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Abstract

We introduce a symmetrized version of the popular divide and choose
mechanism for the allocation of a collectively owned indivisible good
among two agents when monetary compensation is available. Our pro-
posal retains the simplicity of divide and choose and corrects its ex-post
asymmetry. When there is complete information, i.e., agents know each
other well, it implements in subgame perfect equilibria a unique alloca-
tion that would be obtained by a balanced market. By correcting the ex-
post asymmetry of divide and choose, our proposal may reduce welfare
losses documented by laboratory studies for both divide and choose and
auction-type mechanisms.

JEL classification: D63, C72.
Keywords: indivisible goods; no-envy; implementation in subgame

perfect equilibria.

1 Introduction

When the final result is expected to be a compromise, it is often

prudent to start from an extreme position.

John Maynard Keynes, The Economic Consequences of Peace

We consider the equitable allocation of a collectively owned object (indivis-
ible good) when monetary compensation is available among two agents who

∗All errors are our own. Nicolò antonio.nicolo@unipd.it and anto-
nio.nicolo@manchester.ac.uk; Velez rvelezca@econmail.tamu.edu
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know each other well, as in the dissolution of a 50%-50% owned family busi-
ness.1 Our main contribution is the introduction of a modified version of the
popular divide and choose mechanism. Our mechanism resembles a natu-
ral sequential price negotiation in which both agents have the opportunity to
make proposals and reach an agreement –see below for a precise description.
Each subgame perfect equilibrium of our mechanism results in an equitable
compromise independently of the order in which proposals are made. Thus,
our proposal preserves the simplicity of the divide and choose mechanism and
at the same time corrects its main flaw, i.e., that it is procedurally unfair. In
laboratory experiments the divide and choose mechanism is superior to al-
ternative auction-type mechanisms, but still underperforms in both equitabil-
ity and efficiency due to its ex-post asymmetry (Guth et al., 1982; Brown and
Velez, 2016). Thus, our proposal is not only normatively superior to divide and
choose, but also may reduce efficiency losses in real life applications.2

The availability of equitable mechanisms is important in a market society.
Economists have acknowledged the fundamental role of social trust for creat-
ing cooperation and have studied which factors are more relevant to determine
the level of trust in a society. Ostrom (2000) points out that one of the key fac-
tors is the emergence of fair rules.3 Productive activities are often conducted
by groups of individuals who join their effort to achieve common goals. Thus,
economic growth is indeed fostered by economic and social institutions that
favor welfare enhancing exchanges, trades, and business agreements.

Our aim then is to identify equitable mechanisms. Our first step is to iden-
tify equitable allocations. In order to do so one can find an intuitively equi-
table institution and then select the optimal allocations that in ideal condi-
tions the institution would produce. In our case, this is achieved by a market
in which each agent, thought to be a price taker, owns half of the aggregate
income. These allocations, which we refer to as market allocations, capture
much of our desiderata of equity. They are efficient (Svensson, 1983). More-
over, since agents have the same income, their budget sets are identical. Thus
agents maximize in identical budget sets. Alternatively, in order to identify eq-
uitable allocations one can simply declare a desiderata of properties that an

1Symmetric two-party partnerships are the modal form of business cooperation. For in-
stance, Hauswald and Hege (2006) find that the majority of US joint ventures recorded by the
Thomson Financial Securities Data in the period 1985-2000 are 50%-50% agreements.

2It is an interesting question, beyond the scope of this paper, to experimentally evaluate the
performance of our mechanism proposal.

3"Fair rules of distribution help to build trusting relationships, since more individuals are
willing to abide by these rules because they participated in their design and also because they
meet shared concepts of fairness." (Ostrom, 2000, pag. 150).
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equitable allocation should have and then find the allocations that satisfy it. It
turns out that requiring efficiency and that no agent prefer the allotment of the
other, i.e., the celebrated no-envy (Foley, 1967; Varian, 1974), exactly conduces
to the set of market allocations (Svensson, 1983). With this solid foundation we
concentrate on the implementation of market allocations.

Our second step is to account for agents’ incentives. It is well known that it
is impossible to implement market allocations in dominant strategies (Alkan
et al., 1991; Tadenuma and Thomson, 1995a). In view of this impossibility,
one can construct games whose Nash equilibrium outcomes are market allo-
cations. An intuitive way to do this is by means of a so called α-auction: ask
agents to bid for the object; then a highest bidder gets the object and trans-
fers an α-convex-combination between the winner and the loser bid (Cram-
ton et al., 1987; Brown and Velez, 2016).4 Alternative simultaneous proposals
abound. Unfortunately, it is well known that the performance of simultane-
ous move mechanisms is compromised by the presence of boundedly rational
players (McKelvey and Palfrey, 1995). Indeed, the α-auctions perform poorly
in an experimental environment (Brown and Velez, 2016). This leads us to con-
sider purely sequential mechanisms. The most popular alternative here is the
so called divide and choose mechanism (Crawford and Heller, 1979; Crawford,
1980), which resembles the popular cake cutting procedure and implements in
subgame perfect equilibria the “extremes” of the set of market outcomes. Here,
an agent chosen at random proposes the transfer that the agent who gets the
object gives the other agent. The second agent decides either to get the object
and make the proposed transfer, or to give up the object and take the transfer.
In any subgame perfect equilibrium, the proposer takes advantage of her role
and extracts all possible “equity surplus” from the other agent. This ex-post
asymmetry turns out to be problematic. In laboratory experiments subgame
perfect proposals are received with a retaliation strategy from the chooser, who
can induce a big loss for the proposer at a low cost to him by just choosing the
inefficient outcome (Guth et al., 1982; Brown and Velez, 2016). This welfare loss
is significant (Brown and Velez, 2016).

