ∈ X ′ ; (x ❀ y) ≈ (x ❀ x)}

= {y ∈ X ; (x ❀ y) ≈ (x ❀ x)} ×W = 〈x〉 ×W .

Thus, statement (A1) implies that |〈(x, w)〉| = |W| for all (x, w) ∈ X ′. Thus, (X ′,�′) is
perfect.

Finally, suppose (�) is solvable and (semi)divisible. We must show that (�′) is also
solvable and (semi)divisible.

Solvable. Let (x0, w0), (x1, w1), (y0, w
′
0) ∈ X ′; we must find (y1, w

′
1) ∈ X ′ such that

[(x0, w0) ❀ (x1, w1)] ≈
′ [(y0, w

′
0) ❀ (y1, w

′
1)]. By definition (A2), the choice of w′

1 is
arbitrary, and it suffices to find y1 ∈ X such that (x0 ❀ x1) ≈ (y0 ❀ y1). But such a y1
exists because (�) is solvable.

(Semi)divisible. First suppose (�) is divisible. Suppose (x0, w0), (x1, w1), (x2, w2), . . . , (xN , wN)
is a standard sequence in X ′. Thus, [(x0, w0) ❀ (x1, w1)] ≈

′ [(x1, w1) ❀ (x2, w2)] ≈
′

· · · ≈′ [(xN−1, wN−1) ❀ (xN , wN)]. By definition (A2), this is true if and only if
(x0 ❀ x1) ≈ (x1 ❀ x2) ≈ · · · ≈ (xN−1 ❀ xN). Thus, x0, x1, x2, . . . , xN is a stan-
dard sequence in X . Thus,
(

[(x0, w0) ❀ (xN , wN)] �
′ [(x0, w0) ❀ (x0, w0)]

)

⇐
(a)
⇒

(

(x0 ❀ xN) � (x0 ❀ x0)
)

⇐
(b)
⇒

(

(x0 ❀ x1) � (x0 ❀ x0)
)

⇐
(c)
⇒

(

[(x0, w0) ❀ (x1, w1)] �
′ [(x0, w0) ❀ (x0, w0)]

)

.

Here, (a) and (c) are by definition (A2), and (b) is because (X ,�) is divisible by hy-
pothesis. Thus, (�′) is divisible.

The same argument shows that, if (�) semidivisible, then (�′) is semidivisible. ✷

Given Lemmas A.2(b) and A.3, to prove the “⇐=” direction of Theorem 2.1, it suffices to
prove that any perfect, solvable, divisible difference preorder has a multiutitility represen-
tation. To prove this, we need one more tool. An automorphism of (X ,�) is a bijective
function γ : X−→X such that, for all x, y ∈ X , we have (x ❀ y) ≈ (γ(x) ❀ γ(y)). Let Γ
denote the set of all automorphisms of (X ,�). It is easy to see that Γ is a group.
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Lemma A.4 Let � be a perfect difference preorder, and let Γ be its group of automor-
phisms. Then (�) is solvable if and only if Γ acts transitively on X .

Proof. “⇐=” Let x1, x2, y1 ∈ X . Since Γ acts transitively on X , there is some γ ∈ Γ such
that γ(x1) = y1. Let y2 := γ(x2). Then (x1 ❀ x2)≈(y1 ❀ y2), as desired.

“=⇒” Fix x0, y0 ∈ X . We must construct some γ ∈ Γ such that γ(x0) = y0. First
note that |〈x0〉| = |〈y0〉| (because (�) is perfect). So, let γ : 〈x0〉−→〈y0〉 be any bijection
such that γ(x0) = y0.

Now, for every x ∈ X , there is some y ∈ X such that (x0 ❀ x) ≈ (y0 ❀ y) (because
(�) is solvable). Furthermore, |〈x〉| = |〈y〉| (because (�) is perfect). So, let γ : 〈x〉−→〈y〉
be a bijection. For any x′ ∈ 〈x〉, if y′ = γ(x′), then we have

(x0 ❀ x′) ≈
(a)

(x0 ❀ x) ≈
(b)

(y0 ❀ y) ≈
(c)

(y0 ❀ y′). (A3)

Here, (a) is by (CAT) (because x′ ∈ 〈x〉), (b) is by construction of y, and (c) is by (CAT)
(because y′ ∈ 〈y〉).

Proceeding in this fashion, we can define the function γ on 〈x〉 for every x ∈ X . Since
the collection {〈x〉; x ∈ X} is a partition of X , this defines γ everywhere on X . Since
γ maps each cell of this partition bijectively to another cell of the partition, it follows
that γ is a bijection from X to itself. From equation (A3) it follows:

For all x ∈ X , (x0 ❀ x) ≈ (y0 ❀ f(x)). (A4)

It remains to show that γ is an automorphism of (X ,�). So, let x1, x2 ∈ X . Let
y1 := γ(x1) and y2 := γ(x2); we must show that (x1 ❀ x2)≈(y1 ❀ y2). Statement (A4)

implies that (x0 ❀ x1)≈(y0 ❀ y1). Thus, axiom (INV) says

(x1 ❀ x0) ≈ (y1 ❀ y0). (A5)

Statement (A4) also implies that

(x0 ❀ x2) ≈ (y0 ❀ y2). (A6)

Combining statements (A5) and (A6) via (CAT), we get (x1 ❀ x2)≈(y1 ❀ y2), as

desired. ✷

Let (G, ·) be a (possibly nonabelian) group with identity element e, and let (>) be a binary
relation (e.g. a partial order or preorder) on G. We say that (>) is homogeneous if, for all
f, g, h ∈ G, we have (g > h) ⇐⇒ (f · g > f · h) ⇐⇒ (g · f > h · f). In particular, if
(R, 0,+) is an abelian group, then a binary relation (>) on R is homogeneous if, for all
r, s, t ∈ R, we have (r > s) ⇐⇒ (r + t > s+ t).

