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Abstract

We study the core of normal form games with a continuum of players and without
side payments. We consider the weak-core concept, which is an approximation of the
core, introduced by Weber, Shapley and Shubik. For payoffs depending on the play-
ers’ strategy profile, we prove that the weak-core is nonempty. The existence result
establishes a weak-core element as a limit of elements in weak-cores of appropriate
finite games. We establish by examples that our regularity hypotheses are relevant
in the continuum case and the weak-core can be strictly larger than the Aumann’s α-
core. For games where payoffs depend on the distribution of players’ strategy profile,
we prove that analogous regularity conditions ensuring the existence of pure strategy
Nash equilibria are irrelevant for the non-vacuity of the weak-core.

keywords : Weak-core; α−core; Game with a continuum of players; Large anonymous
games; Normal form games.
JEL Classification : C02; C71.

1 Introduction

It is commonly admitted that the continuum property on the set of agents is valuable
in economy and clearly inferring results from finite games is not possible or at least not
obvious. Hence the study of the continuum case may be an interesting task per se and
requires, in the absolute, proper techniques. For some type of continuum games, it is
possible, using adequate techniques, to prove analogous results to that known in finite-
player games. Some other type of games with a continuum of players may involve, for the
existence of pure strategy equilibria, unusual regularity conditions. For more accuracy, let

∗This is an amended version of the original paper with the same title published in : Mathematical Social
Sciences 89(2017), 32-42.
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us summarize roughly two models of continuum games prevalent in the literature. Denote
by (T, T , µ) a probability space of players, and A a common action space for the players.
Under some other regularly assumptions making all the involved entities meaningful, a
strategy profile is a function f : T → A. The payoffs can be given by U(t, f(t), f), a
game which we denote U , or by W (t, f(t), µf−1), a game we denote W . For the game
U , the existence of a Nash equilibrium [Khan, 1985, 1986, Balder, 1995, 1999] is obtained
using expected conditions, mainly : the concavity of U(t, a, ·), (t, a) ∈ T × A, and some
appropriate continuity hypothesis of U(t, ·, ·), t ∈ T . However, in case of the game W ,
Schmeidler [1973] shows that a pure-strategy Nash equilibrium exists when A is finite
and µ nonatomic. More generally, the countability of the action space A is necessary for
the existence of pure-strategy Nash equilibrium [Khan and Sun, 1995, Khan et al., 1997,
Khan and Sun, 2002] for W . This is an unexpected condition, or may be viewed as a
new condition illustrating that it may happen that we can learn more in continuum games
comparatively to finite-player games.

The Nash equilibrium is extensively investigated in the literature of normal form games
with a continuum of players. Whereas, this is not the case for the α−core. Up to now,
many questions remain unsolved for the α−core in the continuum situation. Recall that the
α-core of normal form games is introduced by Aumann [1961]. Its main existence result,
for games with a finite set of players, is established by Scarf [1971]. Some generalizations
to games of different aspects, but always a finite set of players are obtained in [Kajii,
1992, Uyanik, 2015, Askoura, 2015, Askoura et al., 2013]. When considering a continuum
set of players, this concept must be somewhat approximated. Weber [1981] introduced
an adequate approximation of the core, called weak-core, in the setting of games with a
continuum of players in a characteristic function form.

In this paper, we focus on the weak-core in the setting of strategic normal form games
with a continuum of players and without side payments, as initiated in [Askoura, 2011].
We succeeded to prove an existence result for a particular case of payoffs for the game
U . We assume that the payoffs depend only on the strategy profile of the players, more
precisely, payoffs of the form U(t, f). Together with the concavity assumption and some
other regularity conditions on payoffs, we establish an existence result.

Notwithstanding their conceptual differences and their targeted economic situations, the
Nash equilibrium on one hand and the α−core on the other involve, for their existence,
analogous regularity conditions1 for games with a finite set of players. We prove, in this
paper, that this is not the case for games with a continuum set of players of type W . We
provide an example of a game satisfying all the conditions required for the existence of
the pure-strategy Nash equilibrium, but its weak-core is empty. Moreover, this example
satisfies additional conditions that may be expected to be necessary for the weak-core. In
this example the payoffs are more general, they depend on individual actions and on the
distribution of the strategy profile of the players. This proves that for general payoffs, the
weak-core may be empty and must require (for its existence) more restrictive hypotheses.

1See Section 5.
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For payoffs depending on the strategy profile and individual actions of the players (the game
U), we expect that the weak-core can be empty under reasonable and intuitive conditions,
even similar to that we use hereafter to study particular payoffs. For this kind of payoffs we
do not succeeded to provide counter-examples. Note that these two case studies (payoffs
depending directly on strategies or on their distributions) may be different when convexity
assumptions are used.

Properly speaking, the core is already approximated in order to relax the convexity as-
sumption in finite large games [Shapley and Shubik, 1966]. It is shown that the convexity
(of preference sets) is not very important when the set of agents becomes large enough.
In transferable utility case, Shapley and Shubik [1966] obtained interesting results (non-
vacuity of approximate cores) for exchange economies with sufficiently many participants.
This approximation type is successfully applied later for (finite large) games induced from
pergames (a configuration in which the payoff achievable by a coalition is a function of
the number of its players and their characteristics or attributes) in [Wooders, 1983, 1994,
2008] and [Wooders and Zame, 1984]. In the case of a continuum set of players, Weber
[1979] studied this concept (approximation in a same direction for the core) and proved its
existence for balanced games in characteristic function form and without side payments.
A slightly different approximation of the core is introduced by Kannai [1970, 1972] and
applied for finite markets. Hildenbrand et al. [1973] carried on this direction in order to
generalize the Shapley-Shubik results for large economies without side payments. Other
studies on the approximation of the core can be found in (Anderson [1985] and Starr
[1969]).

Weber’s approximation [Weber, 1981] we deal with, in this work, is different from the
above. Its purpose is not the overcoming of the nonexistence of the exact core resulting
from the non convexity assumption, but to comply with the continuum case and upper semi-
continuous payoffs. For games with a finite set of players and continuous payoffs, our weak-
core is exactly the α−core of Aumann. We provide, in Section 4.2, an example of game
satisfying all the used conditions for the non vacuity of the weak-core, in which the α−core
is empty, thus legitimating the introduction of the approximation. Even for the weak-core
approximation, a second exemple shows that an additional regularity condition on payoffs
with respect to players must be assumed, in order to handle the continuum framework.
This role is played by the equi-upper-semicontinuity of players’ utility functions, a fact
that does not show up in games with finite sets of players. In fact, for finite games, this
assumption is satisfied automatically, provided all utilities are upper-semicontinuous.

For non exhaustive list of works devoted to games with a continuum of players, the reader is
referred to Weber [1981, 1979], Ichiishi and Weber [1978], Rosenmüller [1975] and Kaneko
and Wooders [1996] for utility characteristic function form games. For more general frame-
works concerning (exchange) economies and markets, we can cite the famous works of
Aumann [1964, 1966], Hildenbrand [1974, 1968], Mas-Colell [1975], Hart et al. [1974] and
Khan and Yamazaki [1981]. In a non-cooperative setting, the Nash equilibrium is partic-
ularly investigated in Schmeidler [1973], Mas-Colell [1984], Khan [1989], Rath [1992] and
Khan et al. [1997].
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2 Preliminaries, overall framework

Let (T, T , µ) be a probability space, where T is a σ-algebra on T and µ a σ−additive
probability measure on T . The space T refers to the set of players. Denote by T + the set
of elements of T with strictly positive µ-measure. The sets of T + refer to coalitions. Note
that two coalitions with µ-null symmetric difference will be confused.
Let A be a convex compact subset of a separable2 Banach space X. The set A represents
the space of actions. It is common to all players. Denote B(X) the Borel σ-algebra of X.
Let B(T,X) be the set of all T −B(X) measurable essentially bounded functions from T
to X. The space of all measurable functions from T to A (that are automatically essentially
bounded) is denoted by B(T,A). It refers to the space of pure strategy profiles. The terms
“essentially bounded” refer to the boundedness relatively to the essential supremum norm
‖ · ‖B(T,X) on B(T,X) abbreviated esssup-norm and defined by :

