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Abstract. We investigate the problem of fairly allocating indivisible
goods among interested agents using the concept of maximin share. Pro-
caccia and Wang showed that while an allocation that gives every agent
at least her maximin share does not necessarily exist, one that gives ev-
ery agent at least 2/3 of her share always does. In this paper, we consider
the more general setting where we allocate the goods to groups of agents.
The agents in each group share the same set of goods even though they
may have conflicting preferences. For two groups, we characterize the
cardinality of the groups for which a positive approximation of the max-
imin share is possible regardless of the number of goods. We also show
settings where an approximation is possible or impossible when there are
several groups.

1 Introduction

We consider the problem of fairly allocating indivisible goods to interested
agents, a task that occurs frequently in the society and has been a subject of
study for decades in economics and more recently in computer science. Several
notions of fairness have been proposed to this end; the most popular ones include
envy-freeness [14,30] and proportionality [26]. Envy-freeness stipulates that each
agent likes her bundle at least as much as that of any other agent, while propor-
tionality requires that each agent receive her proportional share in the allocation.
While an allocation satisfying both notions can be obtained when we deal with
divisible goods such as cake or land, this is not the case for indivisible goods like
houses or cars. Indeed, if there is one indivisible good and several agents, some
agent is necessarily left empty-handed and neither of the notions can be satis-
fied. In fact, the same example shows that even a multiplicative approximation
of these notions cannot be guaranteed.1

A notion that was designed to fix this problem and has been a subject of
much interest in the last few years is called the maximin share, first introduced
in this context by Budish [11] based on earlier concepts by Moulin [21]. The

1 As a result of the lack of existence guarantee for these fairness criteria, statements
on the asymptotic existence when utilities are drawn from distributions have been
shown [3,12,18,19,28].
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maximin share of an agent can be determined as follows: If there are n agents
in total, let the agent of interest partition the goods into n bundles, knowing
that she will get the bundle that she likes least. The maximum utility that she
can obtain via this procedure is her maximin share. The intuition behind the
maximin share is that the agent could feel entitled to this share, since she is
already taking the least preferable bundle (according to her own preferences)
from the partition. In other words, the indivisibility of the goods cannot be an
excuse not to give her this share. An allocation is said to satisfy the maximin
share criterion if every agent receives a utility no less than her maximin share.

While an allocation satisfying the maximin share criterion exists in several
restricted settings [7] as well as asymptotically [3,18], Procaccia and Wang [22]
showed through rather intricate examples that, somewhat surprisingly, such an
allocation does not always exist in general. As a result, the same authors turned
the focus to approximation and showed that an allocation that yields a 2/3-
approximation of the maximin share to every agent always exists, and Ama-
natidis et al. [3] exhibited an efficient algorithm that computes such an alloca-
tion. Amanatidis et al. also presented a simpler algorithm with an approxima-
tion ratio of 1/2. Barman and Krishna Murthy [5] gave a simpler efficient 2/3-
approximation algorithm and moreover initiated the study of maximin share for
agents with submodular (as opposed to additive) valuation functions. Gourvès
and Monnot [17] extended the problem to the case where the goods satisfy a
matroidal constraint. Farhadi et al. [13] studied the maximin share criterion
when agents have unequal entitlements. Recently, Ghodsi et al. [15] improved
the approximation ratio to 3/4. The question of truthfulness for maximin share
approximation algorithms has also been explored [1,2]. Besides its theoretical
appeal, the maximin share has been used in applications including the popular
fair division website Spliddit [16].

In this paper, we apply the concept of maximin share to a more general
setting of fair division in which goods are allocated not to individual agents,
but rather to groups of agents who can have varying preferences on the goods.
Several practical situations involving fair division fit into this model. For in-
stance, an outcome of a negotiation between countries may have to be approved
by members of the cabinets of each country. It could well be the case that one
member of a cabinet of a country thinks that the division is fair while another
does not. Similarly, in a divorce case, it is not hard to imagine that different
members of the family on the husband side and the wife side have varying opin-
ions on a proposed settlement. Another example is a large company or university
that needs to divide its resources among competing groups of agents (e.g., de-
partments in a university). The agents in each group have different and possibly
misaligned interests; the professors who perform theoretical research may pre-
fer more whiteboards and open space in the department building, while those
who engage in experimental work are more likely to prefer laboratories. These
situations cannot be modeled by the traditional fair division setting where each
recipient of a bundle of goods is represented by a single preference. The added
element of having several agents in the same group receiving the same bundle
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of goods corresponds to the social choice framework of aggregating individual
preferences to reach a collective decision [4]. Manurangsi and Suksompong [19]
recently investigated the asymptotic existence of fair divisions under this setting,
while Segal-Halevi and Nitzan [23,24] considered fairness in the allocation of di-
visible goods to groups. A related setting, where a subset of indivisible goods is
allocated to a (single) group of agents, has also been studied [20,27].

