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Abstract

If a player is removed from a game, what keeps the payoff of the remaining players
unchanged? Is it the removal of a special player or its presence among the remaining
players? This article answers this question in a complement study to Kamijo and Kongo
[9]. We introduce axioms of invariance from player deletion in presence of a special player.
In particular, if the special player is a nullifying player (resp. dummifying player), then the
equal division value (resp. equal surplus division value) is characterized by the associated
axiom of invariance plus efficiency and balanced cycle contributions. There is no type of
special player from such a combination of axioms that characterizes the Shapley value.

Keywords: weighted division values, equal division, weighted surplus division values, equal
surplus division, Shapley value, null player, nullifying player, dummifying player, invariance
from player deletion in presence of a special player.

JEL Classification number: C71.

1 Introduction
This article studies the class of cooperative games with transferable utilities (TU-games hence-
forth) and variable player sets. For this class, a natural question to ask is whether eliminating
a player from a game influences the payoff of the other players.

A first interesting way to tackle this problem is investigated by Kamijo and Kongo [9], who
ask the question of which kind of players can be removed from a TU-game in order to preserve the
payoff of the remaining players in the induced sub-game. If the considered value is the Shapley
value (Shapley [12]), then it is known since Derks and Haller [5] that removing null players from a
TU-game, i.e. players with null contribution to coalitions, does not affect the payoff of the other
players. Kamijo and Kongo [9] prove that for the Equal Division value and the Solidarity value
(Nowak and Radzik [10]), two other types of players can be deleted from a TU-game without
altering the payoff of the other players: the proportional players and the quasi-proportional
players, respectively. These types of players are the basis of three corresponding axioms of
invariance. By combining each of these axioms of invariance with Efficiency and Balanced cycle
contributions (see Kamijo and Kongo [8]), the authors provide comparable characterizations of
the Shapley value, the Equal Division and the Solidarity value. Roughly speaking, the Balanced
cycle contributions requires, for any ordering of the players, that the sum of the claims from each
player against his predecessor is balanced with the sum of the claims from each player against
his successor.
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In this article we consider a complementary way to evaluate the influence of removing a
player on the payoff of the remaining players. More specifically, we also explore the consequence
of taking away a player from a TU-game, but we ask the question of which kind of players needs
to be preserved in the sub-game in order to keep the payoff of the remaining players unchanged.
When any player is deleted from a TU-game, we show that if both the original game and the
sub-game contain a nullifying player (resp. a dummifying player), i.e., a player belonging to
coalitions with null (resp. additive) worths only, then the payoff of all remaining players are
not affected if they are computed according to the equal division value (resp. the equal surplus
division value). It turns out that combining each of the corresponding axioms of invariance
with Efficiency and Balanced cycle contributions provides a characterization of both the Equal
Division and Equal Surplus Division values. Such a result is not possible if the presence of a
null player is required: there exists no value satisfying Efficiency and Invariance from a player
deletion in presence of a null player.

Our study offers many insights and enables to connect various articles in the literature.
Firstly, we adopt the general approach of Kamijo and Kongo [9] based on different Q-related

players, which encompass null players, nullifying players, and dummifying players with null
stand-one worths, among other types of players. Under this approach, we provide a necessary
and sufficient condition on the function Q under which there exists a unique value that satisfies
Efficiency, Balanced cycle contributions, and the associated axiom of Invariance from player
deletion in presence of a Q-related player.

Secondly, while the proportional player is newly introduced by Kamijo and Kongo [9], we rest
on the already existing types of nullifying and dummifying players. In fact, among the values
satisfying Efficiency, Additivity and Equal treatment, the Shapley value, the Equal Division
value and the Equal Surplus Division value are the unique values assigning a zero payoff to
null players, a zero payoff to nullifying players and their stand-alone worth to dummifying
players, respectively (see van den Brink [14] and Casajus and Huettner [2]). As such, our
characterizations are closer to the aforementioned characterizations of the Equal Division value
and the Equal Surplus Division value than the characterization of the Equal Division value in
Kamijo and Kongo [9]. On one side, the payoffs recommended by the Shapley value are stabilized
in a sub-game by deleting a specific player while, on the other side, the payoffs specified by the
Equal Division and Equal Surplus Division values are stabilized by preserving a specific player
in a sub-game

Thirdly, our axioms of invariance are also useful to provide characterizations of the so-called
Weighted Division values and Weighted Surplus Division values. A Weighted Division value
splits efficiently the worth achieved by the grand coalition according to an exogenously given
weight vector summing up to unity. Similarly a Weighted Surplus Division value assigns to each
player his stand-alone worth plus an exogenously given share of what remains of the worth of
the grand coalition. Among the efficient and linear values, the class of all Weighted Division
values is characterized by Invariance from a player deletion in presence of a nullifying player,
while the class of all Weighted Surplus Division values is characterized by Invariance from a
player deletion in presence of a dummifying player.

Fourthly, we provide some impossibility results, which complete the comparison with Kamijo
and Kongo [9]. On the one hand, we prove that the Shapley value cannot be characterized
under our approach, in the sense that there does not exist any Q-related player for which the
Shapley value satisfies the associated axiom of Invariance from player deletion in presence of a
Q-related player. On the other hand, we prove that the Equal Surplus Division value cannot be
characterized under the approach of Kamijo and Kongo [9] by using Invariance from dummifying
player deletion. This is a consequence of a more general result showing that within the class of
values satisfying Efficiency and Balanced cycle contributions, if a value satisfies invariance from

2



player deletion in presence of a Q-related for a fixed function Q, then there is no value satisfying
Invariance from Q-related player deletion.

With respect to the close literature, Weighted Division values have been popularized by Kalai
and Samet [7], who introduce and characterize the Weighted Shapley values. See also Radzik
[11] for recent developments. The class of Weighted Division values is studied by van den Brink
[15] and Béal et al. [1]. Other articles studying the Equal Division value and the Equal Surplus
Division value on variable player sets are due to Chun and Park [4] and van den Brink et al.
[13], while van den Brink and Funaki [16] investigate the same values by imposing fixed player
sets.