‖f‖B(T,X) = sup {α ∈ IR : µ{t ∈ T, ‖f(t)‖ > α} > 0}

where ‖ · ‖ is the norm of X. Since A is compact, B(T,A) is a norm closed subset of
B(T,X). In all this paper the complement of a subset E ⊂ T into T is denoted {E. The
notation X \ Y refers also to the complement of Y to X.
Let E ∈ T . Denote B(E,X) the set of all measurable essentially bounded functions from
E to X. B(E,A) is defined similarly and refers to the set of strategies of the coalition
E. For fE ∈ B(E,X) and f{E ∈ B({E,X), denote fE//f{E the function defined by fE
on E and f{E on {E. 0E denotes the almost everywhere null function of B(E,X). Since
E is measurable, for every measurable function fE ∈ B(E,X), fE//0{E ∈ B(T,X) and
for every f ∈ B(T,X), f|E ∈ B(E,X). Hence, by identifying B(E,X) with the subspace
{fE//0{E : fE ∈ B(E,X)}, B(T,X) can be represented as the algebraic direct sum :

B(T,X) = B(E,X)⊕B({E,X)

Note that this is also true for a finite number of factors. That is, for a given pairwise
disjoint finite family Ei ∈ T , i in a finite set I, such that ∪

i∈I
Ei = T up to a µ-null set, we

have the direct algebraic sum :

B(T,X) = ⊕
i∈I

B(Ei, X) (1)

Endow B(T,X) with a locally convex topology τB(T,X) satisfying the following statement :

(C) for every E ∈ T , B(E,A) is compact in B(T,X) for τB(T,X).

We will see in the appendix that this condition is satisfied by the usual weak topologies.
Denote by τB(E,X) the induced topology (from τB(T,X)) on B(E,X). The condition (C)
means that B(E,A) is compact for τB(E,X). In all this paper, if it is not expressly men-
tioned, all subspaces and subsets are endowed with the induced topology and all products
with the product topology. The abbreviation lsc means lower semi-continuous and usc
means upper semi-continuous.

2The separability of X is not relevant because one can consider the subspace spanned by A which is
always a separable Banach space.
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3 The weak-core for a strategic normal form game

A (strategic) normal form game with a continuum of players is defined by means of a
function U : T ×A×B(T,A)→ IR. As interpreted above, T stands for the set of players,
A the common set of actions and B(T,A) the set of strategy profiles. The payoffs are
summarized in U itself. When each player t chooses his strategy f(t) ∈ A, we obtain a
function f : T → A. Assuming that this function is measurable, f ∈ B(T,A), each player
t receives the gain U(t, f(t), f).
Denote the obtained game by the triple

G = ((T, µ), U, A)

or simply by U .
The weak-core defined in [Weber, 1981] and its blocking concept are adapted to continuum
games in normal form of type U as follows :

Definition 1. We say that a coalition E ∈ T + blocks the strategy h ∈ B(T,A), if there
exist ε > 0 and a strategy fE ∈ B(E,A), such that for all f{E ∈ B({E,A),

U(t, f(t), fE//f{E) > U(t, h(t), h) + ε a.e. on E

The weak-core of the game G is the set of strategies that are not blocked by any coalition
E ∈ T +.

Another conceivable model is to consider the action space as a compact metric space A0

and to define the game by means of a function W : T × A0 × P(A0) → IR. A convexity
structure is not needed on A0 (it may be finite following the needs). We denoted by P(A0)
the set of probability measures on A0. The space P(A0) is endowed as frequently with the
weak (star) topology.
To each player t corresponds a utility function W (t, ·, ·) : A0×P(A0)→ IR. For this game,
the set of strategy profiles B(T,A0) stands simply for T −B(A0) measurable functions.
Under the strategy profile f ∈ B(T,A0), each player t receives the gain W (t, f(t), µf−1).
Here, µf−1 stands for the image probability of µ under the function f .
Denote the obtained game by the triple

H = ((T, µ),W,A0)

or, as previously, simply by W .
The previously defined blocking concept can be stated in an analogous way :

Definition 2. For the game H, we say that a coalition E ∈ T + blocks the strategy h ∈
B(T,A0), if there exist ε > 0 and a strategy fE ∈ B(E,A0), such that for every f{E ∈
B({E,A0) :

W (t, fE(t), µ(fE//f{E)−1) > W (t, h(t), µh−1) + ε a.e. on E

The weak-core of the game H is the set of strategies that are not blocked by any coalition
E ∈ T +.
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Remark 1. By removing ε from Definitions 1 and 2, we obtain naturally the adapted Au-
mann’s α-core [Aumann, 1961] and its corresponding blocking concept. Observe, trivially,
in both cases that the weak-core contains the α−core.

Definitions 1 and 2 assert that a coalition blocks a given strategy of the game if it possesses
a strategy making almost all its members better off, at least by some ε > 0, regardless of
the opponent coalition choices for strategy. Like any core concept, the weak-core describes
stable situations in which no coalition has any incentive to form by playing a different
strategy. Indeed, it cannot improve upon, relatively to the equilibrium strategy, the payoffs
of almost all its members.
Askoura [2011] studied a reduced form of the game H, where the payoffs do not depend on
individual actions. Under the strategy profile f ∈ B(T,A0), it is assigned to each player
t the payoff W (t, µf−1). Then, some topological regularity conditions and a concavity
condition on the distribution argument of W ensured an existence result. In Section 5, we
discuss the game H with some general payoffs.
In the following section we focus on a reduced form of G with particular payoffs of the
form U(t, f) independent on individual actions3. We give further examples legitimating
the introduction of the approximation “weak-core” and discussing the used assumptions.
We expect that the weak-core of G may be empty for a general form of payoffs such as
U(t, f(t), f), under “reasonable” regularity conditions. However, we do not succeeded to
provide a counter-example for the latter case.
For the Nash equilibrium, there is an alternative formulation of a continuum game on
characteristics achieved by Mas-Colell [1984] for games with continuous payoffs, mainly
generalized for upper semi-continuous payoffs by Khan [1989]. Unfortunately, it appears
that the α−core (weak-core) cannot comply with an analogous formulation in a straight-
forward manner.

4 Payoff as a function of pure strategies

In this section we consider the game G, where the payoff of each player is reduced to
depend only on the strategy profile f ∈ B(T,A). That is, every player t receives the
payoff U(t, f). Without more specification when speaking about “blocking”, we mean the
blocking concept of Definition 1 with the reduced payoffs U(t, f), for (t, f) ∈ T ×B(T,A).

3Note that the payoff form U(t, f) does not generalize the form W (t, µf−1) if a concavity assumption
is needed on the second argument of W and U . Indeed f 7→W (t, µf−1) need not be concave in f if W (t, ·)
is concave, even if we endow the action space A0 with a convexity structure which is necessary before
asking for the concavity of W (t, µf−1) in f . That is the results proved in [Askoura, 2011] and Theorem
1 of section 4 are different, because, each one uses a concavity assumption on the second argument of the
payoffs. There is other differences related to the nature of the action spaces and the regularity assumptions
on payoffs.
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4.1 Existence result

Let us introduce the following definition :

Definition 3. Let F be a topological space. A family of functions : vγ : F → IR, γ ∈ Γ, is
said to be equi-usc at x0 ∈ F , if for every ε > 0, there exists a neighborhood Vx0 of x0 in
F , such that

vγ(x) < vγ(x0) + ε,∀x ∈ Vx0 ,∀γ ∈ Γ.

The family {vγ}γ∈Γ is said to be equi-usc (on F ) if it is equi-usc at every x ∈ F .