1.1 Our Results

We extend the maximin share notion to groups in a natural way by calculating
the maximin share for each agent using the number of groups instead of the
number of agents. When there are two groups, we completely determine the
cardinality of agents in the groups for which it is possible to approximate the
maximin share within a positive factor that depends only on the number of agents
and not on the number of goods. In particular, an approximation is possible when
one of the groups contain a single agent, when both groups contain two agents,
or when the groups contain three and two agents respectively. In all other cases,
no approximation is possible in a strong sense: There exists an instance with only
four goods in which some agent with positive maximin share necessarily gets zero
utility. The results for the setting with two groups are presented in Section 3 and
summarized in Table 1. Even though we leave a gap between the lower and upper
bounds of the approximation ratio, the reader should bear in mind that this gap
remains even for the previously studied setting where goods are allocated to
individual agents. Indeed, the gap between 3/4 and 1− o(1) for maximin share
approximation has not been closed despite several works in this direction, while
in the simplest case with three agents, the gap remains between 8/9 and 1−o(1)
[3,15,17,18,22].2 Thus, despite its relatively simple definition, determining the
best approximation ratio for the maximin share is perhaps a harder problem
than it might seem at first glance. In addition, although the case of two groups
might seem like a rather restricted case, recall that fair division between two
agents, which is even more restricted, has enjoyed significant attention in the
literature (e.g., [8,9,10]).

In Section 4, we generalize to the setting with several groups of agents. On
the positive side, we show that a positive approximation is possible if only one
group contains more than a single agent. On the other hand, we show on the
negative side that when all groups contain at least two agents and one group
contains at least five agents, it is possible that some agent with positive maximin
share will be forced to obtain zero utility, which means that there is no hope of
obtaining an approximation in this case.

2 Preliminaries

Let G = {g1, g2, . . . , gm} denote the set of goods, and A the set of agents. The
agents are partitioned into k groups A1, . . . , Ak. Group Ai contains ni agents;

2 When there are two agents, it is not hard to see that a cut-and-choose protocol
guarantees the full maximin share for both agents.
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denote by aij the jth agent in group Ai. The agents in each group will be
collectively allocated a subset of goods G; suppose that the agents in group Ak

receive the subset Gk.
Each agent aij has some nonnegative utility uij(g) for every good g ∈ G. We

assume that the agents are endowed with additive utility functions, i.e., uij(G
′) =

∑

g∈G′ uij(g) for any agent aij ∈ A and any subset of goods G′ ⊆ G. This as-
sumption is commonly made in the fair division literature, especially the litera-
ture that deals with the maximin share; it provides a reasonable tradeoff between
simplicity and expressiveness [3,7,18,22]. Let uij = (uij(g1), uij(g2), . . . , uij(gm))
be the utility vector of agent aij . We refer to a setting with groups of agents,
goods, and utility functions as an instance.

We now define the maximin share. Let K = {1, 2, . . . , k}. Suppose that in a
partition G′ of the goods, the agents in group Ak receive the subset G′

k.

Definition 1. The maximin share of agent aij is defined as

max
G′

min
k∈K

uij(G
′
k),

where the maximum ranges over all (complete) partitions G′ of the goods in G.
Any partition for which this maximum is attained is called a maximin partition
of agent aij .

An allocation G of goods to the groups is said to satisfy the maximin share
criterion if every agent obtains at least her maximin share in G.

As an example, suppose that there are two groups and four goods, and an
agent’s utilities for the goods are given by u(g1) = 6, u(g2) = 3, and u(g3) =
u(g4) = 2. The maximin share of the agent is 6, as can be seen from the partition
({g1}, {g2, g3, g4}). This partition is the unique maximin partition for the agent.

It follows directly from Definition 1 that the maximin share of an agent aij
is at most uij(G)/k. In addition, any envy-free or proportional allocation also
satisfies the maximin share criterion.3 Since an allocation satisfying the maximin
share criterion does not always exist even for three groups with one agent each
[22], we will be interested in one that approximates the maximin share criterion,
i.e., gives every agent at least a multiplicative factor α of her maximin share, for
some α ∈ (0, 1).

3 Two Groups of Agents

In this section, we consider the setting where there are two groups of agents and
characterize the cardinality of the groups for which a positive approximation of
the maximin share is possible regardless of the number of goods. In particular,
suppose that the two groups contain n1 and n2 agents, where we assume without
loss of generality that n1 ≥ n2. Then a positive approximation is possible when
n2 = 1 as well as when (n1, n2) = (2, 2) or (3, 2). The results are summarized in
Table 1.
3 Assuming we extend the notions of envy-freeness and proportionality to groups in a
similar manner as we do for the maximin share.
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Number of agents Approximation ratio

(n1, n2) = (1, 1) α = 1 (Cut-and-choose protocol; see, e.g., [7])