We are, hence, interested in solving both limitations of simultaneous move
mechanisms and the procedurally unfair divide and choose. We proceed in
two steps. First, we identify a market outcome that, away from the extremes
chosen by divide and choose, is a compromise that balances the interests of
both agents within the set of market allocations. One can argue that at each
market allocation each agent perceives a bias towards herself. This bias can

4The online dispute resolution system http://www.fairoutomes.om/ offers the inter-
mediate price auction, i.e., α= 1

2 , under the Fair Buy-Sell system.
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be measured for, say agent i , by the maximal amount of money that one can
add to the consumption of the other agent without causing agent i to prefer
the other’s allotment (Tadenuma and Thomson, 1995b). We select the market
allocation at which the perceived biases of both agents are equal, which is es-
sentially unique. We refer to it as the balanced market allocation.5 Then, we
construct a simple sequential mechanism that implements in subgame perfect
equilibria the balanced market allocation.6 Thus, our mechanism is procedu-
rally fair. The equilibrium allocation is the same irrespectively of who the first
mover in the game is.

Our mechanism works as follows. An agent, say agent A, announces to be
either the buyer or the seller and proposes a price (the outcome of the game
is independent of the identity of the first mover). Suppose agent A announces
to be the buyer and proposes price pA . Agent B can either, steal A’s proposal
and buy at pA –which ends the game, or renegotiate and propose a price pB . If
agent B renegotiates, agent A can then either steal B ’s proposal and sell at pB

–which ends the game, or compromise and buy at the average between pA and
pB . If agent A announces to be the seller and proposes price pA , the symmetric
game unfolds.

An interesting feature of our mechanism is that its subgame perfect equi-
libria exhibits an intuitive feature of situations in which agents compromise.
In equilibrium agents make proposals that one can characterize as extreme.
However, their extreme proposals balance each other and an equitable com-
promise, the balance market outcome, is reached.

Our implementation result is obtained in a domain of preferences that con-
tains, but is not restricted to, quasi-linear preferences. As long as agents’ pref-
erences are increasing in money, there will be an essentially unique balanced
market allocation, which is implemented in subgame perfect equilibria by our
mechanism. This level of generality, rarely found in implementation results, al-
lows us to account for common phenomena as the complementarity of money
and objects, or the natural asymmetry between making or receiving a money
transfer under liquidity constraints (see Example 1).

5Our recommendations have the property that for a fixed preference profile, the welfare of
each agent is an increasing function of the aggregate consumption of money (Velez, 2015a).

6Our approach is close in spirit to LiCalzi and Nicolò (2009) who identify a unique egalitarian-
equivalent allocation for a the land division problem and implement it in sub-game perfect
equilibrium.
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2 Related literature

The equitable allocation of indivisible goods when monetary compensation is
available has been the object of an extensive literature. Existence of market
allocations has been established under very mild assumptions on preferences
(Svensson, 1983; Maskin, 1987; Alkan et al., 1991; Velez, 2016). Even though
the set of market allocations generically has a continuum of allocations, none
of the popular axioms of solidarity, monotonicity, and consistency has pro-
duced any focal selection from the set. Due to this indeterminacy several au-
thors have proposed selections from the set of market allocations based on in-
tuitive criteria (e.g., Tadenuma and Thomson, 1995b; Aragones, 1995; Abdulka-
diroğlu et al., 2004; Velez, 2011). Our balanced market allocation is indeed the
allocation selected by the “equal-compensation solution” of Tadenuma and
Thomson (1995b). Thus, a corollary of our result is that our mechanism imple-
ments in subgame perfect equilibria the equal-compensation solution in the
two-agent case. The majority of studies that consider incentives issues in our
environment have focused on simultaneous move mechanisms that fully im-
plement the set of market allocations (Moulin, 1984; Tadenuma and Thomson,
1995a; Abdulkadiroğlu et al., 2004; Āzacis, 2008; Beviá, 2010; Velez, 2011; An-
dersson et al., 2014a,b; Velez, 2015b; Fujinaka and Wakayama, 2015) or mecha-
nisms that hold no relation with market allocations (Brams and Kilgour, 2001).
The closest paper to ours is Moulin (1984) whose conditional auction mecha-
nism implements the market outcome in our environment when preferences
are quasi-linear. In contrast with our simple mechanism, the conditional auc-
tion mechanism requires agents submit tridimensional simultaneous reports.