We use the following conditions :

(R1) for every f ∈ B(T,A), t 7→ U(t, f) is measurable, and there exists a µ−integrable
function ψ : T → IR+, such that |U(t, f)| ≤ ψ(t), for every t ∈ T and every f ∈
B(T,A).

(R2) for every t ∈ T, f 7→ U(t, f) is concave and the set of utilities {U(t, ·) : t ∈ T} is
equi-usc on B(T,A).

Theorem 1. Under (R1) and (R2), the weak-core of U is nonempty. Furthermore, an
element of the weak-core is obtained as a limit of elements in weak-cores of appropriate
finite games generated from U .

Proof. Consider the set Π of finite collections of coalitions containing T . Each π ∈ Π, π =
{Ei, i ∈ Iπ}, where Iπ is finite and one of the sets Ei = T . Ordered by inclusion, Π is
a directed set. Let π = {Ei, i ∈ Iπ} be fixed in Π. Let Kj, j ∈ Jπ, be a finite family
of pairwise disjoint measurable subsets of T of strictly positive measure, such that every
Ei, i ∈ Iπ, is an union (up to a µ-null set) of some sets Kj. Naturally, we have

⋃
j∈Jπ

Kj = T

up to a µ-null set.
Considering section 2 (and the appendix), for each j ∈ Jπ, let Yj = B(Kj, A) endowed
with the induced topology from τB(T,X). Denote Yπ =

∏
j∈Jπ

Yj endowed with the resulting

product topology. Following the properties of τB(T,X), all the sets Yj, j ∈ Jπ, and Yπ are
compact. For each y = (yj1 , ..., yj|Jπ |) ∈ Yπ corresponds a function hy : T → A defined up
to a µ-null set by :

hy = yj1//yj2//...//yj|Jπ | .

That is,

hy(t) =

{
yj(t), if t ∈ Kj,
an arbitrary a ∈ A if t ∈ T \

⋃
j∈Jπ

Kj.

Since the sets Kj, j ∈ Jπ, are pairwise disjoint, hy is well defined and obviously hy ∈
B(T,A).
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For each j ∈ Jπ, define a function gj : Yπ → IR by :

gj(y) =

∫
Kj

U(t, hy) dµ(t), ∀y ∈ Yπ.

From the measurability and the boundedness assumption (R1), the functions gj are well
defined and bounded.
Since

⋃
j∈Jπ

Kj = T up to a µ-null set, the functions gj do not depend on the values of hy

defined arbitrarily on T \
⋃
j∈Jπ

Kj.

Associate with π the finite normal form game :

Gπ = (Jπ, Yπ, {gj : j ∈ Jπ})

where Jπ is the set of players, Yπ is the product of strategy spaces and gj is the payoff of
the player j ∈ Jπ.
Note that the functions gj are concave on Yπ. This follows from the concavity of the
functions U(t, ·), assumed in (R2) and the linearity of the canonical function y 7→ hy.
Moreover, the functions gj are upper semi-continuous. Indeed, let {yω}ω∈Ω be a net in Yπ
converging to y ∈ Yπ. Let us identify, by using the canonical map described above, the
elements of Yπ with that of B(T,A) and show the upper semi-continuity of the functions
gj on B(T,A) (see the property (P) in the appendix).
Let ε > 0 be fixed. Using the equi-usc condition (assumed in (R2)), consider a neighbor-
hood Vε(y) of y such that,

U(t, y) + ε > U(t, y′),∀t ∈ T,∀y′ ∈ Vε(y).

Then there exists ω0 ∈ Ω such that,

U(t, y) + ε > U(t, yw),∀t ∈ T,∀ω > ω0.

It results that,∫
Kj

U(t, yω) dµ <

∫
Kj

U(t, y) dµ+ εµ(Kj),∀j ∈ Jπ,∀ω > ω0.

It follows,

lim sup
ω

∫
Kj

U(t, yω) dµ ≤
∫
Kj

U(t, y) dµ+ εµ(Kj), ∀j ∈ Jπ.

Since ε is fixed arbitrarily, we conclude that lim sup
ω

∫
Kj
U(t, yω) dµ ≤

∫
Kj
U(t, y) dµ, for

all j ∈ Jπ. Hence, the functions gj are upper semi-continuous.
By the non-vacuity of the α-core theorem for games with a finite set of players [Scarf, 1971],
and by observing that Scarf’s non-vacuity theorem establishes the existence of elements
in the weak-core for games with convex and compact strategy spaces which are subsets of
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Hausdorff topological vector spaces and usc bounded concave payoffs (see the appendix),
Gπ has a nonempty weak-core. Let yπ in the weak-core of Gπ and denote simply hπ = hyπ
the corresponding function in B(T,A).
Since B(T,A) is compact for τB(T,X), the net hπ, π ∈ Π, has a convergent sub-net, denoted
again hπ, π ∈ Π. Denote h the limit of this sub-net.
Let us prove that h belongs to the weak-core of U . Assume the opposite. Then, there exists
a coalition E ∈ B+(T ) that blocks h. From the equi-usc condition, E blocks all strategies
in a neighborhood θ(h) of h by a same strategy. Indeed, there exist fE ∈ B(E,A) and
ε > 0, such that for all f{E ∈ B({E,A),

U(t, fE//f{E) > U(t, h) + ε for a.e. t ∈ E.

Using the equi-usc condition, there exists a neighborhood θ(h) of h such that

U(t, h) +
ε

2
> U(t, h′),∀h′ ∈ θ(h),∀t ∈ T.

Then,

U(t, h) + ε > U(t, h′) +
ε

2
,∀h′ ∈ θ(h),∀t ∈ T.

It results that for all f{E ∈ B({E,A), for all h′ ∈ θ(h),

U(t, fE//f{E) > U(t, h′) +
ε

2
, for a.e. t ∈ E.

Then, there exists π0 ∈ Π, such that for all f{E ∈ B({E,A),

U(t, fE//f{E) > U(t, hπ) +
ε

2
, for a.e. t ∈ E,∀π ≥ π0.

Let π1 = {E, T} and consider π ∈ Π such that π > π1 and π > π0. Then, π1 ⊂ π. In the
game Gπ, there is a subset of indices Jπ(E) ⊂ Jπ such that E = ∪

j∈Jπ(E)
Kj up to a µ-null

set, where the sets Kj, j ∈ Jπ, are obtained as above relatively to the present game Gπ.
Put for every j ∈ Jπ(E), xj = fE |Kj . Denote xL = (xj)j∈L, for every L ⊂ Jπ.
Hence, for every xJπ\Jπ(E) ∈ YJπ\Jπ(E), the restriction of h(xJπ(E),xJπ\Jπ(E)) to E is equal to
fE up to a µ-null set. It results that, for all xJπ\Jπ(E) ∈ YJπ\Jπ(E) and all j ∈ Jπ(E),

gj(xJπ(E), xJπ\Jπ(E)) =
∫
Kj
U(t, fE//hxJπ\Jπ(E)

) dµ(t) >
∫
Kj
U(t, hπ) dµ(t)+δ = gj(yπ)+δ.

Where δ ∈]0; ε
2

min
j∈Jπ(E)

µ(Kj)], and yπ ∈ Yπ corresponds to hπ as explained above and

hxJπ\Jπ(E)
is the function whose restriction to every Kj, j ∈ Jπ \ Jπ(E), equals xj. This

means that the coalition Jπ(E) blocks yπ for the weak-core blocking concept. This is a
contradiction since yπ belongs to the weak-core of Gπ. This ends the proof.

