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Stochastic stability in the Scarf economy

Antoine Mandel and Herbert Gintis∗

October 16, 2012

Abstract

We present a mathematical model for the analysis of the bargaining games based
on private prices used by Gintis to simulate the dynamics of prices in exchange
economies, see [Gintis 2007]. We then characterize, in the Scarf economy, a
class of dynamics for which the Walrasian equilibrium is the only stochastically
stable state. Hence, we provide dynamic foundations for general equilibrium for
one of the best-known example of instability of the tâtonement process.

Key Words: General Equilibrium, Exchange economies, Bargaining Games,
Stochastic Stability.

JEL Codes: D51, C62, C63, C78

1 Introduction

The Scarf economy [Scarf 1960] is the paradigmatic example of the failure of the
tâtonement process to provide a generically valid process for the convergence of
an economy to its general equilibrium. In a series of recent contribution (see
[Gintis 2007], [Gintis 2012]), Gintis has revisited this issue of “walrasian dynam-
ics” in the Scarf economy using computer simulations where agents repeatedly
perform the following sequence of operations: they receive their initial endow-
ment, engage in bilateral trades on the basis of private prices, consume, and
update their private prices on the basis of the utility these prices yielded during
the period. In other words, [Gintis 2012] investigates evolutionary dynamics in
bargaining games played in the Scarf economy by agents who use private prices
as strategies. He reports surprising results of convergence to equilibrium. The
aim of this note is to provide an analytical counterpart to these results.

Namely, we use the notion of stochastic stability (see [Peyton-Young 1993])
to characterize the asymptotic properties of a stylized version of Ginitis’ model.
We show that the general equilibrium is the only stochastically stable state of
this model, what implies that, independently of the initial conditions, all the

∗Mandel is with Paris School of Economics, Université Paris 1 and CNRS, Gintis is with
Central European University and Santa Fe Institute.
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agents should eventually adopt the equilibrium price and obtain equilibrium
allocation.

Our results mainly builds on the assumption that out-of-equilibrium trading
is efficient in the same sense as in the Hahn process (see [Negishi and Hahn 1962]):
after trade there are not both unsatisfied suppliers and unsatisfied demanders
for any given good. We also assume that agents strategically restrict their out-
of-equilibrium trade whenever it is profitable to do so. In this setting, it turns
out that price movement towards equilibrium are always favorable to a major-
ity of agents. As “price-setting power” is uniformly distributed, given that each
agent has its own private price to update, this progressively leads to the general
adoption of the equilibrium price.

Hence, the main contribution of the paper is to explain the behavior observed
in Gintis’ simulations. The formalism we develop might also pave the way for
the proof of more general results of convergence to general equilibrium in evo-
lutionary models, for which related contributions (see [Serrano and Volij 2008],
[Vega-Redondo 1997]) provide evidence.

The paper is organized as follows: in section 2, we explicit the markov chain
structure of Gintis evolutionary bargaining models and show they are models of
evolution with noise in the sense of [Ellison 2000]. In section 3, we characterize
out-of-equilibrium trading in the Scarf economy and give sufficient conditions on
the price updating mechanism to ensure the stochastic stability of equilibrium.
Section 4 offers our conclusion.

2 Evolutionary dynamics in exchange economies

We aim at investigating evolutionary dynamics in exchange economies where
each agent carries a private vector of prices (i.e has a private valuation of goods),
uses these private prices in order to determine acceptable trades, update them
by imitating those of peers who were more successful in the trading process, and
randomly mutate them in some instances.

More precisely, let us consider an exchange economy with L goods1, N types
of agents 2 and M agents of each type3. All the agents have Q := RL+ as
consumption set. Agents of type i are characterized by an utility function ui :
Q→ R and a vector of initial endowment ωi ∈ Q. Moreover, agent (i, j) (the jth
agent of type i) is endowed with a normalized vector pi,j of private prices chosen

in a finite subset P of the unit simplex of RL+, S := {p ∈ RL+ |
∑L
`=1 p` = 1}.