(n1, n2) = (2, 1) 2/3 ≤ α ≤ 3/4 (Theorem 1)

n2 = 1 2/(n1 + 1) ≤ α ≤ 1/
⌊⌊√

2n1

⌋

/2
⌋

(Corollary 1)

(n1, n2) = (2, 2) 1/8 ≤ α ≤ 1/2 (Theorem 3)

(n1, n2) = (3, 2) 1/16 ≤ α ≤ 1/2 (Theorem 4)

n1 ≥ 4, n2 ≥ 2 α = 0 (Proposition 1)

n1, n2 ≥ 3 α = 0 (Proposition 2)

Table 1: Values of the best possible approximation ratio, denoted by α, for the
maximin share when there are two groups with n1 ≥ n2 agents. The approxima-
tion ratios hold regardless of the number of goods.

3.1 Large Number of Agents: No Possible Approximation

We start by showing that when the numbers of agents in the groups are large
enough, no approximation of the maximin share is possible. Observe that if we
prove that a maximin share approximation is not possible for groups with n1

and n2 agents, then it is also not possible for groups with n′
1 ≥ n1 and n′

2 ≥ n2

agents, since we would still need to fulfill the approximation for the first n1 and
n2 agents in the respective groups.

Proposition 1. If n1 ≥ 4 and n2 ≥ 2, then there exists an instance in which
some agent with nonzero maximin share necessarily receives zero utility.

Proof. Assume that n1 = 4 and n2 = 2, and suppose that there are four goods.
The utilities of the agents in the first group are u11 = (0, 1, 0, 1), u12 = (0, 1, 1, 0),
u13 = (1, 0, 0, 1), and u14 = (1, 0, 1, 0), while the utilities of those in the second
group are u21 = (1, 1, 0, 0) and u22 = (0, 0, 1, 1).

In this example, every agent has a maximin share of 1. To guarantee nonzero
utility for the agents in the second group, we must allocate at least one of the
first two goods and at least one of the last two goods to the group. But this
implies that some agent in the first group receives zero utility. ⊓⊔

Proposition 2. If n1, n2 ≥ 3, then there exists an instance in which some agent
with nonzero maximin share necessarily receives zero utility.

Proof. Assume that n1 = n2 = 3, and suppose that there are four goods. The
utilities of the agents in the first group are u11 = (0, 1, 0, 1), u12 = (1, 0, 0, 1),
and u13 = (1, 0, 1, 0), while the utilities of those in the second group are u21 =
(1, 1, 0, 0), u22 = (0, 0, 1, 1), and u23 = (1, 0, 0, 1).

In this example, every agent has a maximin share of 1. To guarantee nonzero
utility for the agents in the second group, we must allocate at least one of the
first two goods and at least one of the last two goods to the group. If we allocate
at least three goods to the second group, some agent in the first group is left
with zero utility. Else, if we allocate exactly two goods to the second group, we
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may allocate goods {g1, g3}, {g1, g4}, or {g2, g4}, which leaves goods {g2, g4},
{g2, g3}, or {g1, g3} to the first group, respectively. But in each of these cases,
some agent in the first group receives zero utility. ⊓⊔

3.2 Approximation via Modified Round-Robin Algorithm

When both groups contain a single agent, it is known that a simple “cut-and-
choose” protocol similar to a famous cake-cutting protocol yields the full max-
imin share for both agents (see, e.g., [7]). It turns out that as soon as at least one
group contains more than one agent, the full maximin share can no longer be
guaranteed. We next consider the simplest such case where the groups contain
one and two agents, respectively. The maximin share approximation algorithm
for this case is similar to the modified round-robin algorithm that yields a 1/2-
approximation for an arbitrary number of agents [3], but we will need to make
some adjustments to handle more than one agent being in the same group.
For the algorithm, we will need the following two lemmas, which admit rather
straightforward proofs.

Lemma 1 ([3]). Suppose that each group contains one agent. Consider a round-
robin algorithm in which the agents take turns taking their favorite good from the
remaining goods. In the resulting allocation, the envy that an agent has toward
any other agent is at most the maximum utility of the former agent for any
single good. Moreover, if an agent is ahead of another agent in the round-robin
ordering, then the former agent has no envy toward the latter agent.

Lemma 2 ([3,7]). Given an arbitrary instance in which each group contains
one agent. If we allocate an arbitrary good to an agent as her only good, then
the maximin share of any remaining agent with respect to the remaining goods
does not decrease.

We are now ready to handle the case with one and two agents in the groups.

Theorem 1. Let (n1, n2) = (2, 1), and suppose that α is the best possible ap-
proximation ratio for the maximin share. Then 2/3 ≤ α ≤ 3/4.

Proof. We first show the upper bound. Suppose that there are four goods. The
utilities of the agents in the first group for the goods are u11 = (3, 1, 2, 2) and
u12 = (2, 3, 2, 1), while the utilities of the agent in the second group are u21 =
(3, 2, 2, 1).