There is extensive literature studying the dissolution of a partnership in an
incomplete information setting. The main interest is the design of ex-post effi-
cient mechanisms that satisfy participation constraints. Surprisingly, in an in-
dependent, private-value setting, there are ex-post-efficient and interim-indivi-
dually-rational, incentive-compatible mechanisms for a non-trivial set of own-
ership distributions that contains and is centered in the symmetric ownership
case (Cramton et al., 1987).7 Only a few of the mechanisms that have been
identified in this literature are of interest to us, for they usually depend on
the distribution of agents’ valuations. The most notable exceptions are the α-
auctions (Cramton et al., 1987) and the divide and choose mechanism (McAfee,
1992). Even though the divide and choose mechanism is not efficient under in-
complete information, it has received great attention due to its simplicity and

7This basic result does not extend to more general information and types structure (see
Moldovanu, 2002, for a survey).
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prevalence in practice (de Frutos and Kittsteiner, 2008). It turns out that if this
mechanism is concatenated with an ascending price auction where agents bid
for the right to choose, the mechanism becomes efficient. Interestingly, one
can prove using similar fixed point arguments to those in our proofs, that un-
der complete information, this concatenated mechanism has as unique sub-
game perfect equilibrium outcome the balanced market outcome. We favor
our original price negotiation mechanism in order to implement the balanced
market outcome, for it resembles a common price negotiation.

The divide and choose mechanism has been a focal point in the fair cake
division literature (Brams and Taylor, 1996) and has been adapted to multi-
ple environments (Crawford and Heller, 1979; Crawford, 1980; Moulin, 1981;
Thomson, 2005). Closely related to our results, Nicolo and Yu (2008) propose a
procedurally fair mechanism that obtains envy-free allocations in the cake di-
vision problem. The mechanism is a multi-step sequential game form in which
each agent at each step receives a morsel of the cake that is the intersection of
what she asks for herself and what the other agent concedes.

The paper proceeds as follows. In section 3, we give preliminary notation
and we introduce the problem we are dealing with. In section 4 we define the
balanced market allocation we want to implement and describe our sequential
mechanism to implement it. Section 5 concludes. An Appendix contains the
statement and proof of a general form of our implementation result.

3 The problem

We consider two agents, {1, 2}, who collectively and symmetrically own an ob-
ject. Generic agents are i and j . The object is to be assigned to one of the
agents. They can compensate or be compensated with money. We assume that
there is no limit in the amount of money that an agent can pay or receive. We
normalize the initial endowments of money to zero. We denote the transfer
from the agent who receives the object to the other agent by x . This trans-
fer may be negative, meaning that the agent who does not receive the object
compensates the agent who does –the object may represent a task for which
the agents are collectively responsible. Our model is ordinal, i.e., our primi-
tive is agent’s preferences. For simplicity we introduce utility representation.
Agent i ’s preferences are represented by a utility function that assigns ui (x ) to
receiving the object and transferring x to the other agent. Each agent’s utility
of receiving transfer x and no object is normalized to x . We assume that u is
onto, continuous, and strictly decreasing. With this we guarantee that the ob-
ject has no infinite value in terms of money. Under these assumptions, there is
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a unique amount of money x ∗i such that agent i would be indifferent between
receiving the object and transferring x ∗i to agent j or agent j receiving the ob-
ject and transferring x ∗i to agent i , i.e., x ∗i = u (x ∗i ). We refer to x ∗i as agent i ’s
valuation for the object. Let x and x be the minimum and maximum of x ∗1 and
x ∗2 , respectively.

Our domain contains, but is not restricted to the domain of quasi-linear
preferences. Formally, a preference is quasilinear if it admits a representation
of the form ui (x ) =αi − x for some αi ∈R.

The domain of quasi-linear preferences is popular in applications and is
suitable for experimental work. The quasi-linear domain is narrow, however.
For instance, it cannot capture the asymmetry of positive and negative trans-
fers that is induced by liquidity constraints and other real life relevant phenom-
ena. We illustrate with an example.

Example 1. Mark and Eduardo own a startup company together (50% each).
One year before they can get to an IPO they find irreconcilable differences and
decide to terminate their partnership. The value of the company depends on
which partner retains the company. Mark would be able to reach a market cap-
italization of $100 million. Eduardo would reach $50 million. Eduardo belongs
to a wealthy family and has access to zero interest credit. Thus, Eduardo’s util-
ity of retaining the company and transferring x (in millions) to Mark is uE (x ) =

50− x and x ∗E = 25 million. Mark, on the other hand, would have to pay the
market effective annual rate, r , on any compensation that he gives Eduardo in
order to retain the company. Thus, Mark’s utility of retaining the company and
transferring x to Eduardo is uM (x ) = 100− (1+ r )x and x ∗M =

100
2+r .

We will come back to this example to illustrate our results and will assume
throughout that x = x ∗E < x ∗M = x , i.e., annual effective interest rates are at most
two hundred percent.

We are interested in the set of allocations that can be sustained as compet-
itive equilibria in which each agent has an equal share of the aggregate income
(Svensson, 1983). That is, there is a price p for the object, each agent receives
an income of p

2 and chooses between paying p for the object or keeping income
p
2 , and market clears. We refer to these allocations as market allocations.

The set of market allocations can be described easily by means of the agents’
values. Consider a price p . If p ≥ 2x , the low valuation agent weakly prefers
to free the object and get income p

2 . If p ≤ 2x , the high valuation agent weakly
prefers to buy the object at price p . Thus, for each p ∈ [2x , 2x ] there is a com-
petitive equilibrium in which the high valuation agent buys the object. For a
price outside this interval, either both agents prefer to buy the object, or both
prefer not to. Thus, the market clearing condition cannot be satisfied. Thus,
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the set of equilibrium prices is the interval [2x , 2x ] and the set of competitive
equilibrium outcomes, i.e., market allocations, are those at which the high val-
uation agent receives the object and transfers an amount x ∈ [ x , x ] to the low
valuation agent. If both agents have equal valuations, there is essentially one
market allocation at which any agent gets the company and transfers her val-
uation to the other agent.