An abelian group (R,+, 0) is torsion-free if, for any r ∈ R, we have:

(

n r = 0 for some n ∈ N
)

⇐⇒
(

r = 0
)

. (Here, n · r :=

n times
︷ ︸︸ ︷
r + r + · · ·+ r .)

For example, it is easy to see that any linearly ordered abelian group is torsion-free. Szpil-
rajn (1930) proved that any partial order can be extended to a linear order. The next
result is the analogous statement for homogeneous partial orders.
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Homogeneous Szpilrajn Lemma. Let (R,+, 0) be a torsion-free abelian group. Then
any homogeneous partial order on R can be extended to a homogeneous linear order.

Proof. See (Fuchs, 2011, Corollary 13, p.39). ✷

A homogeneous partial order (>) is isolated if, for any r ∈ R, if n r > 0 for some n ∈ N,
then we have r > 0. For example, it is easy to see that any linearly ordered abelian group
is isolated. Dushnik and Miller (1941) proved that any partial order is the intersection
of all the linear orders which extend it. The next result is the analogous statement for
homogeneous partial orders.

Homogeneous Dushnik-Miller Theorem. Let (R,+, 0) be a torsion-free abelian
group. If (>) is an isolated homogeneous partial order on R, then (>) is the intersec-
tion of all the homogeneous linear orders on R which extend it.

Proof. See (Fuchs, 2011, Corollary 19, p.41). ✷

In the next proof, when invoking axioms (CAT) and (CAT*), we will sometimes write
“(x0 ❀ x2) = (x0 ❀ x1 ❀ x2)” and “(y0 ❀ y2) = (y0 ❀ y1 ❀ y2)”, with the implication
that we are supposed to compare the transitions (x0 ❀ x1) and (x1 ❀ x2) to the transitions
(y0 ❀ y1) and (y1 ❀ y2) in order to deduce a comparison between (x0 ❀ x2) and (y0 ❀ y2).

Proposition A.5 Let (�) be a perfect, solvable difference preorder on a set X .

(a) If (�) is semidivisible, then it has a strong utility function.

(b) If (�) is also divisible, then it has a multiutitility representation.

Proof. (a) Let Γ be the automorphism group of (X ,�).

Claim 1. Let γ ∈ Γ. Then for all x, y ∈ X , we have (x ❀ γ(x)) ≈ (y ❀ γ(y)).

Proof. (x ❀ γ(x)) = (x ❀ γ(y) ❀ γ(x)) ≈
(∗)

(y ❀ x ❀ γ(y)) = (y ❀ γ(y)), as desired.

Here, (∗) is by (CAT*), using the fact that (y ❀ x) ≈ (γ(y) ❀ γ(x)), because γ is
an automorphism. ✸ Claim 1

Now define a preorder (�
Γ
) on Γ as follows: for any α, β ∈ Γ, we write

(

α �
Γ
β
)

⇐⇒
(

∃ z ∈ X with (z ❀ α(z)) � (z ❀ β(z))
)

⇐
(a)
⇒

(

(y ❀ α(y)) � (y ❀ β(y)) for all y ∈ X
)

(A7)

⇐
(b)
⇒

(

(x ❀ α(y)) � (x ❀ β(y)) for all x, y ∈ X
)

. (A8)

where (a) is by Claim 1, and (b) is by axiom (CAT).

Claim 2.
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(a) (�
Γ
) is a homogeneous preorder on Γ.

(b) For any α, β ∈ Γ, we have α ◦ β ≈
Γ
β ◦ α.

Proof. (a) Let α, β, γ ∈ Γ. Suppose α �
Γ
β; we must show that γ ◦ α �

Γ
γ ◦ β. Fix

x ∈ X . We have
(

α �
Γ
β
)

⇐
(∗)
⇒

(

(γ−1(x) ❀ α(x)) � (γ−1(x) ❀ β(x)
)

⇐
(†)
⇒

(

(x ❀ γ ◦ α(x)) � (x ❀ γ ◦ β(x)
)

⇐
(‡)
⇒

(

γ ◦ α �
Γ
γ ◦ β

)

.

Here, (∗) is by defining formula (A8) and (‡) is by defining formula (A7), while (†) is

because γ is an automorphism of (�). By a similar argument, we have
(

α �
Γ
β
)

⇐⇒
(

α ◦ γ �
Γ
β ◦ γ

)

. Thus, �
Γ
is a homogeneous partial order on Γ.

(b) Let x ∈ X . According to defining formula (A7), we must show that (x ❀

α ◦ β(x)) ≈ (x ❀ β ◦ α(x)). Since α and β are automorphisms of (�) we have

(x ❀ β(x)) ≈ (α(x) ❀ α ◦ β(x)) (A9)

and (x ❀ α(x)) ≈ (β(x) ❀ β ◦ α(x)). (A10)

Thus, we have

(x ❀ α ◦ β(x)) = (x ❀ α(x) ❀ α ◦ β(x))

≈
(∗)

(x ❀ β(x) ❀ β ◦ α(x)) = (x ❀ β ◦ α(x)),

as desired. Here, (∗) is by equations (A9) and (A10) and axiom (CAT*). ✸ Claim 2

Let ǫ be the identity element of Γ. Let N := {ν ∈ Γ; ν ≈
Γ
ǫ}. By defining formula

(A8), this means N = {ν ∈ Γ; (x ❀ ν(y)) ≈ (x ❀ y) for all x, y ∈ X}.