The rest of the article is organized as follows. Section 2 provides the definitions and notations.
Our axioms of invariance are introduced by means of Q-related players in Section 3, where useful
properties are demonstrated. The characterizations of the Weighted Division values, Weighted
Surplus Division values, Equal Division and Equal Surplus Division values are contained in
Section 4. Section 5 deepens the comparison with Kamijo and Kongo [9] with some impossibility
results. Section 6 concludes.

2 Definitions and notations
Let U ⊆ N be a fixed and infinite universe of players. Denote by U the set of all finite subsets of
U . A TU-game is a pair (N, v) where N ∈ U and v : 2N −→ R such that v(∅) = 0. A non-empty
subset S ⊆ N is a coalition, and v(S) is the worth of the coalition. For any non-empty coalition
S, let s be the cardinality of S. The sub-game of (N, v) induced by S ⊆ N is denoted by (S, v),
where it is obvious that v is restricted to 2S.

The null game (N,0) on N is given by 0(S) = 0 for all S ⊆ N . For (N, v), (N,w) ∈ V
and c ∈ R, the games (N, v + w) and (N, c · v) are given by (v + w)(S) = v(S) + w(S) and
(c · v)(S) = c · v(S) for all S ⊆ N . For ∅ ( T ⊆ N , the game (N, eT ) given by eT (S) = 1 if
S = T and eT (S) = 0 for S 6= T is called the standard game induced by T . For ∅ ( T ⊆ N ,
the game (N, uT ) given by uT (S) = 1 if S ⊇ T and uT (S) = 0 if S 6⊇ T is called the unanimity
game induced by T .

Player i ∈ N is null in (N, v) ∈ V if v(S) = v(S \ {i}) for all S ⊆ N such that S 3 i. Player
i ∈ N is nullifying in (N, v) ∈ V if v(S) = 0 for all S ⊆ N such that S 3 i. Player i ∈ N is
dummifying in (N, v) ∈ V if v(S) =

∑
j∈S v({j}) for all S ⊆ N such that S 3 i. Two players

i, j ∈ N are equal in (N, v) ∈ V if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.
A value on V is a function ϕ that assigns a payoff vector ϕ(N, v) ∈ RN to any (N, v) ∈ V.

We consider the following values. For each N ∈ U , let ∆N :=
{
ωN ∈ RN :

∑
i∈N ωN

i = 1
}
. For

all ω = (ωN : ωN ∈ ∆N)N∈U , define the ω-Weighted Division value WDω given by:

WDω
i (N, v) = ωN

i · v(N) for all (N, v) ∈ V and i ∈ N.

The class of all Weighted Division values is denoted by WD.
The Equal Division value is the weighted division value given by:

EDi(N, v) =
v(N)

n
for all (N, v) ∈ V and i ∈ N.

The ω-Weighted Surplus Division value WSDω is given by:

WSDω
i (N, v) = v({i}) + ωN

i ·
(
v(N)−

∑

j∈N
v({j})

)
for all (N, v) ∈ V and i ∈ N.

The class of all weighted division values is denoted by WSD.
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The Equal Surplus Division value is the weighted surplus division value given by

ESDi(N, v) = v({i}) +
v(N)−∑j∈N v({j})

n
for all (N, v) ∈ V and i ∈ N.

In the definitions of the Weighted Division and Weighted Surplus Division values, the constants
ωN
i , i ∈ N , N ∈ U , are exogenously given, i.e. they coincide for two games (N, v) and (N,w)

associated with the same player set N .
The Shapley value (Shapley [12]) is given by:

Shi(N, v) =
∑

S⊆N\{i}

(n− s− 1)! · s!
n!

·
(
v(S ∪ {i})− v(S)

)
for all (N, v) ∈ V and i ∈ N.

In this article, we invoke the following axioms.

Efficiency For all (N, v) ∈ V,
∑

i∈N ϕi(N, v) = v(N).

Additivity For all (N, v), (N,w) ∈ V, ϕ(N, v + w) = ϕ(N, v) + ϕ(N,w).

Linearity For all (N, v), (N,w) ∈ V and c ∈ R, ϕ(c · v + w) = c · ϕ(v) + ϕ(w).

Equal treatment For all (N, v) ∈ V, all i, j ∈ N who are equal in (N, v), ϕi(N, v) = ϕj(N, v).

Null player For all (N, v) ∈ V, all i ∈ N who is null in (N, v), ϕi(N, v) = 0.

Nullifying player For all (N, v) ∈ V, all i ∈ N who is nullifying in (N, v), ϕi(N, v) = 0.

Dummifying player For all (N, v) ∈ V, all i ∈ N who is dummifying in (N, v), ϕi(N, v) =
v({i}).

Balanced cycle contributions For all (N, v) ∈ V, all ordering (i1, . . . , ip, . . . , in) on N ,

n∑

p=1

(
ϕip

(
N, v

)
− ϕip

(
N \ {ip−1}, v

))
=

n∑

p=1

(
ϕip

(
N, v

)
− ϕip

(
N \ {ip+1}, v

))
,

where i0 = in and in+1 = i1. It can be readily seen that the condition described in Balanced
cycle contributions is equivalent to:

n∑

p=1

ϕip

(
N \ {ip−1}, v

)
=

n∑

p=1

ϕip

(
N \ {ip+1}, v

)
.

The Nullifying player property, the Dummifying player property and Balanced contributions
are introduced by van den Brink [14], Casajus and Huettner [2], and Kamijo and Kongo [9],
respectively.