Market allocations have attracted great interest in the study of fair alloca-
tion. Foley (1967) proposed them in order to achieve no-envy, i.e., the require-
ment that no agent prefer the consumption of any other agent to her own. In
our environment, the set of market allocations coincides with the set of envy-
free allocations (Svensson, 1983). Moreover, market allocations are also Pareto
efficient.

It is impossible to make a strategy-proof selection from the set of market
allocations (Alkan et al., 1991; van Damme, 1992; Tadenuma and Thomson,
1995a).8 This impossibility has been bypassed to some extent. A growing liter-
ature has investigated the non-cooperative equilibria of the direct revelation
mechanisms that select market allocations for each preference profile. The
common finding is that all these mechanisms are outcome equivalent. Their
equilibria are exactly the set of market allocations for the true preferences (see
Velez, 2015b, and references within). Since the set of market allocations de-
pends only on agents’ valuations, this result extends to the auction-like mecha-
nisms that ask for agents’ valuations and select a market allocation given those
valuations. For instance, given reports, {x , x }, an agent with the highest valu-
ation receives the object and transfers x to the other agent. This mechanism
is known in the literature as “winners’ bid auction.” Even though the induced
games of this auction may not have pure strategy Nash equilibria, they always
have limit Nash equilibria, whose outcomes are exactly the set of market al-
locations: agents coordinate reporting valuations, one just above the other, in
the interval [x , x ]. Alternative outcome equivalent mechanisms are the “loser’s
bid auction” in which a high valuation agent receives the object and transfers
x to the other agent, or more generally an α-auction, in which the transfer is
the convex combination αx + (1− α)x . The set of limit equilibria of all these
mechanisms is the set of market allocations for the true preferences (Figure 1
).

It is good news that the non-cooperative equilibrium outcomes from the
manipulation of market mechanisms and α-auctions are market allocations
with respect to the true preferences. One may be interested in using a dif-

8A solution is strategy-proof if for each preference profile it is a dominant strategy to report
her true preferences for each agent.
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α-auction limit Nash outcomes

market allocations

x

x x

[ ]

divide-and-choose SPE outcome
when proposer has high valuation

divide-and-choose SPE outcome
when proposer has low valuation

b b

Figure 1: Geometric representation of market allocations and complete information prediction
for equitable allocation mechanisms.

ferent mechanism, however. First, it may be desirable to have mechanisms
that make more refined selections from the market allocations set. Second, all
these mechanisms require agent’s coordination and inherit the bounded ra-
tionality issues that have been identified by experimental economists for si-
multaneous games –more on this below. It turns out that as long as one uses
a simultaneous-move mechanism, it is impossible to have equilibrium out-
comes that are a proper subset of the market allocations (Tadenuma and Thom-
son, 1995a). Thus, in order to both attempt to achieve a finer selection of mar-
ket allocations and improve the performance of the mechanism –at least in an
experimental setting, it is necessary to consider sequential mechanisms.

Only a few sequential mechanisms that implement market allocations have
been identified in the literature. The most prominent is the divide and choose
mechanism: pick one agent at random to propose a transfer x from the agent
who receives the object to the other agent; then the other agent decides to get
the object and transfer x to the other agent, or get the transfer x . Instruction to
use this mechanism are usually included, as a buy-sell clause –also known as a
“Texas shootout,” in partnership agreements (de Frutos and Kittsteiner, 2008).
This mechanism has a unique subgame perfect Nash equilibrium, depending
on who the proposer is. A high valuation proposer will offer a transfer x and
the other agent would accept the transfer. A low valuation proposer will of-
fer a transfer x and the other agent would get the object and transfer x to her
(Figure 1).

Brown and Velez (2016) experimentally evaluated the performance of both
winner’s-bid auction and divide and choose mechanisms. Divide and choose
obtained 81% market allocations and 85% efficient allocations. Winner’s-bid
auction obtained 47% market allocations and 73% efficient allocations. The
differences are significant. It turns out that simultaneous nature of the winner’s-
bid auction induces a distortion that keeps agents away from Nash behavior.
This distortion slightly improves over time, but does not improve to the level
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of divide and choose. Essentially, agents’ actions are consistent with a quan-
tal response equilibrium model: agents respond to the distribution of play of
the other agents with a noisy best response that is induced by their inability to
observe payoffs or by their bounded rationality; in equilibrium each player’s
distribution of play is the noisy best response to the distribution of play of the
other agent.

Even though divide and choose mechanism significantly outperforms the
winner’s-bid auction, it still loses 15% of efficient allocations and 19% of com-
petitive allocations with respect to the subgame Nash equilibrium prediction.
This loss is caused by the asymmetry of the mechanism after the proposer is de-
termined. In the subgame perfect equilibrium of the mechanism, the chooser
is indifferent among the bundles offered by the proposer. Thus, when the pro-
poser selects a proposal that is very close to the subgame perfect one, the chooser
can, at almost no cost, punish the proposer by selecting the inefficient out-
come. For instance, if a high valuation proposer, offers a transfer x + δ, the
chooser would lose 2δ by selecting to get the object and doing the transfer. If
δ is small, choosers indeed pay this cost and express their displeasure for the
proposal.