Claim 3.

(a) For any γ ∈ Γ, we have γN = Nγ = {δ ∈ Γ; δ ≈
Γ
γ}.

(b) N is a normal subgroup of Γ.

(c) The quotient group Γ/N is abelian.

Proof. (a) Let ∆ := {δ ∈ Γ; δ ≈
Γ
γ}; we must show that γN = Nγ = ∆. To see that

γN ⊆ ∆ and Nγ ⊆ ∆, let ν ∈ N . Then for any x ∈ X , we have (x ❀ ν ◦ γ(x)) ≈
(x ❀ γ(x)). Thus, ν◦γ ∈ ∆, because ν◦γ ≈

Γ
γ, by defining formula (A7). Meanwhile,

(x ❀ γ ◦ ν(x)) ≈
(∗)

(γ−1(x) ❀ ν(x)) ≈
(†)

(γ−1(x) ❀ x) ≈
(∗)

(x ❀ γ(x)).

Thus, γ ◦ ν ∈ ∆, because γ ◦ ν ≈
Γ
γ, again by defining formula (A7). Here, both (∗)

are because γ is an automorphism of (�), while (†) is because ν ∈ N .

These arguments hold for all ν ∈ N ; it follows that γN ⊆ ∆ and Nγ ⊆ ∆.
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Conversely, to see that γN ⊇ ∆ and Nγ ⊇ ∆, let δ ∈ ∆; thus, δ ≈
Γ
γ. Then

(x ❀ δ ◦ γ−1(x)) ≈
(∗)

(x ❀ γ ◦ γ−1(x)) = (x ❀ x),

and thus, if ν := δ ◦ γ−1, then ν ∈ N . Thus, δ = ν ◦ γ ∈ Nγ. Here, (∗) is by defining
formula (A8), because δ ≈

Γ
γ. Meanwhile,

(x ❀ γ−1 ◦ δ(x) ≈
(∗)

(γ(x) ❀ δ(x))

≈
(†)

(γ(x) ❀ γ(x)) ≈
(‡)

(x ❀ x),

and thus, if µ := γ−1 ◦ δ, then µ ∈ N . Thus, δ = γ ◦ µ ∈ γN . Here, (∗) is because
γ is an automorphism, (†) is by defining formula (A8), because δ ≈

Γ
γ, and (‡) is by

Lemma A.1.

These arguments hold for all δ ∈ ∆; it follows that γN ⊇ ∆ and Nγ ⊇ ∆.

(b) follows immediately from (a).

(c) It suffices to show that, for every α, β ∈ Γ, the commutator α−1 ◦ β−1 ◦ α ◦ β
is an element of N . Fix z ∈ X . Then setting x := α ◦ β(z) and y := β ◦ α(z) and
γ := α−1 ◦ β−1 in Claim 1, we get

[

α ◦ β(z) ❀ α−1 ◦ β−1 ◦ α ◦ β(z)
]

≈
[

β ◦ α(z) ❀ α−1 ◦ β−1 ◦ β ◦ α(z)
]

. (A11)

Meanwhile, we have

(z ❀ α ◦ β(z)) ≈ (z ❀ β ◦ α(z)), (A12)

by Claim 2(b) and defining formula (A7). Thus,

(z ❀ α−1 ◦ β−1 ◦ α ◦ β(z)) = (z ❀ α ◦ β(z) ❀ α−1 ◦ β−1 ◦ α ◦ β(z))

≈
(∗)

(z ❀ β ◦ α(z) ❀ α−1 ◦ β−1 ◦ β ◦ α(z))

= (z ❀ β ◦ α(z) ❀ z) = (z ❀ z),

where (∗) is by linking formulae (A11) and (A12) via Axiom (CAT). Thus, α−1 ◦β−1 ◦
α ◦ β ∈ N , as desired. This holds for all α, β ∈ Γ, so the commutator subgroup of Γ
is contained in N . It follows from basic group theory that Γ/N is abelian. ✸ Claim 3

Let R := Γ/N . For any γ ∈ Γ, let [γ] denote the corresponding element of R (that is,
the coset γN = Nγ). Since R is abelian, we will write its operation as “+”. That is,
for all α, β ∈ Γ, we have [α] + [β] := [α ◦ β]. Let 0 denote the identity of R. Observe
that 0 = [ǫ] = N = {γ ∈ Γ; γ ≈

Γ
ǫ}. We define a binary relation (>) on R by setting

[α] > [β] if and only if α ≻
Γ
β, for all α, β ∈ Γ.