The population of agents is then characterized by a vector π ∈ Π = PM×N .
Repeated bilateral trades between agents define a trading process, which

allocates as a function of agents private prices the total resources of the economy.
This process might involve some randomness in order to cope with rationing in
out of equilibrium situations. In all generality, we can represent the trading
process by a transition measure T from Π to Ξ which associates to a population

1indexed by ` = 1 · · ·L
2indexed by i = 1 · · ·N
3indexed by j = 1 · · ·M
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of prices π ∈ Π, a probability distribution Tπ on the set of allocations4 Ξ defined
as:

Ξ = {ξ ∈ QN×M |
N∑
i=1

M∑
j=1

ξi,j = M
N∑
i=1

ωi}, (1)

where ξi,j represents the allocation to the jth agent of type i.
Private prices are then updated through an imitation process: agents imitate

peers of the same type taking into consideration the utility gained through
trading. In all generality, we can represent this imitation process as associating
to a population of prices π ∈ Π and to an allocation ξ ∈ Ξ, a probability
distribution I(π,ξ) on Π (which gives the distribution of prices after updating).

We are then concerned with the dynamics of private prices generated by the
sequential iteration of trading and imitation processes. That is the process in
which initial endowments are reinitialized at the beginning of each step, agents
trade according to their private prices and update these as a function of the
utility gained. This corresponds to the Markovian dynamics on Π defined by
the transition matrix F such that:

Fπ,π′ =

∫
ξ ∈Ξ

I(π,ξ)(π
′) dTπ(ξ) (2)

If agents then randomly and independently mutate (i.e randomly choose a
new price in P ) with probability ε > 0, the dynamics are modified according to:

Fεπ,π′ =

∫
ρ ∈Π

Rερ,π′dFπ,ρ =
∑
ρ∈Π

Rερ,π′Fπ,ρ (3)

where Rε(ρ, π′) = (1 − ε)MN−δ(ρ,π′) × (
ε

|P | − 1
)δ(ρ,π

′) and δ(ρ, π′) denotes the

number of mutations, that is the cardinal of the set {(i, j) | ρi,j 6= π′i,j}.

The family (Fε)ε≥0 then is a model of evolution in the sense of [Ellison 2000]),
that is satisfies the following conditions:

1. Fε is ergodic for each ε > 0,

2. Fε is continuous in ε and F0 = F ,

3. there exists5 a function c : Pn×m × Pn×m → N such that for all π, π′ ∈

Pn×m, limε→0

Fε(π,π′)

εc(π,π′)
exists and is strictly positive.

Condition (1) implies in particular that for each ε > 0, Fε has a unique
invariant distribution ψε. A population π ∈ Pn×m is then called stochastically
stable if limε→0 ψ

ε(π) > 0.

4We shall assume that Ξ is endowed with the Borel σ-algebra
5This last point follows form the fact that the coefficients of Fε

(π,π′) are polynomia in ε.
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This notion of stochastic stability can be used for the analysis of the stability
of the equilibria of the underlying exchange economy thanks to the identification
of an equilibrium price p with the population π such that every agent uses price
p (that is such that for all (i, j), one has πi,j = p). The equilibrium associated
with the price p can then be called stochastically stable if π is. The interesting
case is this where π is the only stochastically stable population which implies
that limε→0 ψ

ε(π) = 1 and that for vanishingly small perturbations the process
eventually settles in π independently of the initial conditions, in other words
converges to equilibrium.