Proposition 1 (Kamijo and Kongo [9]) If a value ϕ on V satisfies Linearity and Equal treat-
ment, then it satisfies Balanced cycle contributions.
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3 Invariance to player deletion in presence of Q-related
players

The axioms of invariance defined in this section compare the payoff of the players in a TU-game
before and after one of them has been taken away, subject to the presence of a special type of
player. In order to formulate a general class of such axioms, we rely on a definition introduced
in Kamijo and Kongo [9]. Let Q : V −→ R, where Q(∅, v) = 0 for all (∅, v) ∈ V, be a function
which assigns to each TU-game (N, v) ∈ V a real number. Given a function Q and a TU-game
(N, v) ∈ V, player q ∈ N is a Q-related player if v(S ∪ {q}) = Q(S, v) for all S ⊆ N \ {q}.
Observe that if a player q ∈ N is a Q-related player in a game (N, v), then he or she is still
Q-related in the sub-games (S, v), S ( N , S 3 i. Furthermore, v(∅ ∪ {q}) = Q(∅, v) = 0 so that
({q}, v) = ({q},0). The function Q is called U-additive if for all (N, v) ∈ V and all non-empty
S ( N , it holds that Q(N, v) = Q(S, v) + Q(N \ S, v). The function Q is called Null for
one-player null games if Q({i},0) = 0 for all i ∈ U .

A general definition of our axioms of invariance can be stated as follows.

Invariance from player deletion in presence of a Q-related player For all (N, v) ∈ V,
all Q-related player q ∈ N in (N, v), all j ∈ N \{q} and all i ∈ N \{j}, ϕi(N, v) = ϕi(N \{j}, v).

Because the deleted player j is chosen in N \ {q}, the Q-related player q still participates to
the resulting sub-game. Therefore, the axiom simply states that the payoff of the players are
not affected in a sub-game if the Q-related player q still belongs to the smaller player set in
the sub-game. Observe also that if a TU-game contains more than one Q-related player, then
such players can be removed, provided that at least one of them still belongs to the induced
sub-game.

In this article, we call upon the axioms of invariance from player deletion in presence of a null
player, a nullifying player and a dummifying player, respectively. While the null and nullifying
players can be obtained through Q-related players for some function Q as shown below, this is not
the case with the dummifying player. In fact, two dummifying players can have different (non-
null) stand-alone worths, whereas the definition ofQ imposes v({q}) = 0 for allQ-related player q
in a TU-game (N, v). Nevertheless, by restricting to zero-dummifying players, i.e. dummifying
players with null stand-alone worths only, it becomes possible to construct an associated Q
function. More specifically, these types of players are obtained by choosing the functions QN,
QNf , and Q0−Df respectively, where for all (N, v) ∈ V:

QN(N, v) = v(N),
QNf (N, v) = 0,
Q0−Df (N, v) =

∑
i∈N v({i}).

We start by providing three useful results involving invariance from player deletion in presence
of a Q-related player.

Proposition 2 If a value ϕ on V satisfies Efficiency and Invariance from player deletion in
presence of a Q-related player, then for all (N, v) ∈ V and all Q-related player q ∈ N in (N, v),
it holds that ϕq(N, v) = v({q}) = 0.

Proof. Consider a value ϕ on V that satisfies Efficiency and Invariance from player deletion
in presence of a Q-related player. Pick any TU-game (N, v) ∈ V and any Q-related player
q ∈ N in (N, v). For all S ( N \ {q}, q remains Q-related in the sub-game (S ∪ {q}, v).
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Then, n− 1 successive applications of Invariance from player deletion in presence of a Q-related
player yields ϕq(N, v) = ϕq({q}, v). By Efficiency and the definition of a Q-related player,
ϕq({q}, v) = v({q}) = 0. �

We obtain the following corollary.

Corollary 1 Let ϕ be a value on V that satisfies Efficiency. The following implications hold.

(i) If ϕ satisfies Invariance from player deletion in presence of a null player, then it also satisfies
Null player.

(ii) If ϕ satisfies Invariance from player deletion in presence of a nullifying player, it also
satisfies Nullifying player.

(iii) If ϕ satisfies Invariance from player deletion in presence of a zero-dummifying player, then
it also satisfies Zero-dummifying player.

The following result establishes that there exists exactly one value that satisfies Efficiency,
Invariance from player deletion in presence of aQ-related player and Balanced cycle contributions
if and only if Q is an U -additive function and Null for one-player null games.

Proposition 3

(i) There exists at most one value ϕ on V that satisfies Efficiency, Invariance from player
deletion in presence of a Q-related player and Balanced cycle contributions.

(ii) Such a value exists if and only if Q is an U -additive function and Null for one-player null
games.

Proof. Part (i). Consider a value ϕ on V satisfying the three axioms. For any (N, v) ∈ V be
such that n = 1, efficiency uniquely determines ϕ(N, v). So, consider any (N, v) ∈ V such that
n ≥ 2. From (N, v) construct the TU-game (M,w) such that M = N ∪ {q} where q ∈ U \ N ,
and, for all S ⊆M :

w(S) =

{
v(S) if S ⊆ N,
Q(S \ {q}, v) if q ∈ S.

(1)

By construction, q is a Q-related player in (M,w). Next, consider the ordering (1, . . . , n) on N .
For any integer p ∈ {2, . . . , n}, construct the associated orderings on M by placing player q in
position p, i.e. the orderings (1, . . . , p − 1, q, p, p + 1, . . . , n) for p ∈ {2, . . . , n}. By Balanced
cycle contributions, we obtained, for all p ∈ {2, . . . , n},

ϕ1(M \ {n}, w) + · · ·+ ϕp−1(M \ {p− 2}, w) + ϕq(M \ {p− 1}, w)
+ϕp(M \ {q}, w) + ϕp+1(M \ {p}, w) + · · ·+ ϕn(M \ {n− 1}, w)

= ϕ1(M \ {2}, w) + · · ·+ ϕp−1(M \ {q}, w) + ϕq(M \ {p}, w)
+ϕp(M \ {p + 1}, w) + ϕp+1(M \ {p + 2}, w) + · · ·+ ϕn(M \ {1}, w).