Claim 4. (>) is a well-defined, homogeneous partial order on R.
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Proof. Well-defined. Let α, β ∈ Γ. Let α′ ∈ [α] and β′ ∈ [β]. Thus, α′ = ν ◦ α and
β′ = µ ◦ β for some ν, µ ∈ N . We must show that α ≻

Γ
β if and only if α′ ≻

Γ
β′. To

see this, let x ∈ X . Then

(x ❀ α′(x)) = (x ❀ ν ◦ α(x)) ≈
(∗)

(x ❀ α(x)) (A13)

and (x ❀ β′(x)) = (x ❀ µ ◦ β(x)) ≈
(∗)

(x ❀ β(x)), (A14)

where the (∗)’s are because ν, µ ∈ N . Thus,
(

α ≻
Γ
β
)

⇐
(∗)
⇒

(

(x ❀ α(x)) ≻ (x ❀ β(x))
)

⇐
(†)
⇒

(

(x ❀ α′(x)) ≻ (x ❀ β′(x))
)

⇐
(∗)
⇒

(

α′ ≻
Γ
β′

)

,

as desired. Here, both (∗) are by formula (A7), while (†) is by equations (A13) and
(A14).

Transitive. Let α, β, γ ∈ Γ. Suppose [α] > [β] and [β] > [γ]. Thus, α ≻
Γ
β and

β ≻
Γ
γ. Thus, α ≻

Γ
γ because (�

Γ
) is transitive. Thus, [α] > [γ]. Antisymmetric is

proved similarly.

Homogeneous. Let α, β, γ ∈ Γ. If [α] > [β], then α ≻
Γ
β. Thus, γ ◦ α ≻

Γ
γ ◦ β, by

Claim 2(a). Thus, [γ] + [α] = [γ ◦ α] > [γ ◦ β] = [γ] + [β], as desired. ✸ Claim 4

Fix o ∈ X . For every x ∈ X , Lemma A.4 yields some γx ∈ Γ such that γx(o) = x. Define
the function u : X−→R by setting u(x) := [γx] for all x ∈ X . (For example, γo = ǫ, so
u(o) = [ǫ] = 0.)

Claim 5. For all x, x′, y, y′ ∈ X , we have

(a) (x ❀ x′) � (y ❀ y′) if and only if u(x′)− u(x) ≥ u(y′)− u(y).

(b) (x ❀ x′) ≻ (y ❀ y′) if and only if u(x′)− u(x) > u(y′)− u(y).

Proof. (b) follows from (a). To prove (a), First note that

u(x′)− u(x) = [γx′ ]− [γx] = [γ−1
x ◦ γx′ ] (A15)

and u(y′)− u(y) = [γy′ ]− [γy] = [γ−1
y ◦ γy′ ]. (A16)

Thus,
(

u(x′)− u(x) ≥ u(y′)− u(y)
)

⇐
(a)
⇒

(

[γ−1
x ◦ γx′ ] ≥ [γ−1

y ◦ γy′ ]
)

⇐
(b)
⇒

(

γ−1
x ◦ γx′ �

Γ
γ−1
y ◦ γy′

)

⇐
(c)
⇒

(

[o ❀ γ−1
x ◦ γx′(o)] � [o ❀ γ−1

y ◦ γy′(o)]
)

⇐
(d)
⇒

(

[γx(o) ❀ γx′(o)] � [γy(o) ❀ γy′(o)]
)

⇐
(e)
⇒

(

(x ❀ x′) � (y ❀ y′)
)

,
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as desired. Here (a) is by (A15) and (A16), (b) is by the definition of (>), (c) is by
the defining formula (A7), (d) is because γx, γy ∈ Γ, and (e) is by the definition of γx,
γy, γx′ , and γy′ . ✸ Claim 5

Up until now, everything in the proof has been necessary for both parts (a) and (b) of
Proposition A.5. But the next claim is only required to prove part (a).

Claim 6. If (�) is semidivisible, then the group (R,+, 0) is torsion-free.

Proof. Let γ ∈ Γ, let n ∈ N, and suppose n · [γ] = 0. Note that n · [γ] = [γn]; thus,
we have γn ≈

Γ
ǫ. Thus, for any x ∈ X , we have (x ❀ γn(x)) ≈ (x ❀ x) by defining

formula (A7). Consider the sequence {x, γ(x), γ2(x), . . . , γn(x)}. This is a standard
sequence: we have (x ❀ γ(x)) ≈ (γ(x) ❀ γ2(x)) ≈ · · · ≈ (γn−1(x) ❀ γn(x)), because
γ is an automorphism. Thus, if (x ❀ γn(x)) ≈ (x ❀ x), then (x ❀ γ(x)) ≈ (x ❀ x),
because (�) is semidivisible. Thus, γ ≈

Γ
ǫ. Thus, [γ] = 0, as desired. ✸ Claim 6

Now, let E(>) be the set of homogeneous linear orders on R which extend (>). Claim
6 and the the Homogeneous Szpilrajn Lemma together imply that E(>) is nonempty.
For any order (≫) ∈ E(>), the system (R,+, 0,≫) is a linearly ordered abelian group.
We can also treat u : X−→R as a function into (R,+, 0,≫); to avoid confusion, we will
denote this function by u

≫
. Finally, part (a) of the theorem follows from the next claim.

Claim 7. For any (≫) ∈ E(>), the function u
≫
is a strong utility function for (X ,�).