This experimental evidence motivates our designing new sequential mech-
anisms that pick in unique subgame perfect Nash equilibrium a more cen-
tral selection from the set of market allocations. Our restriction to sequential
mechanisms allows us to aim for essentially single valued outcomes and avoid
bounded rationality issues associates with simultaneous move mechanisms.
By selecting more central allocations we intend to avoid the reciprocity issues
that compromise the performance of divide and choose. We proceed in two
steps. First, we borrow from the literature on normative economics and iden-
tify salient market allocations. Then we construct simple sequential mecha-
nisms that select in unique subgame perfect equilibria this central allocation.

4 A balanced market allocation and how to achieve it

We are interested in finding a compromise between the interests of both agents
among all market allocations. In order to do so we measure how biased each
market allocation is and use this measure to select a central market allocation.

Recall that the set of market allocations is isomorphic to the interval [x , x ].
At each market allocation a high valuation agent receives the object and trans-
fers an amount in this interval to the other agent. From the point of view of
the low valuation agent, the only unbiased market allocation is that in which
she receives x , because at this allocation both agents receive equal value allot-
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ments with respect to her own welfare index. Moreover, any other market al-
location is biased towards her, for she finds her consumption preferable than
that of the other agent. Curiously, exactly the same happens for the high valu-
ation agent. From her point of view, x is only unbiased market allocation and
all other market allocations are biased towards her. Thus, we cannot find an al-
location that is perceived as unbiased by both agents. In general each market
allocation will be perceived by both agents as being biased towards themselves.
Our approach is then to measure these perceived biases in a comparable way
and make them equal.

Tadenuma and Thomson (1995b) propose to measure how well an agent,
say i , is treated in relation to agent j , at a market allocation x , by means of the
maximal amount of money that can be added to the consumption of agent j

without causing agent i to prefer j ’s allotment. For our high valuation agent,
this bias, which we denote by bh (x ), is the amount of money such that uh (x ) =

x+bh (x ). For the low valuation agent, this bias, which we denote by bl (x ), is the
amount that would make indifferent the agent between being paid x to give up
the object or paying x−bl (x ) for it, i.e., ul (x−bl (x )) = x . Since bh (x )−bl (x )≥ 0,
bh (x )− bl (x ) ≤ 0, and this difference is a monotone function of x , a standard
argument shows that there is a unique bx that makes the agents’ perceived bi-
ases equal, i.e., bh (bx ) = bl (bx ). We refer to this allocation as the balanced market
allocation.

Example 1 (continuation). Recall that in our example, Mark is the high val-
uation agent and Eduardo the low valuation agent. Then, for a market alloca-
tion x , 100− (1+ r )x = x + bh (x ) and 50− (x − bl (x )) = x . Thus, bx = 150

4+r .
It is instructive to compare this balanced market allocation with the middle

point of the interval of market allocations:

x + x

2
− x =

50−25r

4+2r
<

50−25r

4+ r
= bx − x .

Thus, the balanced market allocation is to the right of the median market allo-
cation. Intuitively, this is so because each dollar that Eduardo gives up releases
Mark from the burden of paying interest over that dollar. Thus, moving away
from their respective worst market allocations, Mark’s perceived bias increases
quicker than Eduardo’s.

Let us measure how sensitive our balanced market allocation is to the asym-
metry in credit conditions for the agents by means of the percentage of the size
of the set of market allocations that the credit constrained agent ends up pay-
ing in excess of the median market allocation, i.e.,

bx − x

x − x
−

1

2
=

r

2(4+ r )
.
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For an annual effective interest rate of 8%, the credit constrained agent will end
up paying about 1% of the size of market allocations above the median market
allocation.

We present a mechanism that implements the balanced market allocation
in subgame perfect equilibria.

Alternating pricing game. A randomly selected agent, say agent i , pro-
poses either to buy or sell the object and names a price. Suppose that i pro-
poses to but at pi . Agent j then has two options: (i) “steal agent i ’s deal” and
buy at pi ; or (ii) renegotiate and propose a price pj . If agent j renegotiates,
agent i can either, steal agent j ’s deal and sell at pj , or compromise and buy

at
pi+pj

2 . If agent i proposes to sell at pi instead, the symmetric game unfolds.
That is, agent j can steal agent i ’s deal and sell at pi , or renegotiate and pro-
pose pj so agent i can either steal agent j ’s deal and buy at pj or compromise
and sell at the average price.

Theorem 1. The alternating pricing game implements in subgame perfect equi-

librium the balanced market allocation. That is, each subgame perfect equilib-

rium outcome of the mechanism is the balanced market allocation and the bal-

anced market allocation is a subgame perfect equilibrium outcome.