In this example, every agent has a maximin share of 4. We will show that
any allocation gives some agent a utility of at most 3. Note that an allocation
that would give every agent a utility of at least 4 must allocate two goods to
both groups. If the fourth and one of the second and third goods are allocated
to the second group, the agent gets a utility of 3. Otherwise, one can check that
one of the agents in the first group gets a utility of 3.

Next, we exhibit an algorithm that guarantees each agent a 2/3 fraction
of her maximin share. Since we do not engage in interpersonal comparisons of
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utilities, we may assume without loss of generality that every agent has utility
1 for the whole bundle of goods. Since the maximin share of an agent is always
at most 1/2, it suffices to allocate a bundle worth at least 1/3 to her.

If some good is worth at least 1/3 to a21, let her take that good. By Lemma
2, the maximin shares of a11 and a12 do not decrease. Since they receive all
of the remaining goods, they obtain their maximin share. Hence we may now
assume that no good is worth at least 1/3 to a21. We let each of a11 and a12, in
arbitrary order, take a good worth at least 1/3 if there is any. There are three
cases.

– Both of them take a good. Then each of them gets a utility of at least 1/3.
Since every good is worth less than 1/3 to a21, she also gets a utility of at
least 1− 1/3− 1/3 = 1/3 from the remaining goods.

– One of them takes a good and the other does not. Assume without loss of
generality that a11 is the agent who takes a good. We run the round-robin
algorithm on a12 and a21 using the remaining goods, starting with a21. Since
every good is worth less than 1/3 to a21, the value of the whole bundle of
goods minus the good that a11 takes is at least 2/3. By Lemma 1, a21 gets a
utility of at least 1/2× 2/3 = 1/3. Similarly, the envy of a12 toward a21 is at
most the maximum utility of a12 for a good allocated during the round-robin
algorithm, which is at most 1/3. This implies that a21’s bundle is worth at
most 2/3 to a12, and hence a12’s bundle in the final allocation (i.e., her
bundle from the round-robin algorithm combined with the good that a11
takes) is worth at least 1/3 to her.

– Neither of them takes a good. We run the round-robin algorithm on all three
agents, starting with a21. By Lemma 1, a21 gets a utility of at least 1/3. The
envy of a11 toward a21 is at most the maximum utility of a11 for a good,
which is at most 1/3. Hence a21’s bundle is worth at most 2/3 to a11, which
means that a11’s bundle in the final allocation (i.e., her bundle combined
with a12’s bundle) is worth at least 1/3 to her. An analogous argument
holds for a12.

This covers all three possible cases. ⊓⊔

Next, we generalize to the setting where the first group contains an arbitrary
number of agents while the second group contains a single agent. In this case, an
algorithm similar to that in Theorem 1 can be used to obtain a constant factor
approximation when the number of agents is constant. In addition, we show that
the approximation ratio necessarily degrades as the number of agents grows.

Theorem 2. Let n1 ≥ 2 and n2 = 1, and suppose that α is the best approxi-
mation ratio for the maximin share. Then 2

n1+1 ≤ α ≤ 1
⌊f(n1)/2⌋ , where f(n1) is

the largest integer such that
(
f(n1)

2

)
≤ n1.

Proof. We first show the upper bound. Let l = f(n1), and suppose that there
are l goods. Let

(
l
2

)
of the agents in the first group positively value a distinct set

of two goods. In particular, each of them has utility 1 for both goods in their set
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Algorithm 1 Algorithm for approximate maximin share when the groups con-
tain n1 ≥ 2 and n2 = 1 agents (Theorem 2).

1: procedure Approximate–Maximin–Share–1

2: if Agent a21 values some good g at least 1

n1+1
then

3: Allocate g to a21 and the remaining goods to the first group.
4: else

5: Let each agent in the first group, in arbitrary order, take a good worth at
least 1

n1+1
to her if there is any.

6: Allocate the remaining goods to the agents who have not taken a good using
the round-robin algorithm, starting with a21.

7: end if

8: end procedure

and 0 for the remaining goods. Let the agent in the second group have utility 1
for all goods.

In this example, each agent in the first group has a maximin share of 1, while
the agent a21 has a maximin share of ⌊l/2⌋. To guarantee nonzero utility for
the l agents in the first group, we must allocate all but at most one good to the
group, leaving at most one good for the second group. So the agent in the second
group obtains at most a 1/⌊l/2⌋ fraction of her maximin share.

An algorithm that guarantees a 2
n1+1 -approximation of the maximin share

(Algorithm 1) is similar to that for the case n1 = 2 (Theorem 1). Again, we
normalize the utility of each agent for the whole set of goods to 1. First, let a21
take a good worth at least 1

n1+1 to her if there is any. If she takes a good, we
allocate the remaining goods to the first group and are done by Lemma 2. Else,
we let each of the agents in the first group, in arbitrary order, take a good worth
at least 1

n1+1 to her if there is any. After that, we run the round-robin algorithm
on the agents who have not taken a good, starting with a21.