Proof. For all x, x′, y, y′ ∈ X , we have

(

(x ❀ x′) � (y ❀ y′)
)

⇐
(a)
⇒

(

u(x′)− u(x) ≥ u(y′)− u(y)
)

(∗)
=⇒

(

u
≫
(x′)− u

≫
(x) ≫ u

≫
(y′)− u

≫
(y)

)

,

and
(

(x ❀ x′) ≻ (y ❀ y′)
)

⇐
(b)
⇒

(

u(x′)− u(x) > u(y′)− u(y)
)

(∗)
=⇒

(

u
≫
(x′)− u

≫
(x) ≫ u

≫
(y′)− u

≫
(y)

)

,

where (a) is by Claim 5(a) and (b) is by Claim 5(b), while both (∗) are because
(≫) ∈ E(>). ✸ Claim 7

Proof of part (b). Now suppose (�) is divisible. We will show that the collection {u
≫
;

(≫) ∈ E(>)} is a multiutility representation for (X ,�). For this we need the following.

Claim 8. The order (>) is isolated.

Proof. Let γ ∈ Γ, let n ∈ N, and suppose n·[γ] > 0. Note that n·[γ] = [γn]; thus, we have
γn ≻

Γ
ǫ. Thus, for any x ∈ X , we have (x ❀ γn(x)) ≻ (x ❀ x) by defining formula

(A7). As in Claim 6, {x, γ(x), γ2(x), . . . , γn(x)} is a standard sequence, because γ is
an automorphism. Thus, if (x ❀ γn(x)) ≻ (x ❀ x), then (x ❀ γ(x)) ≻ (x ❀ x),
because (�) is divisible. Thus, γ ≻

Γ
ǫ. Thus, [γ] > 0, as desired. ✸ Claim 8
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Claim 8 and the Homogeneous Dushnik-Miller Lemma together imply that (>) is the
intersection of all elements of E(>). Now, let x, x′, y, y′ ∈ X . Then

(

(x ❀ x′) � (y ❀ y′)
)

⇐
(a)
⇒

(

u(x′)− u(x) ≥ u(y′)− u(y)
)

⇐
(b)
⇒

(

u
≫
(x′)− u

≫
(x) ≫ u

≫
(y′)− u

≫
(y), for all (≫) ∈ E(x)

)

,

where (a) is by Claim 5(a), and (b) is by the Homogeneous Dushnik-Miller Theorem.
✷

We will prove Proposition 3.1 now, because the proof is simple and does not require any
further material.

Proof of Proposition 3.1. Let f : (X ,�)−→(X ′,�′) be an embedding, where (X ′,�′)
is solvable and semidivisible. Lemma A.3 then yields an embedding g : X ′−→X ′′,
where (X ′′,�′′) is perfect, solvable, and semidivisible. Thus, g ◦ f : X−→X ′′ is also an
embedding. Proposition A.5(a) say that (X ′′,�′′) has a strong utility function. Thus,
Lemma A.2(a2) implies that (X ,�) also has a strong utility function. ✷

Now we come to the proof of our main result.

Proof of Theorem 2.1. “=⇒” Let U be a collection of utility functions yielding a
multiutility representation for (�). Thus, each element of U is a function u : X−→Ru,
where (Ru,+, 0u, >u) is some linearly ordered abelian group.

Let X ′ := X ×
∏

u∈U Ru. Let U
′ := {∗} ⊔ U . A generic element of X ′ will be written

as x = (xu)u∈U ′ , where x∗ ∈ X and xu ∈ Ru for all u ∈ U . Define the difference preorder
(�′) on X ′ as follows. For all x1,x2,y1,y2 ∈ X ′, stipulate that

(

(x1
❀ x2) �′ (y1

❀ y2)
)

⇐⇒
(

x2
u − x1

u ≥u y2u − y1u, for all u ∈ U
)

. (A17)

Now define f : X−→X ′ by setting f(x) := [x, (u(x))u∈U ] for all x ∈ X . Then f is
injective, because f(x)∗ = x for all x ∈ X . Furthermore, f is an embedding of (X ,�)
into (X ′,�′), as can be seen by combining statements (3) and (A17).

It is easy to check that (X ′,�′) is solvable (because each Ru is a group). It remains to
show that (X ′,�′) is divisible. Suppose that x0,x1,x2, . . . ,xN ∈ X ′ is a (�′)-standard
sequence. For any u ∈ U , we have

(

(x0
❀ x1) ≈′ (x1

❀ x2) ≈′ · · · ≈′ (xN−1
❀ xN)

)

(a)
=⇒

(

x1
u − x0

u = x2
u − x1

u = · · · = xN
u − xN−1

u

)

.

Thus, xN
u − x0

u = xN
u − xN−1

u + xN−1
u − xN−2

u + · · ·+ x2
u − x1

u + x1
u − x0

u

= N ·
(

x1
u − x0

u

)

. (A18)
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Thus,
(

(x0
❀ xN) �′ (x0

❀ x0)
)

⇐
(b)
⇒

(

xN
u − x0

u ≥ 0 for all u ∈ U
)

⇐
(c)
⇒

(

N ·
(

x1
u − x0

u

)

≥ 0 for all u ∈ U
)

⇐
(d)
⇒

(

x1
u − x0

u ≥ 0 for all u ∈ U
)

⇐
(e)
⇒

(

(x0
❀ x1) �′ (x0

❀ x0)
)

.

Here, (a), (b) and (e) are by definition (A17), (c) is by equation (A18), and (d) is
because, for all u ∈ U , the group Ru is isolated, because it is linearly ordered.

“⇐=” Suppose there exists an embedding f : X−→X ′, where (X ′,�′) is solvable and
divisible. Lemma A.3 then yields an embedding g : X ′−→X ′′, where (X ′′,�′′) is perfect,
solvable and divisible. Thus, g ◦ f : X−→X ′′ is also an embedding. Proposition A.5(b)
say that (X ′′,�′′) has a multiutility representation. Thus, Lemma A.2(b) implies that
(X ,�) also has a multiutility representation. ✷

The proof of Proposition 2.4 requires some further lemmas.