3 Stochastic stability in the Scarf Economy

3.1 The Economy

We shall investigate the stochastic stability of equilibrium in the [Scarf 1960]
economy, which is probably the best known example of non-stability of the
tâtonnement process. In this economy, there are three goods and three type of
agents whose respective utility, endowment and demand are:

u1(x1, x2, x3) = min(x1, x2), ω1 = (1, 0, 0), d1(p1, p2, p3) =
p1

p1 + p2
(1, 1, 0)

u2(x1, x2, x3) = min(x2, x3), ω2 = (0, 1, 0), d2(p1, p2, p3) =
p2

p2 + p3
(0, 1, 1)

u3(x1, x2, x3) = min(x1, x3), ω3 = (0, 0, 1), d3(p1, p2, p3) =
p3

p1 + p3
(1, 0, 1)

This economy has an unique equilibrium for the price p = (
1

3
,

1

3
,

1

3
). Whereas, it

is well-known that the law of demand does not hold and that the tâtonnement
process does not converge but follows periodic orbits (see [Negishi 1962]), simu-
lations of evolutionary dynamics in the Scarf economy by [Gintis 2007] suggest
convergence to equilibrium might hold for dynamics of the kind introduced in
the preceding section. Accordingly, we provide below a proof of the stochastic
stability of equilibrium in a stylized version of [Gintis 2007] model.

3.2 Out-of-equilibrium trading

We first characterize the outcome of out-of-equilibrium trading in an economy
with a single agent of each type and a public price. This characterization builds
on two premises. First, we shall assume that trading is efficient in the sense put
forward by the Hahn process (see [Negishi and Hahn 1962] and [Fisher 1983]
for an in-depth discussion): after trade there are not both unsatisfied suppliers
and unsatisfied demanders for any given good. Second, as in [Gintis 2007],
we consider that an agent allocates its initial endowment in priority to the
fulfillment of its own demand at the expense of unfulfilled ‘outside” demand.
Hence agents strategically restrict their out-of-equilibrium trade in order to
maximize their own utility.
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In the Scarf economy, the aggregate excess demand at a price (p1, p2, p3) is
given by

Z(p1, p2, p3) = (
p1

p1 + p2
+

p3

p1 + p3
−1,

p1

p1 + p2
+

p2

p2 + p3
−1,

p2

p2 + p3
+

p3

p1 + p3
−1)

and one has:

• Excess demand for good 1 if
p1

p1 + p2
+

p3

p1 + p3
> 1 or equivalently p3 > p2.

• Excess demand for good 2 if
p1

p1 + p2
+

p2

p2 + p3
> 1 or equivalently p1 > p3.

• Excess demand for good 3 if
p2

p2 + p3
+

p3

p1 + p3
> 1 or equivalently p2 > p1.

The outcome of trading at price (p1, p2, p3), is then completely determined
by the assumptions that trading is efficient and that agents strategically restrict
their out-of-equilibrium trade. There are essentially three types of situation:

1. The price is such that there is rationing on two markets: for example, p
satisfies p2 > p1 > p3, so that there is rationing on good 2 and 3 markets.
In this setting, agent 3 won’t be rationed because he can strategically
restrict its sales in order to fulfill its own demand of good 3 and because
good 1 is not rationed at all. Hence, the trading process shall yield agent 3

the allocation
p3

p1 + p3
(1, 0, 1). Agent 2 will then be rationed in good 3, as

he might only be allocated the remaining
p1

p1 + p3
units of good 3, rather

than the
p2

p2 + p3
units he demands. Consequently, agent 2 has no interest

in retaining more than
p1

p1 + p3
units of good 2 and can supply

p3

p1 + p3
units of that good to agent 1. There are then two cases:

(a) If
p1

p1 + p2
≤ p3

p1 + p3
, that is p2

1 ≤ p3p2, agent 1 is rationed and the

agents’ allocations and utilities are given by:

agent allocation utility

1
p1

p1 + p2
(1, 1, 0)

p1

p1 + p2

2 (
p2

p1 + p2
− p3

p1 + p3
,

p2

p1 + p2
,

p1

p1 + p3
)

p1

p1 + p3

3
p3

p1 + p3
(1, 0, 1)

p3

p1 + p3

(b) If
p1

p1 + p2
>

p3

p1 + p3
, that is p2

1 > p3p2, both agents 1 and 2 are

rationed and the agents’ allocations and utilities are given by:

5
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agent allocation utility

1 (1− p2

p1

p3

p1 + p3
,

p3

p1 + p3
, 0)

p3

p1 + p3

2 ((
p2

p1
− 1)

p3

p1 + p3
,

p1

p1 + p3
,

p1

p1 + p3
)

p1

p1 + p3

3
p3

p1 + p3
(1, 0, 1).

p3

p1 + p3

2. The price is such that there is rationing on a single market, for example
p satisfies p1 > p2 > p3, so that there is rationing on good 2 market only.
In this setting, agent 3 won’t be rationed because there is no rationing in
either of the good he demands, agent 2 won’t be rationed either because
there is no rationing in good 1 and he can strategically restrict its sales
of good 2 in order to fulfill its own demand. The agents’ allocations and
utilities are given by:

agent allocation utility

1 (
p1

p1 + p3
,

p3

p2 + p3
,

p1

p1 + p3
− p2

p2 + p3
)

p3

p2 + p3

2 (
p2

p2 + p3
(0, 1, 1)

p2

p2 + p3

3
p3

p1 + p3
(1, 0, 1)

p3

p1 + p3

Up to a permutation of indices, the other cases are similar. There is either
rationing on two markets (if p3 > p2 > p1 or p1 > p3 > p2,) or rationing on a
single market (if p3 > p1 > p2 or p2 > p3 > p1). One can then define the out-
of-equilibrium allocation rule in the Scarf economy as the mapping x : P → Q3

such that:

6
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x1(p1, p2, p3) =



(1− p2

p1

p3

p1 + p3
,

p3

p1 + p3
, 0) if p2 > p1 > p3 and p2

1 > p3p2

(
p1

p1 + p3
,

p3

p2 + p3
,

p1

p1 + p3
− p2

p2 + p3
) if p1 > p2 > p3

(
p1

p3 + p1
,

p2

p2 + p1
,

p1

p3 + p1
− p2

p3 + p2
) if p1 > p3 > p2 and p2

3 > p2p1

(
p3

p3 + p2
,

p3

p3 + p2
, (
p1

p3
− 1)

p2

p3 + p2
) if p1 > p3 > p2 and p2

3 ≤ p2p1

p1

p1 + p2
(1, 1, 0) otherwise.

x2,σ(i)(p1, p2, p3) = x1,i(pσ(1), pσ(2), pσ(3)) where σ(1) = 2, σ(2) = 3, σ(3) = 1,

x3,τ(i)(p1, p2, p3) = x1,i(pτ(1), pτ(2), pτ(3)) where τ(1) = 3, τ(2) = 1, τ(3) = 2,
(4)

3.3 Trading process for a population of agents

We now want to define the outcome of out-of-equilibrium trading for a popula-
tion of agents using private prices. In Gintis’ model, agents assess the value of
trades using their private prices and perform those which have a non-negative
value. However, tracking all such possible trades lead to excessive combinatorial
complexity. In order to provide a parsimonious analysis, we rather consider the
benchmark situation where agents only trade with peers using the same price.
This restriction in fact discards “lucky” trades which would increase the value
of one’s stock. It is also standard in the non-tâtonnement literature (see e.g
[Fisher 1983]).

An alternative interpretation of this restriction of trading to peers using the
same price is to consider that different market places or trading posts coexist,
in each of which exchanges are performed according to one price, and that the
private price of an agent is a marker of the market he is “affiliated” to. The
choice of a private price by an agent can then be seen as a form of voting with
one’s feet for a set of exchange ratios.

Formally, we place ourselves in the framework of section 2, with N = 3, utili-
ties and endowments being those of the Scarf economy and we assume P contains

the equilibrium price p = (
1

3
,

1

3
,

1

3
). We also let µi(π, p) denote the number of

agents of type i using price p in the population π, µ(π, p) =
∑N
i=1 µi(π, p)

denotes the total number of agents using price p in the population π, and
µ(π, p) := min(µ1(π, p), µ2(π, p), µ3(π, p)) denotes the minimal number of agents
using price p among the different types in the population π.