Suppose that r agents in the first group take a good. Each of them obtains a
utility of at least 1

n1+1 . The remaining goods, which are allocated by the round-

robin algorithm, are worth a total of at least n1+1−r
n1+1 to a21. Since there are

n1 + 1 − r agents who participate in the round-robin algorithm, and a21 is the
first to choose, she obtains utility at least 1

n1+1−r · n1+1−r
n1+1 = 1

n1+1 . Finally, by
Lemma 1, each agent in the first group who does not take a good in the first
stage has envy at most 1

n1+1 ≤ 1
3 toward a21. Hence for such an agent, a21’s

bundle is worth at most 2/3, and so the bundle allocated to the first group is
worth at least 1

3 ≥ 1
n1+1 . ⊓⊔

Algorithm 1 can be implemented in time polynomial in the number of agents

and goods. Also, since
(⌊

√
2n1⌋
2

)
≤ (

√
2n1)

2

2 = n1, we have the following corollary.

Corollary 1. Let n1 ≥ 2 and n2 = 1, and suppose that α is the best approxi-
mation ratio for the maximin share. Then 2

n1+1 ≤ α ≤ 1

⌊⌊
√
2n1⌋/2⌋

.
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3.3 Approximation via Maximin Partitions

We now consider the two remaining cases, (n1, n2) = (2, 2) and (3, 2). We show
that in both cases, a positive approximation is also possible. However, the al-
gorithms for these two cases will rely on a different idea than the previous al-
gorithms. These positive results provide a clear distinction between the settings
where it is possible to approximate the maximin share and those where it is not.
For the former settings, the maximin share can be approximated within a posi-
tive factor independent of the number of goods. On the other hand, for the latter
settings, there exist instances in which some agent with positive maximin share
necessarily gets zero utility even when there are only four goods (Propositions 1
and 2), and therefore no approximation is possible even if we allow dependence
on the number of goods.

Algorithm 2 Algorithm for approximate maximin share when the groups con-
tain n1 = n2 = 2 agents (Theorem 3).

1: procedure Approximate–Maximin–Share–2

2: for each agent aij do

3: Compute her maximin partition (Gij , G\Gij).
4: end for

5: Partition G into 16 subsets (H1, H2, . . . ,H16) according to whether each good
belongs to Gij or G\Gij for each 1 ≤ i, j ≤ 2.

6: if Some subset Hp is important (i.e., of value at least 1/8 of the agent’s maximin
share) to both a11 and a12 then

7: Allocate Hp to the first group and the remaining goods to the second group.
8: else

9: Suppose that Hp,Hq are important to a11 and Hr,Hs to a12.
10: Find a pair from (Hp,Hr), (Hp, Hs), (Hq,Hr), (Hq,Hs) that does not coin-

cide with the important subsets for an agent in the second group.
11: Allocate that pair of subsets to the first group and the remaining goods to

the second group.
12: end if

13: end procedure

Theorem 3. Let (n1, n2) = (2, 2), and suppose that α is the best possible ap-
proximation ratio for the maximin share. Then 1/8 ≤ α ≤ 1/2.

Proof. We first show the upper bound. Suppose that there are four goods. The
utilities of the agents in the first group for the goods are u11 = (0, 2, 1, 1) and
u12 = (2, 0, 1, 1), while the utilities of those in the second group are u21 =
(1, 1, 0, 0) and u22 = (0, 0, 1, 1).

In this example, both agents in the first group have a maximin share of 2, and
both agents in the second group have a maximin share of 1. To ensure nonzero
utility for the agents in the second group, we must allocate at least one of the
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first two goods and at least one of the last two goods to the group. However,
this implies that some agent in the first group gets a utility of at most 1.

Next, we exhibit an algorithm that yields a 1/8-approximation of the max-
imin share (Algorithm 2). For each agent aij , let (Gij , G\Gij) be one of her
maximin partitions. By definition, we have that both uij(Gij) and uij(G\Gij)
are at least the maximin share of aij . Let (H1, H2, . . . , H16) be a partition of
G into 16 subsets according to whether each good belongs to Gij or G\Gij for
each 1 ≤ i, j ≤ 2; in other words, for every i, j, the goods in each set Hk either
all belong to Gij or all belong to G\Gij . By the pigeonhole principle, for each
agent aij , among the eight sets Hk whose union is Gij , the set that she values
most gives her a utility of at least 1/8 of her maximin share; call this set Hp.
Likewise, we can find a set Hq ⊆ G\Gij that the agent values at least 1/8 of
her maximin share. We call these subsets important to aij . It suffices for every
agent to obtain a subset that is important to her.