Lemma A.6 Let (�) be a difference preorder on X . Let x0, x1, . . . , xN , y0, y1, . . . , yN ∈ X .

(a) If (xn−1 ❀ xn) � (yn−1 ❀ yn) for all n ∈ [1 . . . N ], then (x0 ❀ xN) � (y0 ❀ yN).

(b) Suppose (�) is solvable, and let α : [1 . . . N ]−→[1 . . . N ] be a permutation. If
(xn−1 ❀ xn) � (yα(n)−1 ❀ yα(n)) for all n ∈ [1 . . . N ], then (x0 ❀ xN) � (y0 ❀ yN).

Proof. Part (a) is by inductive application of (CAT). Part (b) is a more complicated
argument, which also involves (CAT*); see Pivato (2012c) for details. ✷

Let (�) and (�′) be two difference preorders on the same set X . We say (�′) extends (�)
if, for all x0, x1, y0, y1 ∈ X , we have

(

(x0 ❀ x1) � (y0 ❀ y1)
)

=⇒
(

(x0 ❀ x1) �
′ (y0 ❀ y1)

)

. (A19)

Lemma A.7 Let (�) be a solvable difference preorder on X .

(a) There exists a solvable, divisible difference preorder (�
†

) on X which extends (�).

(b) Let Y ⊆ X be a subset, and suppose (�) is inductive and divisible when restricted
to Y. Then (�

†

) agrees with (�) on Y.

Proof. (a) For any x0, x1 ∈ X , solvability allows us to inductively build an infinite sequence
{x2, x3, x4, . . .} ⊆ X such that

(x0 ❀ x1) ≈ (x1 ❀ x2) ≈ (x2 ❀ x3) ≈ · · ·

Thus, for any N ∈ N, the sequence {x0, x1, . . . , xN} is a standard sequence. Observe
that, if {x′

2, x
′
3, x

′
4, . . .} is another sequence constructed by this recipe, then Lemma
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A.6(a) yields (x0 ❀ xN) ≈ (x0 ❀ x′
N) for all N ∈ N. By a slight abuse of notation, we

will use the notation “N · (x0 ❀ x1)” to mean any member of the (�)-indifference class
of (x0 ❀ xN).

Now we define the relation (�
†

) as follows. For any x0, x1, y0, y1 ∈ X , stipulate that

(

(x0 ❀ x1) �
†

(y0 ❀ y1)
)

⇐⇒
(

N · (x0 ❀ x1) � N · (y0 ❀ y1) for some N ∈ N
)

.

(A20)
This relation extends (�) (to verify formula (A19), set N = 1 in (A20)). It remains to
show that (�

†

) itself a solvable, divisible difference preorder on X .

Proof of (INV). Let x0, x1, y0, y1 ∈ X , and define the standard sequences {x2, x3, . . .} and
{y2, y3, . . .} as above. Suppose (x0 ❀ x1) �

†

(y0 ❀ y1). Then (x0 ❀ xN) � (y0 ❀ yN)
for some N ∈ N. Thus, (INV) implies that (xN ❀ x0) � (yN ❀ y0). It is easy to see
that (xN ❀ x0) ≈ N · (x1 ❀ x0) and (yN ❀ y0) ≈ N · (y1 ❀ y0). Thus, we conclude
that (x1 ❀ x0) �

′ (y1 ❀ y0), as desired.

Proof of (CAT). Let x, x′, x′′, y, y′, y′′ ∈ X , and suppose that (x ❀ x′) �
†

(y ❀ y′) and
(x′

❀ x′′) �
†

(y′ ❀ y′′). We must show that (x ❀ x′′) �
†

(y ❀ y′′). Let x0 := x,
x1 := x′, y0 := y and y1 := y′, and let {x0, x1, x2, x3, . . .} and {y0, y1, y2, y3, . . .} be
the standard sequences generated by the transitions (x ❀ x′) and (y ❀ y′). Thus, if
(x ❀ x′) �

†

(y ❀ y′), then there exists some N ∈ N such that

(x0 ❀ xN) � (y0 ❀ yN). (A21)

Let x′
0 := x′, x′

1 := x′′, y′0 := y′ and y′1 := y′′, and let {x′
0, x

′
1, x

′
2, x

′
3, . . .} and {y′0, y

′
1, y

′
2, y

′
3, . . .}

be the standard sequences generated by the transitions (x′
❀ x′′) and (y′ ❀ y′′). Thus,

if (x′
❀ x′′) �

†

(y′ ❀ y′′), then there exists some M ∈ N such that

(x′

0 ❀ x′

M) � (y′0 ❀ y′M). (A22)

Finally, let x′′
0 := x, x′′

1 := x′′, y′′0 := y and y′′1 := y′′, and let {x′′
0, x

′′
1, x

′′
2, x

′′
3, . . .} and

{y′′0 , y
′′
1 , y

′′
2 , y

′′
3 , . . .} be the standard sequences generated by the transitions (x ❀ x′′) and

(y ❀ y′′). To show that (x ❀ x′′) �
†

(y ❀ y′′), we must find some L ∈ N such that

(x′′

0 ❀ x′′

L) � (y′′0 ❀ y′′L). (A23)