In this setting the assumptions that agents only trade with peers using the

7
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same price and that they strategically restrict their trades amount to consider
that agents of type i using price p collectively offer µi(π, p)(ωi − xi(p)) units of
good i to their peers of other types using price p. To reduce the combinatorial
complexity of the analysis, we shall restrict attention to the simplest allocations
consistent with these constraints, namely those where µ(π, p) among the agents
using price p receive the allocation x(p), while the remaining retain their initial
allocation and do not trade. The random component of the trading process
is hence restricted to the designation of trading and non-trading agents. This
amounts to assume that for all population π ∈ Π and type of agent i6, one has:

Tπ

ξ ∈ Ξ |
card{j | πi,j = p ∧ ξi,j = xi(p)} = µ(π, p)
card{j | πi,j = p ∧ xi,j = xi(p)} +
card{j | πi,j = p ∧ ξi,j = ωi} = µi(π, p)

 = 1 (I)

We hence obtain a simplified representation of the trading process of [Gintis 2007],
by assuming that trading is efficient and takes place only among subgroups con-
sisting of a similar number of agents of each type.

3.4 Imitation process

In order to characterize the imitation process, we have to specify the probability
of the event that the jth agent of type i adopt the price of the j′th agent of
type i′. We denote this event by {(i, j)→ (i′, j′)} and assume that for all pair
of agents (i, j) and (i′, j′), one has:

I(π,ξ) {(i, j)→ (i′, j′)} > 0
⇔

(i) i = i′ and ξi,j 6= ωi and ui(ξi,j) ≤ ui(ξi,j′)
or
(ii) µ(π, πi′,j′) = maxp∈P µ(π, p)
or
(iii) (i, j) = (i′, j′)

(II)

Interpreted in conjunction with assumption (I), condition (i) states that
agents which have traded have a positive probability to copy the prices of a
peer who has been more successful in trading7.

Condition (ii) states that agents always have a positive probability to copy
the most widely used price in the population. This prevents in particular that
the system gets stuck in the extremely inefficient situation where each type of
agent uses a different price.

Condition (iii) states that an agent can conserve his price with some prob-
ability.

6card(E) denotes the cardinal of the set E.
7We could as well assume that all agents can copy a peer’s price but we should then assume

that they compare the utility each price yeilded to agents which have actually traded.

8
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As far as the relationships between agents’ imitation behavior is concerned,
we shall assume there is independent inertia, that is the imitation probabili-
ties are independent. Namely, for all agents (i, j), (i′, j′), (i′′, j′′), (i′′′, j′′′) with
(i, j) 6= (i′′, j′′), one has:

I(π,ξ) {(i, j)→ (i′, j′) ∧ (i′′, j′′)→ (i′′′, j′′′′)} =
I(π,ξ) {(i, j)→ (i′, j′)} × I(π,ξ) {(i′′, j′′)→ (i′′′, j′′′′)} (III)

3.5 Stochastic stability of equilibrium in the Scarf econ-
omy

Note that the population π where each agent use the equilibrium price p (i.e
for all (i, j), πi,j = p) is an invariant distribution of the process F under as-
sumption (II) and that under assumption (I) it can naturally be identified with
the equilibrium of the Scarf economy as the trading process Tπ then allocates
to each agent the corresponding equilibrium allocation with probability one.
Conditions (I), (II) and (III) are in fact sufficient to prove our main result:

Theorem 1 Under conditions (I), (II), and (III), the population π is the only
stochastically stable state of the dynamics (Fε)ε≥0 in the Scarf economy

Proof: The proof mainly builds on [Ellison 2000] radius-coradius theorem,
which makes use of the following notions:

• A path from π ∈ Pn×m to π′ ∈ Pn×m is a finite sequence of states,
π1, · · · , πK ∈ Pn×m, such that π1 = π and πK = π′. The set of paths
from π to π′ is denoted by S(π, π′). The cost of a path (π1, · · · , πK) is
defined as:

c(π1, · · · , πK) =
K−1∑
k=1

c(πk, πk+1) (5)

One can then remark that equation (3) implies that c(π, π′) = 0 whenever
Fπ,π′ > 0, that is whenever there is a positive probability to reach π′ from
π via the unperturbed process, and that c(π, π′) is bounded above by the
number of distinct prices between π and π′, that is c(π, π′) ≤ card {(i, j) |
πi,j 6= π′i,j}.