Proposition 1. The condition of equi-upper-semicontinuity of U on strategies and the
measurability of U(·, f), for every f ∈ B(T,A), are satisfied if T is a compact topological
space endowed with its Borel σ−algebra, and U is jointly usc and continuous in t.
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Proof. The measurability of U(·, f), for every f ∈ B(T,A), results obviously from the
continuity of U in t. Let us prove the equi-usc property. Let ε > 0 and f ∈ B(T,A).
Using the continuity of U with respect to t, we can find for every t ∈ T a neighborhood
V 1
f (t) such that,

U(t′, f) + ε > U(t, f) +
ε

2
, ∀t′ ∈ V 1

f (t).

From the upper semi-continuity of U on its domain, we can find for every t ∈ T a neigh-
borhood V 2

f (t) of t and a neighborhood Vt(f) of f such that,

U(t, f) +
ε

2
> U(t′, f ′),∀(t′, f ′) ∈ V 2

f (t)× Vt(f).

Taking Vf (t) = V 1
f (t) ∩ V 2

f (t), we obtain,

U(t′, f) + ε > U(t, f) +
ε

2
> U(t′, f ′),∀(t′, f ′) ∈ Vf (t)× Vt(f).

When t ranges T we obtain a cover Vf (t), t ∈ T , of T with the corresponding neighborhoods
Vt(f) of f . Since T is compact, we can extract a finite sub-cover Vf (ti), i in a finite set I.
Put V (f) = ∩

i∈I
Vti(f). Then, for every t′ ∈ T, there exists an index i such that t′ ∈ Vf (ti).

Then, for every f ′ ∈ V (f),

U(t′, f) + ε > U(ti, f) +
ε

2
> U(t′, f ′),∀f ′ ∈ V (f).

We have constructed a neighborhood V (f) of f such that,

U(t, f) + ε > U(t, f ′),∀f ′ ∈ V (f),∀t ∈ T. (2)

4.2 The equi-usc hypothesis and the necessity of the approxima-
tion of the α-core

In this section, we provide two examples. The first one shows that Theorem 1 may fail if
the equi-usc condition of U on strategies is relaxed. The second, shows that there may be
situations in which all our regularity conditions are satisfied and the α-core is empty. Then,
this example legitimizes the approximation of the α-core. Before stating the examples, let
us begin with the common used constructions.
In this section, fix T = [0, 1] and A = [0, 1]. Consider the Borel σ-algebra on T and set
the previous probability µ to be the Lebesgue measure λ which is a probability on [0, 1].
We deal here with the particular case of X = IR. Take B(T,A) ⊂ L∞(T ) endowed with
the weak∗ topology. Section 6.2, of the appendix, ensures all topological needs on the
spaces. Precisely, the Bochner integral reduces to the Lebesgue integral and Condition
(C) is satisfied. Note that B(T,A) is metrizable for the weak∗ topology, because L1(T ) is
separable.
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Let Γ :]0, 1]× L∞(T )→ IR, defined for every (t, f) ∈]0, 1]× L∞(T ) by :

Γ(t, f) =

∫ t
0
fdλ

t
.

Then, for every t ∈]0, 1], the function f 7→ Γ(t, f) is linear and continuous on L∞(T ).
It can be represented by an element of L1(T ) in the corresponding duality. That is,

Γ(t, ·) =
χ[0,t]

t
∈ L1(T ) ⊂ L∗∞(T ). Moreover, Γ is continuous on ]0, 1] ×B(T,A), as it is

obviously sequentially continuous on the metrizable space ]0, 1]×B(T,A).
Define a second function G on ]0, 1]×B(T,A), by :

G(t, f) = sup
s∈]0,t]

Γ(s, f) for every (t, f) ∈]0, 1]×B(T,A).

Then,

G is jointly lsc, convex in f and continuous in t.

Indeed, it is clear that G is convex in f as a supremum of linear functions.
Let us prove that it is jointly lsc. Fix t0 ∈]0, 1], f0 ∈ B(T,A) and α ∈ IR such that
G(t0, f0) > α. Let α1 ∈ IR such that G(t0, f0) > α1 > α. From the definition of G and the
continuity of Γ on ]0, 1]×B(T,A), there is t1 ∈]0, t0[ such that G(t0, f0) < Γ(t1, f0)+α1−α.
Using the continuity of Γ again, we can find, on B(T,A), a neighborhood V (f0) of f0, such
that for all f ′ ∈ V (f0),

Γ(t1, f
′) > G(t0, f0)− (α1 − α) > α1 − (α1 − α) = α.

Then, for every f ′ ∈ V (f0), for every t ∈]t1, 1], sup
s∈]0,t]

Γ(s, f ′) > α. That is, there exists a

neighborhood V (t0) =]t1, 1] of t0 and a neighborhood V (f0) of f0 having just defined, such
that, for every (t, f) ∈ V (t0)× V (f0),

G(t, f) > α.

This means that G is jointly lsc. It remains to prove that G is continuous with respect
to t. Let f ∈ B(T,A) be fixed. Since G is jointly lsc, it suffices to prove that G(·, f)
is usc. Let t0 ∈]0, 1] and α > 0 such that G(t0, f) < α. If t0 = 1, there is nothing
to do, because this implies G(t′, f) < α, for all t′ ∈]0, 1]. Else, let α1 > 0 such that
G(t0, f) = sup

s∈]0,t0]

Γ(s, f) < α1 < α. Since Γ is continuous in t, there exists a neighborhood

V (t0) of t0 such that, Γ(t′, f) < α1, for all t′ ∈ V (t0). Then, sup
s∈V (t0)

Γ(s, f) ≤ α1. Hence,

sup
s∈]0,t0]∪V (t0)

Γ(s, f) ≤ α1 < α.

Choosing V (t0) to be an open interval centered at t0, we obtain, for every t′ ∈ V (t0),

G(t′, f) < α.

11



Then G(·, f) is usc.

The following example shows how the equi-usc of U on strategies is crucial in Theorem 1.

Example 1. The payoff function U is defined as follows :

U(t, f) =

∣∣∣∣∣∣ min

{
Γ(t, f), (1−G(t, f))

1− t
t

}
if t > 0,

1 for t = 0.

The function U has the following properties :

(*) U is bounded, jointly usc on [0, 1]×B(T,A) and concave with respect to its variable
f .

Before proving (*), note that U satisfies the conditions of Theorem 1 except the equi-usc
condition of {U(t, ·), t ∈ T} at f ≡ 0. In fact, since U(·, f) is usc, it is measurable,
the boundedness property completes (R1). The concavity assumption stated in (R2) is
expressly mentioned in (*).
Let us prove (*). It is clear that U(T ×B(T,A)) ⊂ [0, 1]. The function G is lsc on ]0, 1]×
B(T,A). Then, (t, f) 7→ 1−G(t, f) is usc on ]0, 1]×B(T,A). Since t 7→ 1− t

t
is positive

and continuous on ]0, 1], we can easily verify that (1−G(t, f))
1− t
t

is usc on ]0, 1]×B(T,A).

Since G is convex in f for every fixed t ∈]0, 1], the function (1−G(t, f))
1− t
t

is concave in

f for every fixed t ∈]0, 1]. Whereas, Γ(t, f) is linear in f and continuous on ]0, 1]×B(T,A).
It results that U , as a minimum among these two functions, is usc on ]0, 1]×B(T,A) and
concave in f for every t ∈]0, 1]. For t = 0, U is constant in f , then concave as well. Observe
now that for every t ∈]0, 1] and every f ∈ B(T,A), U(t, f) ∈ [0, 1]. Then if (tn, fn) is a
sequence in ]0, 1]×B(T,A) converging to (0, f), necessarily lim sup

n
U(tn, fn) ≤ 1 = U(0, f).

Hence, U is also usc at every point of the form (0, f), f ∈ B(T,A). At this step we proved
that U satisfies all the properties listed in (*).
Let us prove now that the weak-core of U is empty.
Let f such that lim sup

t→0
Γ(t, f) = 1. Let us show that such a strategy cannot be in the

weak-core. Indeed, with the assumption lim sup
t→0

Γ(t, f) = 1, for every t ∈]0, 1], G(t, f) = 1.