If some subset Hp is important to both a11 and a12, we allocate that subset
to the first group and the remaining goods to the second group. Since each agent
in the second group has at least two important subsets, and only one is taken
away from them, this yields the desired guarantee. Else, two subsets Hp, Hq are
important to a11 and two other subsets Hr, Hs are important to a12. We will
assign one of the pairs (Hp, Hr), (Hp, Hs), (Hq , Hr), (Hq, Hs) to the first group.
If a pair does not work, that means that some agent in the second group has
exactly that pair as her important subsets. But there are four pairs and only
two agents in the second group, hence some pair must work. ⊓⊔

We briefly discuss the running time of Algorithm 2. The algorithm can be
implemented efficiently except for one step: computing a maximin partition of
each agent. This step is NP-hard even when the two agents have identical utility
functions by a straightforward reduction from the partition problem. Neverthe-
less, Woeginger [31] showed that a PTAS for the problem exists.4 Using the
PTAS, we can compute an approximate maximin partition instead of an exact
one and obtain a (1/8− ǫ)-approximate algorithm for the maximin share in time
polynomial in the number of goods for any constant ǫ > 0.

A similar idea can be used to show that a positive approximation of the
maximin share is possible when (n1, n2) = (3, 2).

Theorem 4. Let (n1, n2) = (3, 2), and suppose that α is the best possible ap-
proximation ratio for the maximin share. Then 1/16 ≤ α ≤ 1/2.

Proof. The upper bound follows from Theorem 3 and the observation preceding
Proposition 1.

For the lower bound, compute the maximin partition for each agent, and
partition G into 32 subsets according to which part of the partition of each
agent a good belongs to. For each agent, at least 2 of the subsets are important,
i.e., of value at least 1/16 of her maximin share. If some subset is important to

4 Woeginger also showed that an FPTAS for this problem does not exist unless P =
NP.
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both a21 and a22, allocate that subset to them and the remaining goods to the
first group. Otherwise, we can allocate some pair of important subsets to the
second group using a similar argument as in Theorem 3. ⊓⊔

3.4 Experimental Results

To complement our theoretical results, we ran computer experiments to see the
extent to which it is possible to approximate the maximin share in random
instances. For (n1, n2) = (2, 2) and (3, 2), we generated 100000 random instances
where there are four goods and the utility of each agent for each good is drawn
independently and uniformly at random from the interval [0, 1]. The results are
shown in Table 2a. An approximation ratio of 0.9 can be guaranteed in over
90% when there are two agents in each group, and in over 80% when there are
three agents in one group and two in the other. In other words, an allocation
that “almost” satisfies the maximin criterion can be found in a large majority
of the instances. However, the proportion drops significantly to around 70%
and 50% if we demand that the partition yield the full maximin share to the
agents, indicating that this is a much more stringent requirement. We also ran
the experiment on instances where the utilities are drawn from an exponential
distribution and from a log-normal distribution. As shown in Tables 2b and
2c, the number of instances for which the (approximate) maximin criterion is
satisfied is lower for both distributions than for the uniform distribution. This
is to be expected since the utilities are less spread out, meaning that conflicts
are more likely to occur. The heavy drop as we increase the requirement from
α ≥ 0.9 to α ≥ 1 is present for these distributions as well.

We also remark here that the case with four goods seems to be the hardest
case for maximin approximation. Indeed, with two goods an allocation yielding
the full maximin share always exists, with three goods the maximin share is low
since any partition leaves at most one good to one group, and with more than
four goods there are more allocations and therefore more possibilities to exploit
the differences between the utilities of the agents. This intuition aligns with the
fact that the instances we use to show the approximation lower bounds in this
paper all involve exactly four goods.

4 Several Groups of Agents

In this section, we consider a more general setting where there are several groups
of agents. We show that when only one group contains more than a single agent,
a positive approximation is possible independent of the number of goods. On the
other hand, when all groups contain at least two agents and one group contain
at least five agents, no approximation is possible in a strong sense.

4.1 Positive Result

We first show a positive result when all groups but one contain a single agent.
This is a generalization of the corresponding result for two groups (Theorem 2).
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α ≥ 0.5 α ≥ 0.6 α ≥ 0.7 α ≥ 0.8 α ≥ 0.9 α ≥ 1

(n1, n2) = (2, 2) 100000 100000 99937 98803 92015 69248

(n1, n2) = (3, 2) 100000 99997 99672 96174 81709 49386

(a) The uniform distribution over the interval [0, 1].

α ≥ 0.5 α ≥ 0.6 α ≥ 0.7 α ≥ 0.8 α ≥ 0.9 α ≥ 1

(n1, n2) = (2, 2) 100000 99982 99280 94464 80683 55833

(n1, n2) = (3, 2) 100000 99827 97295 86293 63914 36626

(b) The exponential distribution with mean 1.