• The basin of attraction of the population π̄ is the set of initial states from
which the unperturbed Markov process (with transition probability F) con-
verges to π̄ with probability one, that is:

D(π) = {π ∈ Pn×m | lim
T→+∞

FTπ,π = 1} (6)

• The radius r(π) of the population π̄ is then defined as the minimal cost
of a path leaving D(π). That is letting S(π,D(π)c) := ∪π∈D(π)cS(π, π)
denote the set of paths out of D(π), one has:

r(π) = mins∈S(π,D(π)c)c(s) (7)

9
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• Finally, the coradius of π is defined as the maximal cost of a transition to
π

cr(π) = maxπ 6=π mins∈S(π,π)c(s) (8)

Following theorem 1 in [Ellison 2000], in order to prove that π is stochasti-
cally stable, it suffices to prove that its radius if greater than its coradius. We
shall precisely prove that:

r(π) > 3 and cr(π) ≤ 3 (9)

• Let us first prove that cr(π) ≤ 3. Part (ii) of assumption (II) ensures that
there always exists a zero cost path from any population to a uniform one
where each agent uses the same price. So, without loss of generality, we
can restrict attention to populations π such that for all (i, j), πi,j = p.
Moreover as in section (3.2), we can without loss of generality restrict
attention to the cases where p is such that p2 > p1 > p3 or p1 > p2 > p3.

In either cases, one has u1(x1(p)) <
1

2
and u3(x3(p)) <

1

2
.

Let then π′ be such that for all i, π′i,1 = p and and for all j 6= 1, π′i,j =
πi,j = p. One clearly has

c(π, π′) = 3. (10)

Moreover, according to assumption (I), any ξ such that Tπ′(ξ) > 0 should

satisfy u1(ξ1,1) = u1(x1(π′1,1)) = u1(x1(p)) =
1

2
and for j 6= 1 u1(ξ1,j) =

u1(x1(π′1,j)) = u1(x1(p)) <
1

2
, so that for all j 6= 1, u1(ξ1,j) < u1(ξ1,1).

Similarly, one obtains for all j 6= 1, u3(ξ3,j) < u1(ξ3,1).

Let then π′′ be such that for all j, π′′1,j = π′1,j = p, π′′3,j = π′3,j = p and
π′′2,j = π′2,j . Using part (i) of assumption (II), one clearly has

c(π, π′′) = 0 (11)

Finally, as it is clear that µ(π′′, p) = maxp∈P µ(π, p), one has using part
(ii) of assumption (II) that

c(π′′, π) = 0. (12)

Equations (10), to (12) eventually yield:

cr(π) ≤ 3. (13)

This ends the first part of the proof.

• Let us then prove that r(π) > 3 :

– Assumption (II) clearly implies that Fπ,π = 1, so that for any π 6= π,
one has c(π, π) 6= 0. Hence r(π) > 0

10
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– Moreover equation (3) implies that for any π such that c(π, π) ≤ 2,
one has for any p 6= p, µ(π, p) = 0 as well as

∑
p6=p µ(π, p) ≤ 2. Let

us consider (i, j) ∈ such that πi,j 6= p and ξ ∈ Ξ with Tπ(ξ) > 0. As-
sumption (I) implies that ξi,j = ωi. As moreover, one clearly hasn’t
µ(π, πi,j) = maxp∈P µ(π, p), assumption (II) in fact implies that for
any (i′, j′) 6= (i, j), I(π,ξ) {(i, j)→ (i′, j′)} = 0. Hence, any π′ such
that c(π, π′) = 0 must satisfy µ(π′, p) = 0 as well as

∑
p6=p µ(π′, p) ≤

2. By recursion the same can be proven for any population π′′ such
that c(s) = 0 for some s ∈ S(π, π′′). Moreover, part (ii) of assump-
tion (II) ensures that any such π′′ satisfies Fπ′′,π > 0. This clearly
implies that any such π′′ and in particular π belong to D(π). We have
hence proven that r(π) > 2.