Example 1 (continuation). If Mark is asked to move first in the alternating
pricing game (Figure 2), the game has a unique backward induction solution.
In the equilibrium path Mark proposes to buy at a price bPM ≡ 50 1+r

4+r , Eduardo

renegotiates the price and proposes bPE ≡ 50 5−r
4+r , and finally Mark buys at

bPM + bPE
2

(see Appendix for the description of off equilibrium strategies). Symmetrically,
if Eduardo is asked to move first, the game has a unique backward induction
solution. In the equilibrium path Eduardo proposes to sell at bPE , Mark renego-

tiates the price and proposes bPM , and finally Eduardo sells at
bPM+ bPE

2 .
We will discuss here the intuition behind the equilibrium and present a for-

mal proof in the Appendix.
First we observe that both Mark and Eduardo reveal their roles as buyer

and seller when they are given the opportunity to move first. This means that
in the alternating pricing game it is not profitable to pretend to be a seller for a
high valuation agent or to pretend to be a buyer for a low valuation agent. Con-
sider for instance Mark. If he proposes to sell, he will actually end up buying
at a price that is at least x . It is not difficult to see why this is so. If Mark pro-
poses to sell at a price higher than x , Eduardo can actually exercise his “steal
the deal” option and force Mark to buy at that price. If Mark proposes to sell
at a price PM < x , things are not better for him. Recall that Mark is indifferent
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Mark (proposes to buy or sell)

Mark (names a price PM )

Eduardo (steals Mark’s
deal, or renegotiates

price and names price PE )

Mark (steals Eduardo’s
deal, or compromises
and accepts the
average price)

Payoffs

Mark

Eduardo

Buy Sell

PM PM

R R

R R

PE PE

Buy at
PM +PE

2

Sell at
PM +PE

2

Sell at

PE

Buy at

PE

Sell at

PM

Buy at

PM

PM +PE
2

uM

�
PM +PE

2

�
PE

uE (PE )

PM

uE (PM ) PM

uM (PM )

PE

uM (PE )
PM +PE

2

uE

�
PM +PE

2

�

Figure 2: Extensive game for alternating pricing game mechanism when Mark is asked to move
first.

from buying or selling at x . Thus, Mark prefers to buy at x than selling at PM ,
i.e., uM (x )> PM . If Eduardo renegotiates and proposes a price PE = x +δ, Mark
will actually buy at that price when δ > 0 is small compared with x −PM . We
will see next that by proposing to be a buyer, Mark can actually buy at a price
lower than x . In this way our mechanism gives the incentives to the first mover
to announce his real role in the transaction.

Now, imagine that Mark proposes to buy at a price PM ≡ x . Eduardo can
then wither buy at x or propose a price PE . Eduardo knows that contingent on

price PE , Mark will choose his best between selling at PE and buying at
x+PE

2 .

Thus, Eduardo’s optimal response is PE such that uM

�
PM +PE

2

�
= PE . If Eduardo

proposes x , Mark strictly prefers to buy at
x+x

2 . Thus, Eduardo’s optimal pro-
posal, which we denote PE (x ), is greater than x . Since Mark is indifferent be-
tween buying and selling at x , then the average price for the optimal response

for Eduardo, i.e.,
x+PE (x )

2 is less than x . Since Eduardo is indifferent between

13



buying and selling at x , he prefers Mark buying at
x+PE (x )

2 > x , than he buy-
ing at x (steal the deal option) or at PE (x ) > x . Thus, by proposing to buy at
x , Mark can actually buy at a price that is less than x , his best outcome if he
would pretend to be a seller.

Observe that if Mark proposes to buy at x , Eduardo strictly prefers to sell

at
x+PE (x )

2 > x than exercising his steal the deal option and buying himself at
x . Of course Eduardo will not buy at PE (x ) > x . Thus, Mark still has room for
obtaining a better deal buy offering to buy at a price lower than x . The lowest
price that Mark can achieve makes Eduardo indifferent between buying at PM

and selling at PM+PE (PM )
2 , i.e.,

uE (PM ) =
PM +PE (PM )

2
. (1)

Since Eduardo will extract all that he can from Mark, then Mark will be indif-
ferent between buying at PM +PE (PM )

2 and selling at PE (PM ), i.e.,

uM

�
PM +PE (PM )

2

�
= PE (PM ). (2)

Equations (1) and (2) have a unique solution PM = bPM and PE ( bPM ) = bPE as de-
fined in our description of the equilibrium path actions. Thus, if we denote by
∆≡ bPE − bPM ,

uE

� bPM + bPE

2
−

1

2
∆

�
=
bPM + bPE

2
and uM

� bPM + bPE

2

�
=
bPM + bPE

2
+

1

2
∆.

Thus,

bM

� bPM + bPE

2

�
= bE

� bPM + bPE

2

�
=

1

2
∆,

and

bx =
bPM + bPE

2
.

Summarizing, in equilibrium there is indeed a price negotiation. First, Mark
lowballs Eduardo and offers to buy for an unrealistic price bPM < x . Then, Ed-
uardo renegotiates the price and proposes an unrealistically high price bPE > x .
These two unrealistic proposals offset each other: their average is the balanced
market transfer. Finally, Mark compromises and buys at the average price,
leading to the balanced market allocation.