(2)

In order to simplify (2), we point out the following three facts.
(a) By construction, we have (M \ {q}, w) = (N, v) so that ϕp(M \ {q}, w) = ϕp(N, v) and
ϕp−1(M \ {q}, w) = ϕp−1(N, v).
(b) From Proposition 2 and definition (1) of w, we obtain ϕq(M \ {p− 1}, w) = w({q}) = 0 and
ϕq(M \ {p}, w) = w({q}) = 0.
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(c) For all i ∈ N and all j ∈ N \ {i}, we have:

ϕi(M \ {j}, w) = w(M \ {j})−
∑

p∈M\{i,j}
ϕp(M \ {j}, w)

= Q(M \ {j, q}, v)−
∑

p∈M\{i,j}
ϕp(M \ {i, j}, w)

= Q(N \ {j}, v)− w(M \ {i, j})
= Q(N \ {j}, v)−Q(N \ {i, j}, v).

The first and third equalities follow from Efficiency, the second equality follows from Invariance
from player deletion in presence of a Q-related, and the substitutions of w(M \ {j}) by Q(N \
{j}, v) and w(M \ {i, j}) by Q(N \ {i, j}, v) come from the fact that q ∈ M \ {i, j} and the
definition (1) of w.

Using (a), (b) and (c), we can rewrite equation (2) as:
[
Q(N \ {n}, v)−Q(N \ {1, n}, v)

]
+ · · ·+

[
Q(N \ {p− 2}, v)−Q(N \ {p− 2, p− 1}, v)

]

ϕp(N, v) + [Q(N \ {p}, v)−Q(N \ {p, p + 1}, v)]
+ · · ·+

[
Q(N \ {n− 1}, v)−Q(N \ {n− 1, n}, v)

]

=
[
Q(N \ {2}, v)−Q(N \ {1, 2}, v)

]
+ · · ·+ ϕp−1(N, v)

+
[
Q(N \ {p + 1}, v)−Q(N \ {p, p + 1}, v)

]
+
[
Q(N \ {p + 2}, v)−Q(N \ {p + 1, p + 2}, v)

]

+ · · ·+
[
Q(N \ {1}, v)−Q(N \ {1, n}, v)

]
.

Rearranging terms and adding the equation generated by Efficiency, we get the following linear
system of n equations with n unknowns:
{

ϕp(N, v)− ϕp−1(N, v) = Q(N \ {p− 1}, v)−Q(N \ {p}, v), for all p ∈ {2, . . . , n},
∑

p∈N ϕp(N, v) = v(N).
(3)

Since these n equations are linearly independent, the linear system (3) possesses a unique
solution ϕQ, which ensures the uniqueness (but not the existence) of a value satisfying Efficiency,
Invariance from player deletion in presence of a Q-related player and Balanced cycle contribu-
tions.

Par (ii). Consider the unique solution ϕQ of the linear system (3), and assume it satisfies
Efficiency, Invariance from player deletion in presence of a Q-related player and Balanced cycle
contributions. To show: Q is U -additive and Null for one-player null games.

Pick any (N, v) ∈ V and consider the TU-game (M,w) constructed from (N, v) as in part (i)
of this proof (see (1)). Recall that q is a Q-related player in (M,w) so that ϕq(S,w) = 0 for all
S ⊆ M such that q ∈ S (see the proof of Proposition 2). In particular, ϕq(M,w) = 0, and by
Efficiency in (M,w), this implies that

∑

i∈N
ϕQ
i (M,w) = w(M) = Q(M \ {q}, w) = Q(N, v). (4)

Now, pick any non-empty S ( N , and consider the TU-games (S∪{q}, w) and ((N \S)∪{q}, w).
Exactly as above, we get:

∑

i∈S
ϕQ
i (S ∪ {q}, w) = Q(S, v) and

∑

i∈N\S
ϕQ
i ((N \ S) ∪ {q}, w) = Q(N \ S, v).

By successive applications of invariance from player deletion in presence of a Q-related player,
we have, for all i ∈ S, ϕQ

i (S ∪ {q}, w) = ϕQ
i (M,w). Similarly, for all i ∈ N \ S, we get
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ϕQ
i ((N \ S) ∪ {k}, w) = ϕQ

i (M,w). Thus:
∑

i∈S
ϕQ
i (M,w) = Q(S, v) and

∑

i∈N\S
ϕQ
i (M,w) = Q(N \ S, v). (5)

Combining (4) and (5), we obtain:

Q(N, v) =
∑

i∈N
ϕQ
i (M,w) =

∑

i∈S
ϕQ
i (M,w) +

∑

i∈N\S
ϕQ
i (M,w) = Q(S, v) + Q(N \ S, v).

Because (N, v) and S has been chosen arbitrarily in V and 2N respectively, we conclude that Q
is U -additive.

By U -additivity of Q, the linear system (3) rewrites:
{

ϕp(N, v)− ϕp−1(N, v) = Q({p}, v)−Q({p− 1}, v) for all p ∈ {2, . . . , n}
∑

p∈N ϕp(N, v) = v(N).
(6)

Solving this linear system, we get:

ϕQ
i (N, v) = Q({i}, v) +

v(N)−∑p∈N Q({p}, v)

n
for all (N, v) ∈ V and i ∈ N. (7)

With this expression at hand, we can verify whether Q is Null for one-player null games. Pick
any q ∈ U and any TU-game (N, v) ∈ N such that q is Q-related in (N, v). Note that such
a TU-game exists. For instance, construct such a TU-game in same manner as the TU-game
(M,w) defined in Part (i) of this proof. For all j ∈ N \ {q} and all i ∈ N \ {j}, the definitions
of a Q-related player and U -additivity of Q imply that:

ϕQ
i (N, v)− ϕQ

i (N \ {j}, v)

=
1

n

(
v(N)−

∑

p∈N
Q({p}, v)

)
− 1

n− 1

(
v(N \ {j})−

∑

p∈N\{j}
Q({p}, v)

)

=
1

n

(
Q(N \ {q})−

∑

p∈N
Q({p}, v)

)
− 1

n− 1

(
Q(N \ {j, q})−

∑

p∈N\{j}
Q({p}, v)

)

=
1

n

( ∑

p∈N\{q}
Q({p}, v)−

∑

p∈N
Q({p}, v)

)
− 1

n− 1

( ∑

p∈N\{j,q}
Q({p}, v)−

∑

p∈N\{j}
Q({p}, v)

)

= − 1

n
Q({q}, v) +

1

n− 1
Q({q}, v)

=
1

n(n− 1)
Q({q}, v)

=
1

n(n− 1)
Q({q},0). (8)

The last equality comes for the definition of a Q-related player: v(∅ ∪ {q}) = Q(∅, v) = 0 so
that the TU-game ({q}, v) is equal to null game ({q},0). By Invariance from player deletion in
presence of a Q-related player, we obtain Q({q},0) = 0. Conclude that Q is Null for one-player
null games.

Conversely, assume that Q that is U -additive and is Null for one-player null games. Consider
ϕQ the unique solution (7) of the linear system (6). By (6), ϕQ is Efficient. Using equality (8)
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and the fact that Q is Null for one-player null games, we conclude that ϕQ satisfies Invariance
from player deletion in presence of a Q-related player. It remains to verify whether ϕQ satisfies
Balanced cycle contributions. Pick any (N, v) ∈ V and any ordering (i1, . . . , ip, . . . , in) on N .
Then, we have:

n∑

p=1

ϕQ
ip

(
N \ {ip−1}, v

)

=
n∑

p=1

Q({ip}, v) +
n∑

p=1

v(N \ {ip−1})−
∑

j∈N\{ip−1}Q({j}, v)

n− 1

=
n∑

p=1

Q({ip}, v) +
1

n− 1
·
∑

j∈N
v(N \ {j})− 1

n− 1
·

n∑

p=1

(n− 1) ·Q({ip}, v)

=
1

n− 1
·
∑

j∈N
v(N \ {j}),

which is independent of the considered ordering. This proves that ϕQ satisfies Balanced cycle
contributions. �

Note that Kamijo and Kongo [9] do not manage to provide a necessary and sufficient condition
under which there exists a unique value satisfying Efficiency, Balanced cycle contributions and
Invariance from Q-related player deletion. Furthermore, contrary to Theorem 3 in Kamijo and
Kongo [9], we do not need induction on the number of players to prove the existence and
uniqueness result. The logical independence of the axioms used in Proposition 3 as well as in
all axiomatic characterizations in the article is demonstrated in the Appendix. Since QN is not
U -additive, we obtain the following interesting corollary of Proposition 3.

Proposition 4 There does not exist any value on V satisfying Efficiency, Balanced cycle con-
tributions and Invariance from player deletion in presence of a null player.

In the appendix, we even prove this result without requiring that ϕ satisfies Balanced cycle
contributions. This result echoes Theorem 4 in Kamijo and Kongo [9] stating that there is no
value that satisfies Efficiency and Invariance from nullifying player deletion.

4 Characterizations
We begin this section with comparable axiomatic characterizations of the Equal Division value
and the Equal Surplus Division value. These characterizations exploit the result contained in
Proposition 3.

Proposition 5 Consider any value ϕ on V that satisfies Efficiency, and Balanced cycle contri-
butions. Then the following results hold:

(i) The value ϕ satisfies Invariance from player deletion in presence of a nullifying player if
and only if ϕ = ED.

(ii) The value ϕ satisfies Invariance from player deletion in presence of a dummifying player if
and only if ϕ = ESD.

Proof. Part (i). Because ED satisfies Efficiency and Equal treatment, it satisfies Balance cycle
contributions by Proposition 1. Now, pick any (N, v) ∈ V containing a nullifying player, say q.
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Then, v(N) = v(N \ {j}) = 0 for all j ∈ N \ {q}. It follows that EDi(N \ {j}, v) = EDi(N, v)
for all i ∈ N \ {j}, which means that ED satisfies Invariance from player deletion in presence
of a nullifying player. Conversely, consider any value ϕ ∈ V satisfying the three axioms. The
function QNf is U -additive and Null for one player null games. By Proposition 3 (see (7)),
ϕ = ϕQNf

= ED.
Part (ii). The value ESD satisfies Efficiency and Equal treatment. By Proposition 1, ESD

satisfies Balance cycle contributions. Pick any TU-game (N, v) such that q ∈ N is dummifying.
For each S ⊆ N such that S 3 q, it holds that v(S) =

∑
i∈S v({i}). Fix any player j ∈ N \ {q}

and any i ∈ N \ {j}. By definition of ESD, we have:

ESDi(N, v) = v({i}) +

(
v(N)−∑p∈N v({p})

)

n
= v({i}),

where the last equality follows from the fact that q is a dummifying player in (N, v). In the
sub-game (N \ {j}, v), player q obviously remains dummifying. Therefore, exactly as above:

ESDi(N \ {j}, v) = v({i}) +

(
v(N \ {j})−∑p∈N\{j} v({p})

)

n− 1
= v({i}).

This proves that ESD satisfies Invariance from player deletion in presence of a dummifying
player. Conversely, consider any value ϕ on V satisfying the three axioms. It is obvious that any
zero-dummifying player is also a dummifying player. It follows that if a value satisfies Invariance
from player deletion in presence of a dummifying player, then it also satisfies Invariance from
player deletion in presence of a zero-dummifying player. This also implies that the statement of
Proposition 3 still holds if Invariance from player deletion in presence of a Q-related player is
replaced by Invariance from player deletion in presence of a dummifying player. This completes
the proof. �

The rest of this section offer comparable axiomatic characterizations of the Weighted Division
values and the Weighted Surplus-Division values by substituting Balance cycle contributions for
Linearity. Indeed, these values satisfy Linearity but not Balance cycle contributions.