– Finally, if π is such that c(π, π) ≤ 3, either one has for any p 6= p,
µ(π, p) = 0 as well as

∑
p6=p µ(π, p) ≤ 3 and one can prove as in

the preceding case that π ∈ D(π), or there exists p 6= p such that
µ(π, p) = 1. Without loss of generality, we can then assume that
for all i π(i, 1) = p and for all j 6= 1, π(i, j) = p. Also, follow-
ing remark (3.2), we can restrict attention to the cases where p is
such that p2 > p1 > p3 or p1 > p2 > p3. In either cases, one

has u1(x1(p)) <
1

2
and u3(x3(p)) <

1

2
whereas one has respectively

u1(x1(p)) =
1

2
and u3(x3(p)) =

1

2
. Assumption (II) then implies that

for any ξ ∈ Ξ with Tπ(ξ) > 0, one has I(π,ξ) {(1, j)→ (1, 1)} = 0 and
I(π,ξ) {(3, j)→ (3, 1)} = 0, although one might have I(π,x){(2, j) →
(2, 1)} > 08. This implies that for any π′ such that c(π, π′) = 0,
one has µ1(π′, p) ≤ 1, µ2(π′, p) ≤ M, and µ3(π′, p) ≤ 1, as well
as µ1(π′, p) ≥ M − 1, and µ3(π′, p) ≥ M − 1. An immediate recur-
sion show the same is true for any π′′ such that c(s) = 0 for some
s ∈ S(π, π′′). Part (ii) of assumption (II) ensures that any such π′′

satisfies Fπ′′,π > 0. This clearly implies that any such π′′ and in
particular π belong to D(π). We have hence proven that r(π) > 3.

This ends the proof.

Basic asymptotic properties of ergodic Markov chains yield a straightfor-
ward interpretation of theorem 1 : as the mutation rate tends towards zero, the
frequency with which the system lies in equilibrium tends towards one.

4 Concluding remarks

We have shown that in a framework where trading is governed by private prices
and strategic behavior, agents who update their private prices by imitation and
random mutation will eventually adopt the equilibrium price (but for vanish-
ingly small perturbations) and obtain their equilibrium allocation in the Scarf

8That is agents of type 2 might adopt price p but not agents of type 1 and 3.
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economy. Hence, we provide some analytical support to the result obtained in
series of simulations performed by Gintis: [Gintis 2007] and [Gintis 2012]. One
should however take note that this result has only been obtained at the expense
of a considerable simplification of Gintis’ model of market exchange. It is also
the case that our results rely crucially on the fact that mutations are drawn from
an uniform distribution and hence the remark in [Fudenberg 1992] is particu-
larly relevant in our setting: “Intuitively, the likelihood that a Wiener process
will be able to “swim upstream” k meters against a deterministic flow depends
both on the distance k and on the strength of the flow, while the probability that
a discrete-time system jumps k or more meters “over the flow” in a single period
depends on k but not on the strength of the flow. This explains the differences
in the generality of the models’ conclusions, and suggests that long-run behavior
may depend on the precise form of the deterministic dynamics in any model
with continuous sample paths.” As a matter of fact, we would conjecture that
our results hold for weaker sets of assumption than those put forward here but
our current results suggest that the problem becomes more and more complex
from the combinatorial point to view as these assumptions are relaxed. Further
investigations are however necessary to determine wether the results presented
here and in [Gintis 2007] and [Gintis 2012] can be turned into the conjecture
that the general equilibrium of an economy always is stochastically stable for a
certain class of evolutionary dynamics.
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