α ≥ 0.5 α ≥ 0.6 α ≥ 0.7 α ≥ 0.8 α ≥ 0.9 α ≥ 1

(n1, n2) = (2, 2) 100000 99990 99220 92658 74966 55768

(n1, n2) = (3, 2) 100000 99895 97159 82918 57068 36802

(c) The log-normal distribution with parameters µ = 0 and σ = 1 for the associated
normal distribution.

Table 2: Experimental results showing the number of instances, out of 100000,
for which the respective maximin approximation ratio is achievable by some
allocation of goods when utilities are drawn independently from the specified
probability distribution.

The algorithm also uses the round-robin algorithm as a subroutine, but more
care must be taken to account for the extra groups. Recall that when all groups
contain a single agent, the best known approximation ratio is 3/4, obtained by
Ghodsi et al.’s algorithm [15].

Theorem 5. Let n1 ≥ 2 and n2 = n3 = · · · = nk = 1. Then it is possible to
give every agent at least 2

n1+2k−3 of her maximin share.

Proof. Let α := 1
n1+2k−3 . If some agent in a singleton group values a good at

least α times her value for the whole set of goods, put that good as the only
good in her allocation. Since her maximin share is at most 1/k ≤ 1/2 times her
value for the whole set of goods, this agent obtains the desired guarantee. We
will give the remaining agents their guarantees with respect to the reduced set of
goods and agents. By Lemma 2, the maximin share of an agent can only increase
as we remove an agent and a good, and the approximation ratio 2

n1+2k−3 also
increases as k decreases. This implies that guarantees for the reduced instance
also translate to ones for the original instance. We recompute each agent’s value
for the whole set of goods as well as the number of groups and repeat this step
until no agent in a singleton group values a good at least α times her value for
the whole set of goods.

Next, we normalize the utility of each agent for the whole set of goods to 1
as in Theorem 1. We let each of the agents in the first group, in arbitrary order,
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take a good worth at least α to her if there is any. The approximation guarantee
is satisfied for any agent who takes a good. Suppose that after this step, there
are n0 ≤ n1 agents in the first group and k0 ≤ k − 1 agents in the remaining
groups who have not taken a good. We run the round-robin algorithm on these
n0+ k0 agents, starting with the k0 agents who do not belong to the first group.

Consider one of the n0 agents in the first group. Since no good allocated by
the round-robin algorithm is worth at least α to her, she has envy at most α
toward each of the k0 agents. Assume for contradiction that the bundle allocated
to the first group is worth less than α to her. Then she values the bundle of each
of the k0 agents at most 2α. Hence her utility for the whole set of goods is less
than α+ 2k0α = 2k0+1

n1+2k−3 ≤ 2k−1
2k−1 = 1, a contradiction.

Consider now one of the k0 agents in the remaining group. She has utility at
least 1− (n1−n0)α for the set of goods allocated by the round-robin algorithm.
With respect to the bundles allocated by the round-robin algorithm, she has no
envy toward herself or any of the n0 agents in the first group, and she has envy
at most α toward the remaining k0 − 1 agents. Summing up the corresponding
inequalities, averaging, and using the fact that her utility for all bundles com-
bined is at least 1 − (n1 − n0)α, we find that her utility for her own bundle

is at least 1−(n1−n0)α−(k0−1)α
n0+k0

. It suffices to show that this is at least α. The
inequality is equivalent to α(2k0 +n1− 1) ≤ 1, which holds since k0 ≤ k− 1. ⊓⊔

4.2 Negative Result

We next show that when all groups contain at least two agents and one group
contains at least five agents, no approximation is possible.

Theorem 6. Let n1 ≥ 4 if k is even and n1 ≥ 5 if k is odd, and n2 = n3 =
· · · = nk = 2. Then there exists an instance in which some agent with nonzero
maximin share necessarily receives zero utility.

Proof. Let n1 = 4 if k is even and 5 if k is odd, and suppose that there are
2k goods. In each of the groups 2, 3, . . . , k, one agent has utility 1 for the first
k goods and 0 for the last k, while the other agent has utility 0 for the first k
goods and 1 for the last k. Hence all of these agents have a maximin share of 1.
To ensure that they all get nonzero utility, each group must receive one of the
first k and one of the last k goods. This only leaves one good from the first k
and one from the last k to the first group.

First, consider the case k even. Let the utilities of the agents in the first
group be given by

– u11 = (

k/2
︷ ︸︸ ︷

1, 1, . . . , 1,

k/2
︷ ︸︸ ︷

0, 0, . . . , 0,

k/2
︷ ︸︸ ︷

1, 1, . . . , 1,

k/2
︷ ︸︸ ︷

0, 0, . . . , 0);

– u12 = (

k/2
︷ ︸︸ ︷

1, 1, . . . , 1,

k/2
︷ ︸︸ ︷

0, 0, . . . , 0,

k/2
︷ ︸︸ ︷

0, 0, . . . , 0,

k/2
︷ ︸︸ ︷

1, 1, . . . , 1);

– u13 = (

k/2
︷ ︸︸ ︷

0, 0, . . . , 0,

k/2
︷ ︸︸ ︷

1, 1, . . . , 1,

k/2
︷ ︸︸ ︷

1, 1, . . . , 1,

k/2
︷ ︸︸ ︷

0, 0, . . . , 0);



14 W. Suksompong

– u14 = (

k/2
︷ ︸︸ ︷

0, 0, . . . , 0,

k/2
︷ ︸︸ ︷

1, 1, . . . , 1,

k/2
︷ ︸︸ ︷

0, 0, . . . , 0,

k/2
︷ ︸︸ ︷

1, 1, . . . , 1).