For instance if r is ten percent, the lowest competitive transfer x is $25 mil-
lion and the highest x is $47,619,048. If Mark moves first, he proposes to buy
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at $13,414,634, an unrealistic price knowing that Eduardo would prefer to buy
at that price rather than selling. Eduardo can renegotiate, however. Indeed,
Eduardo proposes a price of $59,756,098. This price would be unrealistic too,
for Mark prefers to sell at this price rather than buying. The average of these
prices, i.e., $36,585,366 is the balanced competitive transfer. Mark finally buys
at this price.

The case when Eduardo moves first is symmetric.

5 Concluding remarks

Many experts of real life negotiations point out that the secret of a successful
mediation is to help parties in reaching a fair compromise. We design a mech-
anism that in a two-agent division problem helps parties to share the surplus
in an equitable way. The basic intuition of why our mechanism succeeds in
reaching a fair compromise is that each party is refrained from making unrea-
sonable requests by the threat that the other party could shift her role (from
buyer to seller and viceversa). Since both parties have the opportunity to shift
her role, then our mechanism is also procedural fair and implements a bal-
anced market allocation.

Appendix: a general result

One can describe the balanced market allocation as that in which the aggre-
gate bias in the economy is shared equally by both agents. An arbitrator may
have different social objectives than equalizing biases among agents, however.
There may be verifiable characteristics of the agents that grant different treat-
ment of the agents. For instance, the government may be interested in favoring
minorities or small business owners.

Without giving up the market allocations, the arbitrator can favor an agent
by selecting an allocation that ensures a given percentage of the aggregate bias
to a certain agent. Givenρ ∈ [0, 1]and agent i , Tadenuma and Thomson (1995b)
propose to select the allocation that gives a proportion ρ of the aggregate bias
to this agent. One can easily show that for i ∈ N , there is a unique x ∈ [x , x ]

such that
bi (x )

bi (x ) + b j (x )
=ρ. (3)

We denote this market allocation by bx i
ρ . Observe that the balance market allo-

cation is indeed bx i
1
2

independently of the identity of i ∈N . Moreover, for each
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ρ, bx i
ρ = bx

j
1−ρ .

Our mechanism can be modified so it implements bx i
ρ in subgame perfect

equilibria. It is of course more likely that the reciprocity issues that affect the
performance of the divide and choose mechanism, affect less the mechanisms
with a more central target, i.e., a ρ closer to 1

2 .

(i ,ρ)-alternating pricing game. Agent i , proposes either to buy or sell the
object and names a price. Suppose that i proposes to buy at pi . Agent j then
has two options: (i) “steal agent i ’s deal” and buy at pi ; or (ii) renegotiate and
propose a price pj . If agent j renegotiates, agent i can either, steal agent j ’s
deal and sell at pj , or compromise and buy atρpi +(1−ρ)pj . If agent i proposes
to sell at pi instead, the symmetric game unfolds. That is, agent j can steal
agent i ’s deal and sell at pi , or renegotiate and propose pj so agent i can either
steal agent j ’s deal and buy at pj or compromise and sell at ρpi + (1−ρ)pj .

Theorem 2. The (i ,ρ)-alternating pricing game implements in subgame per-

fect equilibrium bx i
ρ . That is, each subgame perfect equilibrium outcome of the

mechanism is bx i
ρ , and bx i

ρ is a subgame perfect equilibrium outcome.

Proof. In order to avoid trivialities suppose that ρ ∈ (0, 1) and x < x . Suppose
first that agent i is a high valuation agent. We solve the game by backward
induction.

First, observe that since ui is continuous, onto, and decreasing, for each
Pi ∈R, there is a unique q (Pi ) ∈R such that ui (ρPi +(1−ρ)q (Pi )) = q (Pi ). More-
over, q (Pi ) is decreasing and onto. Since ui is decreasing, ρPi + (1− ρ)q (Pi )

is an increasing function of Pi . We claim that q is a continuos function. Let
{P t

i }
∞
t=1 be a convergent sequence and Pi ≡ limt→∞P t

i . Since the sequence
is convergent, then it is bounded. Since q is monotone, then the sequence
{q (P t

i )}
∞
t=1 is also bounded. Consider an arbitrary subsequence, which we de-

note by {P̃ t
i }
∞
t=1, such that {q (P̃ t

i )}
∞
t=1 is convergent. Let q̃ ≡ limt→∞ q (P̃ t

i ).
Since ui is continuous, then ui (ρPi + (1− ρ)q̃ ) = q̃ . Thus, q̃ = q (Pi ). Since
{q (P t

i )}
∞
t=1 is bounded and each of its convergent subsequences converges to

q (Pi ), then {q (P t
i )}
∞
t=1 is convergent and its limit is q (Pi ). Thus, q is continuous.