For every ℓ ∈ N, solvability yields elements x′′

ℓ+ 1
2

and y′′
ℓ+ 1

2

in X such that

(x′′

ℓ ❀ x′′

ℓ+ 1
2
) ≈ (x ❀ x′) and (y′′ℓ ❀ y′′

ℓ+ 1
2
) ≈ (y ❀ y′), (A24)

for all ℓ ∈ N. Since (x′′

ℓ ❀ x′′

ℓ+1) ≈ (x ❀ x′′) and (y′′ℓ ❀ y′′ℓ+1) ≈ (y ❀ y′′) by
construction, it then follows from a straightforward application of (INV), (CAT) and
(A24) that

(x′′

ℓ+ 1
2
❀ x′′

ℓ+1) ≈ (x′
❀ x′′) and (y′′

ℓ+ 1
2
❀ y′′ℓ+1) ≈ (y′ ❀ y′′), (A25)
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for all ℓ ∈ N. Now, by construction of the standard sequences {xn}
∞
n=1, {yn}

∞
n=1, {x

′
n}

∞
n=1,

and {y′n}
∞
n=1, the formulae (A21) and (A22) imply that

(xkN ❀ x(k+1)N) � (ykN ❀ y(k+1)N) and (x′

kM ❀ x′

(k+1)M) � (y′kM ❀ y′(k+1)M),

for all k ∈ N. Thus, applying Lemma A.6(a), we obtain

(x0 ❀ xM N) � (y0 ❀ yM N) (A26)

and (x′

0 ❀ x′

M N) � (y′0 ❀ y′M N). (A27)

Now, define x∗
0 := xM N and y∗0 := yM N . Using solvability, we can construct two more

standard sequences {x∗
0, x

∗
1, x

∗
2, . . . , x

∗
M N} and {y∗0, y

∗
1, y

∗
2, . . . , y

∗
M N} such that, for all

k ∈ [1 . . .M N ], we have

(x∗

k−1 ❀ x∗

k) ≈ (x′
❀ x′′) and (y∗k−1 ❀ y∗k) ≈ (y′ ❀ y′′). (A28)

By construction, we also have (x′

k−1 ❀ x′

k) ≈ (x′
❀ x′′) and (y′k−1 ❀ y′k) ≈ (y′ ❀ y′′).

Thus, applying Lemma A.6(a) to the relations (A28), we deduce that

(x∗

0 ❀ x∗

M N) ≈ (x′

0 ❀ x′

M N) and (y∗0 ❀ y∗M N) ≈ (y′0 ❀ y′M N). (A29)

Recall that x∗
0 := xM N and y∗0 := xM N . Thus, (A27) and (A29) together yield (xM N ❀

x∗
M N) � (yM N ❀ y∗M N). Combining this with (A26) via (CAT), we obtain

(x0 ❀ x∗

M N) � (y0 ❀ y∗M N). (A30)

Now, by construction, (xk ❀ xk+1) ≈ (x ❀ x′) and (yk ❀ yk+1) ≈ (y ❀ y′) for all
k ∈ N. Thus, (A24) implies that

(x′′

ℓ ❀ x′′

ℓ+ 1
2
) ≈ (xk ❀ xk+1) and (y′′ℓ ❀ y′′

ℓ+ 1
2
) ≈ (yk ❀ yk+1), (A31)

for any ℓ, k ∈ N. Likewise, combining relation (A25) and (A28) yields

(x′′

ℓ+ 1
2
❀ x′′

ℓ+1) ≈ (x∗

k−1 ❀ x∗

k) and (y′′
ℓ+ 1

2
❀ y′′ℓ+1) ≈ (y∗k−1 ❀ y∗k) (A32)

for any ℓ, k ∈ N. Thus,

(x0 ❀ x∗

M N) = (x0 ❀ xM N ❀ x∗

M N)

= (x0 ❀ x1 ❀ x2 ❀ · · · ❀ xM N = x∗

0 ❀ x∗

1 ❀ x∗

2 ❀ · · · ❀ x∗

M N)

≈
(∗)

(x′′

0 ❀ x′′
1
2
❀ x′′

1 ❀ x′′

1+ 1
2
❀ x′′

2 ❀ x′′

2+ 1
2
❀ · · · ❀ x′′

M N−
1
2
❀ x′′

M N)

= (x′′

0 ❀ x′′

M N). (A33)

Here, (∗) is by applying Lemma A.6(b), and using relations (A31) and (A32). By a very
similar argument, we deduce that

(y0 ❀ y∗M N) ≈ (y′′0 ❀ y′′M N). (A34)

Combining formulas (A30), (A33), and (A34), we finally obtain

(x′′

0 ❀ x′′

M N) � (y′′0 ❀ y′′M N). (A35)

Since {x′′
n}

∞
n=1 and {y′′n}

∞
n=1 are the (infinite) standard sequences generated by the tran-

sitions (x ❀ x′′) and (y ❀ y′′), formula (A35) can be rewritten as N M · (x ❀ x′′) �
N M · (y ❀ y′′). Thus, (x ❀ x′′) �

†

(y ❀ y′′), as desired.
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Proof of (CAT*). Similar to the proof of (CAT).

Solvable. Let x0, x1, y0 ∈ X . Since (�) is solvable, there exists y1 ∈ X such that
(x0 ❀ x1) ≈ (y0 ❀ y1). Since (�

†

) extends (�), it follows that (x0 ❀ x1) ≈
†

(y0 ❀ y1).
Thus, (�

†

) is also solvable.