It results that U(t, f) = 0 for every t ∈]0, 1]. If the coalition E =]0, 1/2] plays hE ≡
1

2
, we

obtain, Γ(t, hE//h{E) = G(t, hE//h{E) =
1

2
and [1 − G(t, hE//h{E)]

1− t
t

=
1

2
.
1− t
t
≥ 1

2
,

for every h{E ∈ B({E,A) and every t ∈]0, 1/2]. Then, E blocks f .
Now, let f ∈ B(T,A) such that lim sup

t→0
Γ(t, f) < 1. Then, there exist t0 ∈]0, 1] and

α ∈]0, 1[, such that Γ(t, f) < α for every t ∈]0, t0]. Then, for every t ∈]0, t0], U(t, f) < α.
Let t1 ∈]0, t0] such that 1 − t1 > α. Consider the coalition E =]0, t1] with its strategy
hE ≡ 1− t1. Then, for every t ∈]0, t1] and every h{E ∈ B({E,A),

12



Γ(t, hE//h{E) = G(t, hE//h{E) = 1− t1 and

(1−G(t, hE//h{E))
1− t
t

= t1
1− t
t

=
t1
t
.(1− t) ≥ 1− t ≥ 1− t1

That is, for every t ∈]0, t1] and every h{E ∈ B({E,A), U(t, hE//h{E) = 1−t1 > α > U(t, f).
This can be rewritten as : for every t ∈]0, t1] and every h{E ∈ B({E,A),

U(t, hE//h{E) > U(t, f) + (1− t1)− α.

Which means that E blocks f . From the foregoing, we can state that the weak-core of U
is empty.

The following example establishes that the weak-core may be strictly larger than the α-core.

Example 2. Here, U is defined as :

U(t, f) =

∣∣∣∣∣∣ min

{∫ t

0

f dλ, (1−G(t, f))
1− t
t

}
if t > 0,

0 for t = 0.

U satisfies all the properties :

(**) U is bounded, jointly usc on [0, 1]×B(T,A), concave with respect to its variable f ,
for every fixed t ∈ [0, 1], and continuous in t, for every fixed f ∈ B(T,A).

Before proving (**), observe, using proposition 1, that it implies all the conditions of
theorem 1.
It is clear that U(T ×B(T,A)) ⊂ [0, 1]. Analogously to the previous example, we obtain
easily that U is jointly usc on ]0, 1]×B(T,A) and U(t, ·) is concave on B(T,A) for every
fixed t ∈ [0, 1]. Since for every fixed f ∈ B(T,A), G(·, f) is continuous on ]0, 1], it is clear
that U(·, f) is continuous on ]0, 1] for every fixed f ∈ B(T,A). To achieve the verification
of (**), it suffices to prove the continuity of U at (0, f), for every f ∈ B(T,A). In fact, if
(tn, fn) is a sequence in ]0, 1]×B(T,A) converging to (0, f), necessarily lim sup

n
U(tn, fn) ≤

lim sup
n

∫ tn
0
fn dλ = 0 = U(0, f). Since U(t, h) ≥ 0, for every (t, h) ∈ [0, 1] × B(T,A),

necessarily lim
n
U(tn, fn) = 0 = U(0, f). Thus, U is continuous at (0, f).

Let us prove now that the α-core of U is empty. As in the previous example, an element
f ∈ B(T,A) such that lim sup

t→0
Γ(t, f) = 1 cannot be in the α-core. For such element f , we

have necessarily U(t, f) = 0 for every t ∈]0, 1]. If the coalition E =]0, 1/2] plays hE ≡
1

2
,

we obtain, for every h{E ∈ B({E,A) and every t ∈]0, 1/2],∫ t

0

hE//h{E dλ =
t

2
and [1−G(t, hE//h{E)]

1− t
t

=
1

2
.
1− t
t
≥ 1

2

13



Then, E blocks f for the α-core blocking concept.
Let f ∈ B(T,A) such lim sup

t→0
Γ(t, f) < 1. Take t0 ∈]0, 1/2] and α ∈]0, 1[, such that

Γ(t, f) < α for every t ∈]0, t0]. Then, for every t ∈]0, t0], G(t, f) ≤ α. That is,

∀t ∈]0, t0], (1−G(t, f))
1− t
t
≥ 1− α (3)

Since for all t ∈]0, t0], Γ(t, f) =

∫ t
0
f dλ

t
< α,

∀t ∈]0, t0],

∫ t

0

f dλ < αt (4)

Let t1 ∈]0, t0] and α1 > 0 such that,

αt < α1 < 1− α, ∀t ∈]0, t1] (5)

Then, taking into account (3) and (4),

∀t ∈]0, t1], U(t, f) =

∫ t

0

f dλ < αt (6)

From this step, it is easy to provide, as in the previous example, coalitions blocking f by
constant strategies. We will see thereafter, that such coalitions may possess other type of
blocking strategies.

Since

∫ t
0
fdλ

t
< 1, for all t ∈]0, t0], necessarily

∫ t
0
f − 1 dλ

t
< 0, for all t ∈]0, t0]. Hence,∫ t

0

1− f dλ > 0, ∀t ∈]0, t0] (7)

Let δ > 0 to be fixed later. We have for every t ∈]0, 1], Γ(t, f + δ(1 − f)) = Γ(t, f) +
Γ(t, δ(1− f)). It results, for every t ∈]0, 1],

G(t, f + δ(1− f)) ≤ G(t, f) +G(t, δ(1− f)).

Furthermore, for every t ∈]0, 1],

G(t, δ(1− f)) = sup
s∈]0,t]

∫ s
0
δ(1− f) dλ

s
≤ sup

s∈]0,t]

∫ s
0
δ dλ

s
= δ.

Gathering the two previous equations, we see that for every t ∈]0, t0],

G(t, f + δ(1− f)) ≤ G(t, f) + δ ≤ α + δ.

Taking δ1 ∈]0, 1] such that 1− α− δ1 > 0, we obtain for every δ ∈]0, δ1],

∀t ∈]0, t0], [1−G(t, f + δ(1− f))]
1− t
t
≥ [1− α− δ]1− t

t
≥ 1− α− δ. (8)
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Consider the coalition E =]0, t2], t2 ∈]0, t1] to be fixed later, and its strategies of the
form hE(δ) = f|E + δ(1 − f|E). Remark first that such strategies are feasible for every
δ ∈ [0, 1]. Observe now that G(t, hE(δ)//h{E) = G(t, f + δ(1 − f)) for every δ > 0, t ∈ E
and h{E ∈ B({E,A). Then, from (8), for every δ ∈]0, δ1], t ∈ E and h{E ∈ B({E,A),

[1−G(t, hE(δ)//h{E)]
1− t
t
≥ 1− α− δ. (9)

In another hand, from (4), for every δ > 0 and t ∈ E,∫ t

0

hE(δ)//h{E dλ =

∫ t

0

f dλ+ δ

∫ t

0

(1− f) dλ ≤ αt+ δt. (10)

Choose according to (5), δ ∈]0, δ1] and t2 ∈]0, t1] such that,

αt+ δt < α1 < 1− α− δ, ∀t ∈]0, t2].

This equation together with (9), (10) and (6) provides, for all t ∈ E, and all h{E ∈
B({E,A),

U(t, hE(δ)//h{E) =

∫ t

0

hE(δ)//h{E dλ = U(t, f) + δ

∫ t

0

(1− f) dλ.

That is, using (7), U(t, hE(δ)//h{E) > U(t, f), for all t ∈ E and all h{E ∈ B({E,A). Which
means that E blocks f with respect to the α-core blocking concept. We proved accordingly
that the α-core of U is empty. However, all the assumptions of Theorem 1 are satisfied.
Then, we can assert that the weak-core of U is nonempty.