Thus, ρPi + (1−ρ)q (Pi ) is also onto.
Since u j is a continuous, onto, and decreasing function andρPi+(1−ρ)q (Pi )

is a continuous, onto, and increasing function of Pi , then there is a unique Pi ,
which we denote by bPi , such that u j ( bPi ) = ρ bPi + (1−ρ)q ( bPi ). Since q (x ) = x ,

then q (x )> x . Thus, u j (x )<ρx + (1−ρ)q (x ). Thus, bPi < x and q ( bPi )> x .
Suppose that agent i has proposed to buy at price Pi and agent j rene-

gotiated and proposed price Pj . Then, agent i buys at ρPi + (1−ρ)Pj , when
ui (ρPi + (1−ρ)Pj ) > PJ and sells at Pj when ui (ρPi + (1−ρ)Pj ) < Pj . Suppose

16



now that agent i proposed to buy at Pi . Then agent j ’s utility of the different ac-
tions is: u j (Pi ) if buying at Pi ; u j (Pj ) if renegotiating and proposing Pj > q (Pi );

andρPi +(1−ρ)q (Pi ) if renegotiating and proposing Pj < q (Pi ). If Pi > bPi , then
ρPi + (1−ρ)q (Pi ) > u j (Pi ). Thus, agent j will play a best response whenever
can achieve a utility level of max{u j (q (Pi )),ρPi + (1−ρ)q (Pi )}. Thus, in a SPE

agent i must choose the best for agent j when indifferent between Pi > bPi and
agent j renegotiates and proposes Pj = q (Pi ). Let p be such that q (p ) = x . Since
q (x ) = x , then p > x . Thus, u j (x ) = x <ρp + (1−ρ)x . Thus, there is a unique

P ∗i >
bPi such that, u j (q (P

∗
i )),ρP ∗i + (1−ρ)q (P

∗
i ). Moreover, q (P ∗i )< x . Thus, in

a SPE, if agent i proposes to buy at Pi > bPi , her utility is:

�
ui (ρPi + (1−ρ)q (Pi )) i f bPi < Pi < P ∗i ,

q (Pi ) i f P ∗i < Pi .

If agent i proposes to buy at P ∗i , her utility is at most the maximum between
q (Pi ) and ui (ρPi +(1−ρ)q (Pi )). Now, if Pi < bPi , then u j (Pi )>ρPi +(1−ρ)q (Pi )>

u j (x ) > u j (q (Pi )). Thus, if agent i proposes to buy at Pi < bPi , in a subgame
perfect equilibrium agent j buys at Pi . Thus in a SPE agent i can guarantee a
utility arbitrarily close to ui (ρ bPi + (1− ρ)q ( bPi )). Moreover, agent i ’s utility of
proposing to buy is bounded above by ui (ρ bPi + (1−ρ)q ( bPi )).

Now, if agent i proposes to sell at Pi and agent j renegotiates and proposes
Pj , in a SPE, agent i buys at Pj if ui (Pj )>ρPi+(1−ρ)Pj and sells atρPi+(1−ρ)Pj

if ui (Pj ) < ρPi + (1− ρ)Pj . One can show (see above) that there is a unique
r (Pi ) such that ui (Pj ) = ρPi + (1−ρ)Pj , that r (Pi ) is decreasing in Pi , and that
ρPi + (1−ρ)r (Pi ) is increasing in Pi . Clearly, r (x ) = x . Thus, in a SPE if agent i

proposes to sell at Pi and agent j renegotiates and proposes Pj , agent j ’s utility
is �

Pj i f Pj < r (Pi ),
u j (ρPi + (1−ρ)Pj ) i f Pj > r (Pi ).

Suppose that agent i proposes to sell at Pi > x . Since r (Pi ) < x < ρPi + (1−
ρ)r (Pi ),

Pi >max{u j (x ), x } ≥max{u j (ρPi + (1−ρ)r (Pi )), r (Pi ),}.

Thus, in a SPE, if agent i proposes to sell at Pi > x , agent j will sell at Pi and
agent i ’s utility will be ui (Pi ) < ui (x ). Suppose now that agent i proposes to
sell at Pi < x . Thus, Pj < x < r (Pi ). Thus, in a SPE, if agent i proposes to sell at
Pi < x , agent j will necessarily renegotiate and propose r (Pi ) and agent i will
break the tie between buying at r (Pi ) and selling atρPi +(1−ρ)r (Pi ) in favor of
agent j . Thus, in a SPE, if agent i proposes to sell at Pi < x , her utility will be at
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most ui (r (Pi )) < ui (x ). In a SPE, if agent i proposes to sell at x , either agent j

sells at x , or renegotiates and proposes x and agent i buys at x . In any case,
agent i ’s utility is ui (x ).

Thus, in a SPE, the unique best response of agent i is to propose to buy at
bPi , then agent j renegotiates and proposes bPj ≡ q ( bPi ), and finally, agent i buys

at ρ bPi + (1−ρ) bPj .

Let∆≡ bPj − bPi > 0 and z ≡ρ bPi +(1−ρ) bPj . Recall that u j ( bPi ) =ρ bPi +(1−ρ) bPj

and ui (ρ bPi + (1−ρ) bPj ) = bPj . Thus,

u j (z − (1−ρ)∆) = z and ui (z ) = z +ρ∆.

Thus, bi (z ) =ρ∆, b j (z ) = (1−ρ)∆, and z = bx i
ρ .

If agent i is a low valuation agent, one can see that backward induction
singles out a unique equilibrium path play: agent i proposes to sell at bPi >

x , agent j renegotiates and proposes price bPj < x . These prices are uniquely
defined by the system:

u j (ρ bPi + (1−ρ) bPj ) = bPi and ui ( bPj ) =ρ bPi + (1−ρ) bPj .

Then, agent i sells at z ≡ρ bPi +(1−ρ) bPj . Let∆≡ bPi − bPj . Then, u j (z ) = z +(1−
ρ)∆ and ui (z −ρ∆) = z . Thus, z = bx i

ρ .
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