Proposition 6 Consider any value ϕ on V that satisfies Efficiency and Linearity. Then, the
following results hold:

(i) The value ϕ satisfies Invariance from player deletion in presence of a dummifying player if
and only if ϕ ∈ WSD.

(ii) The value ϕ satisfies Invariance from player deletion in presence of a nullifying player if
and only if ϕ ∈ WD.

Proof. Part (i). For all ω = (ωN : ωN ∈ ∆N)N∈U , the value WSDω ∈ WSD satisfies Efficiency
and Linearity. Proceeding as in the proof of Proposition 5, we can show that WSDω satisfies
Invariance from player deletion in presence of a dummifying player.

Conversely, consider any value ϕ on V satisfying the three axioms, and any TU-game (N, v) ∈
V. If n = 1, then Efficiency characterizes ϕ. So, assume that n ≥ 2. It is well known that (N, v)
admits a linear representation in terms of standard games:

(N, v) =
∑

S∈2N ,S 6=∅
v(S)(N, eS). (9)
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Choose any S ⊆ N such that 1 < s < n. Observe that all the players in N \ S are dummifying
in (N, eS). Pick any j ∈ S. Invariance from player deletion in presence of a dummifying player
yields:

ϕi(N, eS) = ϕi(N \ {j}, eS) for all i ∈ N \ {j}. (10)

Since (N \ {j}, eS) = (N \ {j},0), Linearity implies ϕi(N \ {j},0) = 0 and, in turn, by (10),
ϕi(N, eS) = 0 for all i ∈ N \ {j}. Finally, applying Efficiency in (N, eS) yields ϕj(N, eS) = 0
too. Therefore, representation (9) enables to rewrite ϕ, as:

ϕi(N, v) =
∑

p∈N
v({p}) · ϕi(N, e{p}) + v(N) · ϕi(N, eN) for all i ∈ N. (11)

It remains to consider standard TU-games (N, e{p}), p ∈ N , and (N, eN). Note that such
TU-games contain no dummifying player. Nonetheless, we can decompose these TU-games in
the following way. For any p ∈ N , we have:

(N, e{p}) = (N, u{p})−
∑

S3p:1<s<n

(N, eS)− (N, eN). (12)

We have already shown that ϕi(N, eS) = 0 for all S such that 1 < s < n and all i ∈ N .
Furthermore, in the unanimity TU-game (N, u{p}) induced by {p}, p ∈ N , all players in N
are dummifying since (N, u{p}) is an additive TU-game. By Invariance from player deletion in
presence of a dummifying player and Linearity, we get:

ϕi(N, u{p}) = ϕi(N \ {p}, u{p}) = ϕi(N \ {p},0) = 0 for all i ∈ N \ {p},

Applying Efficiency in (N, u{p}) implies ϕp(N, u{p}) = 1. As a consequence, using equations (12)
and the linearity of ϕ, we obtain:

ϕi(N, e{p}) =

{
1− ϕi(N, eN) if i = p,
−ϕi(N, eN) if i ∈ N \ {p}. (13)

Inserting (13) into (11) yields, for all i ∈ N :

ϕi(N, v) = v({i}) · (1− ϕi(N, eN)) +
∑

p∈N\{i}

(
v({p}) · (−ϕi(N, eN))

)
+ v(N) · ϕi(N, eN)

= v({i})−
∑

p∈N
v({p}) · ϕi(N, eN) + v(N) · ϕi(N, eN)

= v({i}) + ϕi(N, eN) ·
(
v(N)−

∑

p∈N
v({p})

)
.

Now, set ωN
i := ϕi(N, eN) for all N ∈ U and all i ∈ N . Conclude by Efficiency that ϕ = WSDω.

Part (ii). Any Weighted Division value satisfies Efficiency and Linearity. Because a nullifying
player remains nullifying in any sub-game induced by any coalition he or she belongs to, any
Weighted Division value also satisfies Invariance from player deletion in presence of a nullifying
player. Conversely, consider any value ϕ on V satisfying the three axioms. Similarly as for part
(i), it is easy to show that, for all i ∈ N and all S such that 1 ≤ s < n, ϕi(N, eS) = 0 since
any such TU-game contains at least one nullifying player. Contrary to the proof of part (i),
remark that this is also true for standard TU-games induced by singleton coalitions: each of
these TU-games contains nullifying players but does not contain dummifying players. Now, set
ωN
i := ϕi(N, eN) for all i ∈ N and conclude by Linearity and representation (9) that ϕ ∈ WD.

�
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Proposition 5 can be read as a way to single out the Equal Surplus Division value among
the class of all Weighted Surplus Division values and the Equal Division value among the class
of all Weighted Division values by replacing, in Proposition 6 Linearity by Balanced Cycle
Contributions. Another way to do so is to replace, in Proposition 6, Linearity by Additivity,
and add Equal Treatment, as shown in the following proposition.

Proposition 7 Consider a value ϕ on V that satisfies Efficiency, Additivity and Equal treat-
ment. Then, the following results hold:

(i) The value ϕ satisfies Invariance from player deletion in presence of a dummifying player if
and only if ϕ = ESD.

(ii) The value ϕ satisfies Invariance from player deletion in presence of a nullifying player if
and only if ϕ = ED.

Proof. It is enough to prove the uniqueness part of (i) and (ii).
Part (i). Consider any ϕ on V satisfying Efficiency, Additivity, Equal treatment and Invari-

ance from player deletion in presence of a dummifying player. Pick any (N, v) such that there is
a dummifying player q ∈ N in (N, v). Repeated applications of Invariance from player deletion
in presence of a dummifying player and Efficiency yield ϕq(N, v) = ϕq({q}, v) = v({q}), which
proves that ϕ satisfies the Dummifying player property. Then, the result follows from Theorem
2 in Casajus and Huettner [2].