5 Payoff as a function of distributions of strategies :

counter-example to a general form of payoffs

The question of non-vacuity of the weak-core (α-core) under conditions similar to that
ensuring the Nash equilibrium arises naturally. In fact, for normal form games with a finite
set of players, the regularity conditions guaranteeing the existence of Nash equilibrium and
the α−core are of “similar” type4. We emphasize that we do not mean, in any way, any
conceptual comparison between the Nash equilibrium and the α-core (weak-core). These
concepts may be viewed as “antagonistic” from some economic and game theoretic view
point. But, two mathematical problems (existence of these concepts) with similar solutions
in a given situation, give raise naturally to the question of their technical comparison in a
more general or different situation.

4More precisely, for the α−core, we require the convexity and the compactness of strategy spaces, the
continuity and the quasi-concavity of payoffs. For Nash equilibrium, we juste weaken the quasi-concavity
assumption, assuming it for each player payoff only on its own strategy space. For the α-core, the quasi-
concavity of payoffs is assumed on the product of all players’ strategy sets.
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If we adopt the general payoff form W above, it is shown that a pure strategy Nash
equilibrium for H exists iff together with some measurability condition, the action space A0

is countable [Khan and Sun, 1995, 2002, Khan et al., 1997], see Theorem 2 below. Example
3, below, proves that we cannot provide analogous results, even with more restrictive
regularity conditions, for the weak-core, then for the α-core too, because the weak-core
contains the α-core. In other words, this section provides some negative answer to the
raised question.
When restricting W to depend only on T ×P(A0), an existence result of the weak-core is
proved in [Askoura, 2011]. The example, thereafter, proves further that this result cannot
be generalized directly by adding the player’s action argument to the payoff functions.
Before stating this example, let us recall that a pure strategy Nash equilibrium for the
game H is a strategy profile f ∈ B(T,A0) satisfying :

W (t, f(t), µf−1) = max
a∈A0

W (t, a, µf−1) a.e. on T.

In the sequel C(A0 × P(A0)) refers to the set of continuous real functions on A0 × P(A0)
endowed with its sup-norm topology and the corresponding Borel σ-field. Recall that A0

is a compact metric space and P(A0) is the set of Borel probabilities on A0 endowed with
its weak∗ topology.
Consider the following version of a well known existence result of pure strategy Nash
equilibrium :

Theorem 2. Assume that W (t, ·, ·) is continuous for every t ∈ T . Then, the pure strategy
Nash equilibrium for the game H exists under the following conditions :

(a) the map t 7→ W (t, ·, ·) as a function from T into C(A0 × P(A0)) is measurable,

(b) A0 is countable,

(c) µ is an atomless probability measure.

This theorem was obtained by Khan and Sun [1995]. It generalizes the seminal result of
Schmeidler [1973], where among other A0 is assumed to be finite. If A0 is not countable,
the pure strategy Nash equilibrium may fail to exist [Khan and Sun, 2002, Khan et al.,
1997]. Note that we presented here a simplified version of the original result Theorem 10,
page 650 in [Khan and Sun, 1995], where among other, the distribution argument of the
payoffs is more general.
In order to link our regularity conditions assumed on payoffs (Theorem 1 above and the
main result in Askoura [2011]) to the measurability condition (a) of Theorem 2, let us re-
mark that since A0×P(A0) is a compact metric space, (a) is satisfied if W is a Carathéodory
function. That is W (t, ·, ·) is continuous on A0 × P(A0), for every t ∈ T , and W (·, a, p)
is measurable for every (a, p) ∈ A0 × P(A0) (Aliprantis and Border [2006], Theorem 4.55,
p. 155). If T is a topological space endowed with its Borel σ−algebra and µ is a Borel
probability, then,

16



• Condition (a) of Theorem 2 is satisfied if W is usc in t and jointly continuous in its
second and third argument.

Example 3. In this example, by the word “blocking” we mean the blocking concept of
Definition 2. Let T = [0, 1] endowed with its Borel σ−algebra and the Lebesgue probability
measure λ and A0 = {0, 1, 2, 3} ⊂ IR. P(A0) represents the set of probabilities on A0.
Since A0 is finite, the variation norm topology on P(A0) coincides with the used weak
(star) topology on P(A0).
Let ε > 0 small enough and E1, E2, E3 three pairwise disjoint coalitions of [0, 1], such that

λ(E1) = λ(E2) = λ(E3) =
1− 2ε

3
.

The sets Ei are represented in Figure 1 (in every sub-figure).
Let :

p0 ∈ P(A0) satisfying p0({0}) = 1. Put P0 = {p0}.

Put α = λ(Ei) =
1− 2ε

3
. For all i ∈ {1, 2, 3}, define the set :

Pi = {p ∈ P(A0) : p({i}) ≥ 2α}.

Hence, the sets Pi, i ∈ {0, ..., 3}, are closed, convex and pairwise disjoint for 2α = 2
1− 2ε

3
>

1

2
. Then, fix an arbitrary ε satisfying the previous requirement.

Define W : T ×A0×P(A0) as depicted in figure 1 on
3⋃
i=0

[0, 1]×{i}×Pi and W (t, a, p) ≡ 0

elsewhere.
Our final goal is not the game W , but in order to facilitate the forthcoming analysis, let us
show that its weak-core is empty. First, we can remark that W possesses nice properties.
In fact, it is easy to verify that :

• W is usc on its domain and W (·, a, p) is continuous for every (a, p) ∈ A0 × P(A0).

Observe now the following values of W :

W (t, 0, p0) =

{
2 if t ∈ E1 ∪ E2,
4 for t ∈ E3.

∀p ∈ P1,W (t, 1, p) =

{
3 if t ∈ E1 ∪ E2,
0 ift ∈ E3.

∀p ∈ P2,W (t, 2, p) =


4 if t ∈ E1,
0 if t ∈ E2,
1 if t ∈ E3

∀p ∈ P3,W (t, 3, p) =


0 if t ∈ E1,
1 if t ∈ E2,
2 if t ∈ E3.

Let any strategy h ∈ B(T,A0). If λh−1 /∈ P0 ∪ P1 ∪ P2 ∪ P3, then W (t, h(t), λh−1) = 0,
for every t ∈ T . Clearly T blocks h by playing fT ≡ 0 on T . In fact, fT provides the

17



Figure 1: Some values of W

18



payoffs of sub-figure (a). Now assume that h generates the payoffs of sub-figure (a), that is
λh−1 = p0. Necessarily, h ≡ 0 (a.e.) and then E1 ∪E2 blocks h by f1,2 ≡ 1 on E1 ∪E2. In
fact, for all f{E1∪E2

∈ B({E1 ∪ E2, A0), λ(f1,2//f{E1∪E2
)−1({1}) ≥ 2α. Hence, E1 ∪ E2 will

obtain the payoffs of sub-figure (b). Analogously, we can show easily that, E1 ∪E3 blocks,
by its strategy f1,3 ≡ 2, all strategy generating the payoffs of sub-figure (b). Thereby,
E1 ∪ E3 can ensure for its members the payoffs represented in sub-figure (c). Now the
coalition E2 ∪ E3 can ensure for its members the payoffs represented in sub-figure (d) by
playing f2,3 ≡ 3 on E2∪E3, doing this all strategy leading to the payoffs of sub-figure (c) is
blocked. In turn, the coalition T blocks all strategies ensuring payoffs of sub-figure (d) by
its strategy fT ≡ 0 on T . T obtains with the last blocking strategy the payoffs represented
in sub-figure (a). Henceforth, we conclude that the weak-core (and then the α−core) of
the game W is empty.