Divisible. Let x0, x1 ∈ X , and let {xn}
∞
n=1 be an infinite (�)-standard sequence gener-

ated by the transition (x0 ❀ x1). Thus, (xn ❀ xn+1) ≈ (x0 ❀ x1) for all n ∈ N. Since
(�

†

) extends (�), it follows that (xn ❀ xn+1) ≈
†

(x0 ❀ x1) for all n ∈ N. Thus, {xn}
∞
n=1

is also an infinite (�
†

)-standard sequence for the transition (x0 ❀ x1). Now, to verify
that (�

†

) is divisible, suppose that (x0 ❀ xN) �
†

(x0 ❀ x0) for some N ∈ N; we must
show that (x0 ❀ x1) �

†

(x0 ❀ x0).

Lemma A.6(a) implies that the subsequence {x0, xN , x2N , x3N , . . .} is a (�)-standard
sequence for the transition (x0 ❀ xN). Meanwhile {x0, x0, x0, . . .} can serve as the
standard sequence for the transition (x0 ❀ x0). By definition (A20), if (x0 ❀ xN) �

†

(x0 ❀ x0), then there is some k ∈ N such that (x0 ❀ xkN) � (x0 ❀ x0). But then it
follows that (x0 ❀ x1) �

†

(x0 ❀ x0), again by definition (A20).

Proof of part (b). Let x0, x1, y0, y1 ∈ Y . Since Y is inductive, it contains an infinite
standard sequence {xn}

∞
n=1 generated by the transition (x0 ❀ x1), and it also contains

an infinite standard sequence {yn}
∞
n=1 generated by the transition (y0 ❀ y1). We have:

(

(x0 ❀ x1) �
†

(y0 ❀ y1)
)

⇐
(∗)
⇒

(

(x0 ❀ xN) � (y0 ❀ yN) for some N ∈ N
)

⇐
(⋄)
⇒

(

(x0 ❀ x1) � (y0 ❀ y1)
)

,

as desired. Here, (∗) is by defining formula (A20), and (⋄) is because (Y ,�) is divisible,
and the standard sequences {xn}

∞
n=1 and {yn}

∞
n=1 are contained in Y . ✷

Proof of Proposition 2.4. “=⇒” If (�) admits a multiutility representation, then Theorem

2.1 implies it can be embedded in a divisible, solvable system. Thus, (�) itself is divisible

and semisolvable.

“=⇒” Suppose (X ,�) is semisolvable, divisible, and inductive. Then there exists
an embedding f : X−→X ′, where (X ′,�′) is solvable. Lemma A.7(a) yields a solvable,
divisible difference preorder (�

†

) on X ′ which extends (�′).

Let Y := f(X ) ⊆ X . Then (�′) is inductive and divisible when restricted to Y , because
(�) is inductive and divisible on X , and f is an isomorphism from (X ,�) to (Y ,�′).
Thus, Lemma A.7(b) says that (�

†

) agrees with (�′) on Y . Thus, f : (X ,�)−→(X ′,�
†

)
is also an embedding. Thus, (X ,�) can be embedded in a divisible, solvable system.
Thus, Theorem 2.1 says (X ,�) has a multiutility representation. ✷
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Proof of Proposition 4.1. It suffices to show this in the case |X | = 24. So, let X :=
{x0, x1, . . . , x7, y0, y1, . . . , y7, z0, z1, . . . , z7}. Define the preorder (�) on X ×X as follows.

Begin with all |X |2 = 576 “trivial” relations implied by Lemma A.1. To this set, add
the following relations, for all n,m, n′,m′ ∈ [0 . . . 7]:

(a) (xn ❀ xm)≈(xn′ ❀ xm′) and (yn ❀ ym)≈(yn′ ❀ ym′) and (zn ❀ zm)≈(zn′ ❀ zm′)

if and only if n−m = n′ −m′.

(b) (xn ❀ xm) ≻ (yn′ ❀ ym′) if and only if n−m = n′ −m′ > 0 and is divisible by 3.

(c) (yn ❀ ym) ≻ (zn′ ❀ zm′) if and only if n−m = n′ −m′ > 0 and is divisible by 5.

(d) (z0 ❀ z7) ≻ (x0 ❀ x7).

Also add the (INV)-reversals of the sets of relations described in (b), (c) and (d) (the
set (a) is already closed under (INV)). Observe that the four relation sets described in
(a)-(d) are each separately closed under the application of (CAT) and (CAT*). Also,
there is no way to combine a relation from one of these sets (e.g. (b)) with one from
another (e.g. (c)) using (CAT) or (CAT*). Thus, the entire system is closed under
(CAT) and (CAT*); thus, it is a difference preorder. We claim it is not Szpilrajn.

By contradiction, suppose that (�
c
) is a complete difference preorder on X which

extends and refines (�). Then (a), (b) and (CAT) imply that (x0 ❀ x1) ≻ (y0 ❀ y1).

Likewise, (a), (c) and (CAT) imply that (y0 ❀ y1) ≻ (z0 ❀ z1). Finally, (a), (d) and
(CAT) imply that (z0 ❀ z1) ≻ (x0 ❀ x1). Thus, we have an cycle of strict preferences,
yielding a contradiction. It follows that (�) is not Szpilrajn. Thus, (�) cannot have any

strong utility functions. ✷
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Yılmaz, Ö., 2008. Utility representation of lower separable preferences. Math. Social Sci. 56 (3), 389–394.

27