Part (ii), consider any ϕ on V satisfying Efficiency, Additivity, Equal treatment and Invari-
ance from player deletion in presence of a nullifying player. Pick any (N, v) ∈ V containing a
nullifying player. By Corollary 1, ϕ satisfies the Nullifying player property. Then, the result
follows from Theorem 3.1 in van den Brink [14]. �

5 Further comparisons with Kamijo and Kongo [9]
The first result of this section is an impossibility result: the Shapley value cannot be characterized
by invoking an axiom of Invariance from player deletion in presence of a Q-related player.

Proposition 8 There does not exist a function Q such that the Shapley value satisfies Invari-
ance from player deletion in presence of a Q-related.

Proof. Proposition 4 proves that there does not exist any value ϕ on V satisfying Efficiency,
Balanced cycle contributions and Invariance from player deletion in presence of a null player.
Since the Shapley value satisfies the first two axioms, it is enough to prove that if the Shapley
value satisfies Invariance from player deletion in presence of a Q-related player for some function
Q, then it must be that Q = QN. So, assume that the Shapley value satisfies Invariance from
player deletion in presence of a Q-related player for some function Q. We prove that Q = QN

by induction on n.
Initial step. Suppose that n = 0. By definition of function Q, Q(∅, v) = 0 = v(∅).
Induction hypothesis. Suppose that Q(N, v) = v(N) for all N such that n < p.
Induction step. Consider any game (N, v) ∈ V such that n = p. Pick any q ∈ U \ N , and
construct the augmented TU-game (M,w) as in (1). Player q is a Q-related player in (M,w).
By Proposition 2 and the assumption that the Shapley value satisfies Invariance from player
deletion in presence of a Q-related, we have:

Shq(M,w) = w({q}) = Q(∅, w) = 0.

12



Combining the definition of the Shapley value with definition (1) and the induction hypothesis,
we obtain:

0 = Shq(M,w)

=
∑

S⊆M\{q}

(n + 1− s− 1)! · s!
(n + 1)!

(
w(S ∪ {q})− w(S)

)

=
∑

S⊆N

(n− s)! · s!
(n + 1)!

(
Q(S, v)− v(S)

)

=
1

n + 1

(
Q(N, v)− v(N)

)
,

which forces Q(N, v) = v(N), as desired. Conclude that Q = QN. �

The Shapley value does not satisfy the close axiom of Invariance from a player deletion in
presence of a dummy player either, even if the dummy player cannot be obtained by a Q function.

Kamijo and Kongo [9] do not characterize the ESD value through an axiom of Invariance
from a Q-player deletion. It turns out that the Equal Surplus Division cannot be characterized
by invoking the following axiom of Invariance from Dummifying player deletion. This result is
the analog of Theorem 4 in Kamijo and Kongo [9], which states that no value satisfies Invariance
from Nullifying player deletion and Efficiency at the same time.

Invariance from dummifying player deletion For all (N, v) and all dummifying player
q ∈ N in (N, v), and all i ∈ N \ {q}, ϕi(N, v) = ϕi(N \ {q}).

In fact, the aforementioned statement is a consequence of a more general result based on the
following axiom defined by Kamijo and Kongo [9].

Invariance from Q-player deletion For all (N, v) and all Q-player q ∈ N in (N, v), and all
i ∈ N \ {q}, ϕi(N, v) = ϕi(N \ {q}).

We show that if Q is U -additive and Null for one-player null games, no value can satisfy
Efficiency and Invariance from Q-related player deletion. In other words, for a given Q, within
the class of values satisfying Efficiency and Balanced cycle contributions, if a value satisfies
Invariance from player deletion in presence of a Q-related, then there is no value satisfying
Invariance from Q-related player deletion.

Proposition 9 Suppose that Q is U -additive and Null for one-player null games. Then, there
does not exist any value on V satisfying Efficiency and Invariance from Q-related player deletion.

Proof. By way of contradiction, assume that a value ϕ on V satisfies the two axioms for some
Q and assume further that Q is U -additive and Null for one-player null games. Consider any
(N, eN\{i,j}) ∈ V such that n ≥ 4, and i 6= j. Pick any player q ∈ {i, j}. On the one hand, by
the properties of Q, we have:

eN\{i,j}(S ∪ {q}) = 0 =
∑

p∈S
Q({p},0) = Q(S,0) for all S ⊆ N \ {q}. (14)

On the other hand, the U -additivity of Q, the hypothesis n ≥ 4, the definition of the TU-games
(S, eN\{i,j}) for all S ⊆ N \ {q} imply:

Q(S, eN\{i,j}) =
∑

p∈S
Q({p}, eN\{i,j}) =

∑

p∈S
Q({p},0) = Q(S,0) for all S ⊆ N \ {q}. (15)
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Combining (14) and (15), we have:

eN\{i,j}(S ∪ {q}) = Q(S, eN\{i,j}) for all S ⊆ N \ {q},

which proves that both i and j and Q-related players in (N, eN\{i,j}). Two successive applications
of Invariance from Q-related player deletion yield:

ϕp(N, eN\{i,j}) = ϕp(N \ {i}, eN\{i,j}) = ϕp(N \ {i, j}, eN\{i,j}) for all p ∈ N \ {i, j}. (16)

By (16) and Efficiency applied to (N \ {i, j}, eN\{i,j}):
∑

p∈N\{i,j}
ϕp(N, eN\{i,j}) =

∑

p∈N\{i,j}
ϕp(N \ {i, j}, eN\{i,j}) = 1. (17)

Apply Efficiency in (N, eN\{i,j}) and deduce from (17) that:

ϕi(N, eN\{i,j}) + ϕj(N, eN\{i,j}) = −1. (18)

On the other hand, by (16), ϕp(N, eN\{i,j}) = ϕp(N \ {q}, eN\{i,j}) for all q ∈ {i, j} and p ∈
N \ {q}. In particular, we have ϕi(N, eN\{i,j}) = ϕi(N \ {j}, eN\{i,j}) and ϕj(N, eN\{i,j}) =
ϕj(N \ {i}, eN\{i,j}). Taking into account this fact, equality (17), and applying Efficiency in
(N \ {j}, eN\{i,j}), we obtain:

0 =
∑

p∈N\{j}
ϕp(N \ {j}, eN\{i,j})

=
∑

p∈N\{i,j}
ϕp(N, eN\{i,j}) + ϕi(N, eN\{i,j})

= 1 + ϕi(N, eN\{i,j}).

Thus, ϕi(N, eN\{i,j}) = −1. Proceeding in a similar way by deleting i instead of j in (N, eN\{i,j}),
we find ϕj(N, eN\{i,j}) = −1, which contradicts (18). �

6 Conclusion
Few questions remain unanswered in our study. Firstly, is it possible to use our approach to
characterize other well-known values or class of values such as the Consensus value (Ju, Borm
and Ruys [6]) and the Egalitarian Shapley values (Casajus and Huettner [3])? Secondly, is it
possible to enlarge the definition of function Q to enable a characterization of the Shapley value
through Invariance from player deletion in presence of a Q-related player? Thirdly, do our results
still hold, or can we obtain new characterizations, by considering sub-classes of the class of all
TU-games?

Appendix
In order to show the logical independence of the axioms used in our characterizations, for all
functions Q and all games (N, v) ∈ V, define AQ(N, v) as the set of players who are Q-related in
(N, v). Note that for all Q, there exists some (N, v) ∈ V such that AQ(N, v) = ∅. In fact, for any
TU-game (N, v) ∈ V and any Q-related player i ∈ N in (N, v), we have v({i}) = 0 by definition
of a Q-related player. Thus, a TU-game (N, v) such that v({i}) 6= 0 for all (N, v) has an empty
AQ(N, v) for all functions Q. Similarly, we will denote ADf (N, v) the set of dummifying players
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in (N, v), and again there exists some (N, v) such that ADf (N, v) = ∅.

Proposition 3
Consider any function Q : V −→ R such that Q is U -additive and Null for one-player

null-games. The Shapley value satisfies Efficiency and Balanced cycle contributions but not
Invariance from player deletion in presence of a Q-related player by Proposition 8. The Null
value satisfies Balanced cycle contributions and Invariance from player deletion in presence of a
Q-related player but not Efficiency. Next, construct the value ShQ given by:

ShQ(N, v) =

{
Sh if AQ(N, v) = ∅,
ϕQ if AQ(N, v) 6= ∅, (19)

where ϕQ is the solution of the linear system given by (6). The value ShQ satisfies Efficiency.
Since a Q-player in a TU-game (N, v) ∈ V remains Q-related in the sub-games induced by all
coalitions he or she belongs to, ShQ also satisfies Invariance from player deletion in presence of a
Q-related player since ϕQ satisfies this axiom by Proposition 3. Finally, it is easy to check that
ShQ does not satisfy Balanced cycle contributions.

Proposition 4
As shown below, there is some redundancy in the axioms used in Proposition 4 since the

result still holds if it is not required that the value ϕ satisfies Balanced cycle contributions.

Proposition 10 There does not exist any value on V satisfying Efficiency and Invariance from
player deletion in presence of a null player.

Proof. By way of contradiction, suppose that a value ϕ on V satisfies the two axioms. Let
N ∈ U be such that n ≥ 3. Consider any S ∈ 2N with 2 ≤ s < n, and the unanimity game
(N, uS). The players in N \ S are null. Now, pick any player j ∈ S. Firstly, (N \ {j}, uS) =
(N \ {j},0). Secondly, by Invariance from player deletion in presence of a null player, we get
ϕp(N, uS) = ϕp(N\{j},0) for all p ∈ N\{j}. Since all players are null in (N\{j},0), Proposition
2 yields ϕp(N \ {j},0) = 0 for all p ∈ N \ {j}, and so ϕp(N, uS) = 0 for all p ∈ N \ {j}. By
Efficiency, we necessarily have ϕj(N, uS) = 1. Thirdly, by considering i ∈ S \ {j} instead of
j ∈ S, and proceeding as above, we also obtain ϕi(N, uS) = 1, a contradiction. �

Propositions 5, 6, 7
The Shapley value satisfies Efficiency, Additivity, Linearity and Balanced cycle contributions

but neither Invariance from player deletion in presence of a nullifying player nor Invariance from
player deletion in presence of a dummifying player. The Null value satisfies Additivity, Linearity,
Balanced cycle contributions, Invariance from player deletion in presence of a nullifying player
and Invariance from player deletion in presence of a dummifying player but not Efficiency.
The value ShQNf

given by (19) for Q = QNf satisfies Efficiency and Invariance from player
deletion in presence of a nullifying player but neither Linearity, nor Additivity, nor Balanced
cycle contributions. The value ShDf given by ShDf (N, v) = Sh(N, v) if ADf (N, v) = ∅, and
ShDf (N, v) = ESD(N, v) if ADf (N, v) 6= ∅ satisfies Efficiency and Invariance from player deletion
in presence of a dummifying player but neither Linearity, nor Additivity, nor Balanced cycle
contributions. Any value ϕ ∈ WD \ {ED} satisfies Efficiency, Additivity and Invariance from
player deletion in presence of a nullifying player but not Equal treatment. Any value ϕ ∈
WDS \ {ESD} satisfies Efficiency, Additivity and Invariance from player deletion in presence of
a dummifying player but not Equal treatment.
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