Emptiness of the weak-core under the continuity of payoffs and their concavity
with resect to the distribution argument :

Let W defined as in figure 1 on
3⋃
i=0

[0, 1]×{i}×Pi and consider the function W̃ on [0, 1]×

A0 × P(A0) defined as follows :

W̃ (t, a, p) = W (t, a, Pa)

(
D

2
− d(p, Pa)

)
where D stands for the minimum among d(Pi, Pj), i 6= j. The metric d is that induced
by the variation norm. Since the sets Pi are convex compact and pairwise disjoint, D is
strictly positive. We do not need the exact value of D.
Let a be fixed. Since, by construction, W (·, a, Pa) is continuous, the continuity of W̃ on

T × {a} × P(A0) results obviously from the extension formula. Then, W̃ is continuous on
its domain.
It is easy to check, using the convexity of the sets Pa, a ∈ A0, that for every a ∈ A0, the
function p 7→ d(p, Pa) is convex. If follows that

p 7→ W (t, a, Pa)

(
D

2
− d(p, Pa)

)
is concave for every t and every a. Hence W̃ (t, a, ·) is concave for every t and every a.

Emptiness of the weak-core of W̃ .
Let a strategy h ∈ B(T,A0) be fixed. Put p = λh−1. Two cases can occur :

1) Firstly, every a ∈ A0 satisfies d(p, Pa) ≥
D

2
. In this case, for a.e. t ∈ T ,

D

2
−d(p, Ph(t)) ≤

0. Hence, W̃ (t, h(t), p) = W (t, h(t), Ph(t))(
D

2
− d(p, Ph(t))) ≤ 0. As previously, many

coalitions block h. For instance, T blocks h, by playing f0(t) ≡ 0. In fact, λf−1
0 = p0
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and for a.e. t ∈ T , d(p0, Pf0(t)) = d(p0, P0) = 0, hence every t ∈ T receives W̃ (t, 0, p0) =

W (t, 0, p0)
D

2
.

2) Secondly, there is i0 ∈ A0 such that d(p, Pi0) ≤
D

2
. In this case, for all a ∈ A0 \ {i0},

d(p, Pa) ≥
D

2
. Hence, the payoff of all player playing h(t) 6= i0 is negative or null, and the

payoff of a player t playing i0 is :

W̃ (t, i0, p) = W (t, i0, Pi0)(
D

2
− d(p, Pi0)) ≤ W (t, i0, Pi0)

D

2
.

It follows that for all t ∈ T ,

W̃ (t, h(t), µh−1) ≤ W (t, i0, Pi0)
D

2
.

But, in the game W , as we seen previously, following the value of i0, either the coalition
T or an union of two coalitions among {E1, E2, E3} blocks any strategy generating the
payoffs W (·, i0, Pi0). Such a coalition blocks also h for the continuous game defined by

W̃ . For example, if i0 = 1, then, E1 ∪ E3 can ensure for all its member t, by playing

f1,3 ≡ 2 on E1 ∪ E3, the payoff W (t, 2, P2)
D

2
and for all t ∈ E1 ∪ E3 and every f{E1∪E3

∈
B({E1 ∪ E3, A0),

W̃ (t, f1,3(t), λ(f1,3//f{E1∪E3
)−1) = W (t, 2, P2)D

2

≥ (W (t, 1, P1) + 1) D
2

≥ W̃ (t, h(t), µh−1) + D
2
.

We deduce that the weak-core of the game defined by W̃ is empty. Observe however that
W̃ satisfies all conditions of Theorem 2, then we know that the set of pure strategy Nash
equilibria of W̃ is non-empty.

Remark 2. The payoffs W̃ constructed in the previous example satisfy nicer properties
than that required for Nash equilibrium in Theorem 2 above. In fact, W̃ is continuous on
its domain and concave with respect to its distribution argument. Regarding Section 4,
the existence result in [Askoura, 2011], and the classical Scarf ’s existence result for finite

games, these properties of W̃ may be intuitively expected to guarantee the non vacuity of the
weak-core. Nevertheless, this example shows that they do not suffice or they are irrelevant
in the present case.
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6 Appendix

In this section we give some mathematical considerations as a technical extension of section
2.

6.1 Concatenating coalition strategies

We used in this paper the following property of τB(T,X) (see section 2), which is satisfied
by all linear topologies :

(P) Let G : B(T,X) → IR be continuous (resp. upper semi-continuous) for τB(T,X).
Let Ei ∈ B(T ), i in a finite set I = {1, ..., n} be a pairwise disjoint family such
that T = ∪

i∈I
Ei up to a µ-null set. Let s :

∏
i∈I

B(Ei, X) → B(T,X) defined by

s(f1, ..., fn) = f1//f2...//fn. Then G ◦ s is continuous (resp. upper semi-continuous).

This results from the continuity of the operation “+” for vector topologies (see for instance
[Schaefer, 1971]).
Remark, in the last time, that we can replace, in (P), X by A.

6.2 Topologies satisfying Condition (C)

In this section, most of used notions and results can be found in [Diestel and Uhl, 1977].

1) Assume in this example that X is a separable reflexive Banach space. Let L∞(µ,X)
(resp. L1(µ,X)) be the space of µ-measurable (strongly measurable) essentially bounded
(resp. Bochner integrable) functions defined from T to X. Since X is a separable Banach
space, it is hereditarily separable. Then Pettis’s measurability theorem states that every
scalarly (weakly) measurable function (then every Borel function) is µ-measurable, be-
cause the range of every function taking its values in X is separable. Since µ−measurable
functions are Borel, we have B(T,X) = L∞(µ,X). For these considerations, we do not
distinguish, thereafter between these different notions of measurability.
The finiteness of the measure µ yields L∞(µ,X) ⊂ L1(µ,X). Consider the embedding of
B(T,X) in L1(µ,X).
We show in the sequel that the weak topology σ(L1(µ,X), L∞(µ,X∗)) satisfies the condi-
tion (C). We begin by verifying that (C) is satisfied for T .
It is clear that B(T,A) is a closed subset of L1(µ,X). Indeed a norm convergent sequence
of B(T,A) has an a.e. convergent subsequence, which provides that the limit is necessarily
in B(T,A). Being a norm closed subset of L1(µ,X) and convex, B(T,A) is weakly closed
in L1(µ,X) as well. Let us verify the weak compactness of B(T,A). Since A is bounded,
there is a constant M = sup

a∈A
‖a‖. Hence, as µ is finite, B(T,A) is norm bounded in

L1(µ,X), and,

lim
µ(E)→0

sup
f∈B(T,A)

∫
E

‖f‖ dµ ≤ lim
µ(E)→0

Mµ(E) = 0.
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Then, the set B(T,A) is uniformly integrable. Since A is convex, for every f ∈ B(T,A)
and E ∈ B(T ),

∫
E
f dµ ∈ µ(E)A. That is,

{∫
E
f dµ : f ∈ B(T,A)

}
is a subset of

µ(E)A. Consequently, it is relatively compact, then relatively weakly compact too. As
X is separable and reflexive, so is X∗. It follows that both X and X∗ have the Radon-
Nikodym property. It results from the Dunford weak compactness criterion in L1(µ,X)
(Diestel and Uhl [1977], p. 101) that B(T,A) is relatively weakly compact. Since this set
is weakly closed in L1(µ,X), it is weakly compact. Instead of using the Dunford criterion,
one can use compactness results in [Diestel, 1977, Ülger, 1991].
Verify the condition (C) for any Borel set. Let E ∈ B(T ). The set B(E,A) is identified
(see section 2) to the subset {fE//0{E : fE ∈ B(E,A)} of L1(µ,X). As doing it for T , we
can observe that B(E,A) is weakly closed in L1(µ,X). Since B(E,A) ⊂ B(T,A), it is
necessarily weakly compact.

2) Assume that X is a separable Hilbert space. Among properties of X, we have X∗ = X.
We have already seen in example 1 that B(T,X) = L∞(µ,X). We assert that the weak∗

topology σ(L∞(µ,X), L1(µ,X)) satisfies the condition (C). Begin the verification of (C)
on the set T . Let us verify, first, the weak∗ closure of B(T,A) in L∞(µ,X). Let for this
aim g ∈ L∞(µ,X) \B(T,A). Then, there exists a measurable subset E ∈ B(T ) of strictly
positive measure, such that g(t) /∈ A, for all t ∈ E. For every a ∈ X \ A, let ε > 0 such
that B(a, εa)∩A = ∅. Here, B(a, r) (resp. B(a, r)) stands for the closed (resp. open) ball
of X of radius r ∈ IR+ centered at a. The set of obtained open balls B(a, εa), a ∈ X \ A,
constitutes an open cover of X \A. Since X is separable metric, it is hereditarily Lindelöf.
Then, we can extract, from the previous cover, a countable subcover B(ai, εi), i ∈ IN, of
X \ A. Since E ⊂

⋃
i∈IN

g−1(B(ai, εi)) and µ(E) > 0, there is necessarily an index i0 ∈ IN

such that µ(g−1(B(ai0 , εi0))) > 0. By the use of the Hahn-Banach separation theorem, let
x∗ ∈ X∗ separating strictly B(ai0 , εi0) and A. Since X is an Hilbert space, x∗ is represented
by an element x ∈ X. Denote by (·, ·) the scalar product of X. Then, there is α > 0 such
that,

(x, y) > α > (x, a),∀y ∈ B(ai0 , εi0),∀a ∈ A.
Put Ei0 = g−1(B(ai0 , εi0)) and χi0 its characteristic function. Then χi0x ∈ L1(µ,X) and,∫

T

(χi0x, g) dµ > µ(Ei0)α >

∫
T

(χi0x, f) dµ,∀f ∈ B(T,A).

Hence the weak∗ open set {h ∈ L∞(µ,X) : (χi0x, h) > µ(Ei0)α} contains g and does not
intersect B(T,A), which means that B(T,A) is weak∗ closed in L∞(µ,X). Since B(T,A)
is bounded for the esssup-norm in L∞(µ,X), it results, from the Banach-Alaoglu Theorem,
that B(T,A) is weak∗ compact in L∞(µ,X).
Verify (C) for an arbitrary Borel sets. Let E ∈ B(T ) and denote L1(µE, X) (resp.
L∞(µE, X)) the set all Bochner integrable (resp. µ−measurable essentially bounded) func-
tions defined from E to X. µE stands for the induced measure on E. By extending, as
in Section 2, all the functions in L1(µE, X) (resp. L∞(µE, X)) by 0 on {E, L1(µE, X)
(resp. L∞(µE, X)) can be seen as a subspace of L1(µ,X) (resp. L∞(µ,X)). By the same
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notations and a similar reasoning we have B(E,X) = L∞(µE, X). As above we obtain
easily that B(E,A) is weak∗ compact in L∞(µE, X).
Remark in the last time that the function fE 7→ fE//0{E is continuous from L∞(µE, X)
to L∞(µ,X) both of them endowed with its weak∗ topology. It results that B(E,A) is
compact for the induced topology on L∞(µE, X) from σ(L∞(µ,X), L1(µ,X)).

6.3 The weak-core for usc payoffs in infinite dimension.

Thereafter, we give the modifications to operate in the Scarf non-vacuity result [Scarf,
1971] in order to handle infinite dimensional strategy spaces and bounded usc quasi-concave
payoffs to prove the non-vacuity of the weak-core for a game with a finite set of players:
the assumptions listed in the proof of Theorem 1.
Let N = {1, ..., n}. For every i ∈ N , consider

(C1) Xi a convex compact subset of a Hausdorff topological vector space.

Put X =
∏
i∈N

Xi. Let S ⊂ N . XS stands for the product
∏
i∈S
Xi, vS refers to an element of

XS and −S = N \ S.
For every i ∈ N ,

(C2) ui : X → IR is upper semi-continuous, quasi-concave and bounded from below.

Consider the game :
G = (N,X, {ui, i ∈ N})

Scarf [1971] showed that G has a nonempty α-core by assuming that the functions ui are
quasi-concave and continuous, the sets Xi are convex compact subsets of finite dimensional
Euclidean spaces. However, his proof remains valid under the weaker conditions (C1)
and (C2) above to prove the existence of the weak-core. Indeed, Scarf proves that the
characteristic function form game Gc, defined below, has a nonempty core and to each
element in the core of Gc corresponds an element in the α-core of G in case of continuous
payoffs. For ucs payoffs, we show at the end that the weak-core remains nonempty.
The associated characteristic function form game is defined by :

Gc = (N, V ),

where, for every nonempty S ⊂ N ,

V (S) = {y ∈ IRN ,∃vS ∈ XS, ui(vS, v−S) ≥ yi,∀v−S ∈ X−S,∀i ∈ S}

In order to have a nonempty core (elements of V (N) not belonging to the interior of V (S)
for any S ⊂ N), the game Gc needs to satisfy :

(a) for every S ⊂ N , V (S) is closed and nonempty,

(b) for every S ⊂ N , if y ∈ V (S) and y′ ∈ IRN satisfies y′i ≤ yi for every i ∈ N , then
y′ ∈ V (S),
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(c) V (N) is bounded from above.

(d) Gc is balanced.

Prove that Gc satisfy (a)-(c) under the assumptions (C1) and (C2). The condition (b) is
obviously satisfied and (c) results from the upper semicontinuity of the functions ui, i ∈ N ,
and the compactness of X. Let us prove (a). Fix S ⊂ N . The non-emptiness of VS results
from boundedness of ui, i ∈ N . Remark that y ∈ V (S) if and only if there exists vS ∈ XS,
such that ui(vS, v−S)− yi ≥ 0, for all i ∈ S, for all v−S ∈ X−S. That is,

y ∈ V (S)⇔ ∃vS ∈ XS, inf
v−S∈X−S

min
i∈S
{ui(vS, v−S)− yi} ≥ 0

Define the function H : XS × IRN by :

H(vS, y) = inf
v−S∈X−S

min
i∈S
{ui(vS, v−S)− yi}

Then,
y ∈ V (S)⇔ ∃vS ∈ XS, H(vS, y) ≥ 0

It is clear that H is upper semicontinuous. Let yn, n ∈ IN, be a sequence of V (S) converging
to y. Let vnS, n ∈ IN, a corresponding sequence in XS satisfying H(vnS, y

n) ≥ 0, for every
n ∈ IN.
Since XS is compact, as a net, {vnS}n∈IN has a convergent sub-net, denote it {vη(w)

S }w∈W
and let vS be its limit. Then, the sub-net {yη(w)}w∈W of {yn}n∈IN converges to y and the

net {(vη(w)
S , yη(w))}w∈W converges to (vS, y) in the product XS × IRS. It follows :

H(vS, y) ≥ lim sup
w∈W

H(v
η(w)
S , yη(w)) ≥ 0

Which means y ∈ V (S) and then, V (S) is closed.
The remaining arguments of Scarf need not be rewritten. They are also true under our
assumptions. For instance, the arguments showing the balancedness of the game Gc (con-
dition (d)) do not require topological considerations, they work with only convexity as-
sumptions taken into account by the quasi-concavity of the functions ui. Now, take y in
the core of Gc and let v̄ ∈ X such that ui(v̄) ≥ yi, for all i ∈ N . Then, v̄ is an element
of the weak-core of G. Otherwise, there is S blocking v̄ with some vS ∈ XS. Then, there
exists ε > 0 such that,

ui(vs, v−S) > ui(v̄) + ε ≥ yi + ε,∀v−S ∈ X−S,∀i ∈ S.

Hence, y belongs to the interior of V (S). Note that the parameter ε is needed in the previous
formula to conclude that y is in the interior of V (S), since the upper semi-continuity cannot
guarantee, for instance, that infv−S ui(vs, v−S) > yi for every i ∈ S, and the large inequality
do not support the needed conclusion in order to provide a contradiction.
Observe that for continuous payoffs, the weak-core coincides with the α−core.
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