All four agents have a maximin share of 1, but for any combination of a good
from the first k goods and one from the last k, some agent obtains a utility of 0.

Next, consider the case k odd. Let the utilities of the agents in the first group
be given by

– u11 = (

(k−1)/2
︷ ︸︸ ︷

1, 1, . . . , 1,

(k+1)/2
︷ ︸︸ ︷

0, 0, . . . , 0,

(k+1)/2
︷ ︸︸ ︷

1, 1, . . . , 1,

(k−1)/2
︷ ︸︸ ︷

0, 0, . . . , 0);

– u12 = (

(k+1)/2
︷ ︸︸ ︷

1, 1, . . . , 1,

(k−1)/2
︷ ︸︸ ︷

0, 0, . . . , 0,

(k+1)/2
︷ ︸︸ ︷

0, 0, . . . , 0,

(k−1)/2
︷ ︸︸ ︷

1, 1, . . . , 1);

– u13 = (

(k+1)/2
︷ ︸︸ ︷

0, 0, . . . , 0,

(k−1)/2
︷ ︸︸ ︷

1, 1, . . . , 1,

(k−1)/2
︷ ︸︸ ︷

0, 0, . . . , 0,

(k+1)/2
︷ ︸︸ ︷

1, 1, . . . , 1);

– u14 = (

(k−1)/2
︷ ︸︸ ︷

0, 0, . . . , 0,

(k+1)/2
︷ ︸︸ ︷

1, 1, . . . , 1,

(k−1)/2
︷ ︸︸ ︷

1, 1, . . . , 1,

(k+1)/2
︷ ︸︸ ︷

0, 0, . . . , 0);

– u15 = (

(k−1)/2
︷ ︸︸ ︷

1, 1, . . . , 1, 0,

k−1
︷ ︸︸ ︷

1, 1, . . . , 1, 0,

(k−1)/2
︷ ︸︸ ︷

1, 1, . . . , 1).

All five agents have a maximin share of 1, but as in the previous case, any
combination of a good from the first k goods and one from the last k yields no
utility to some agent. ⊓⊔

5 Conclusion and Future Work

In this paper, we study the problem of approximating the maximin share when
we allocate goods to groups of agents. When there are two groups, we charac-
terize the cardinality of the groups for which we can obtain a positive approx-
imation of the maximin share. We also show positive and negative results for
approximation when there are several groups.

We conclude the paper by listing some future directions. For two groups,
closing the gap between the lower and upper bounds of the approximation ratios
(Table 1) is a significant problem from a theoretical point of view but perhaps
even more so from a practical one. In particular, it would be especially interesting
to determine the asymptotic behavior of the best approximation ratio when one
group contains a single agent and the number of agent in the other group grows.
For the case of several groups, one can ask whether it is in general possible to
obtain a positive approximation when some groups contain a single agent while
others contain two agents; the techniques that we present in this paper do not
seem to extend easily to this case. Another question is to determine whether the
dependence on the number of groups in the approximation ratio (Theorem 5) is
necessary. One could also address the issue of truthfulness or add constraints on
the allocation, for example by requiring that the allocation form a contiguous
block on a line, as has been done for the traditional fair division setting [2,6,29].

In light of the fact that the positive results in this paper only hold for groups
with a small number of agents, a natural question is whether we can relax the
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fairness notion in order to allow for more positive results. For example, one could
consider only requiring that a certain fraction of agents in each group, instead
of all of them, think that the allocation is fair. Indeed, for two groups with
any number of agents, there exists an allocation that yields at least half of the
maximin share to at least half of the agents in each group [25]. Alternatively,
if we use envy-freeness as the fairness notion, then a possible relaxation is to
require envy-freeness only up to some number of goods, where the number of
goods could depend on the number of agents in each group.

From a broader point of view, an intriguing future direction is to explore
other fairness notions such as envy-freeness and proportionality in our setting
where goods are allocated to groups of agents. Even though an allocation satis-
fying these notions does not necessarily exist, and indeed even an approximation
cannot be guaranteed, we can still strive for an algorithm that produces such
an allocation whenever one exists. This has been obtained for envy-freeness for
groups with single agents, for example by the undercut procedure [9]. Such an
algorithm for our generalized setting would be both interesting and important
in our opinion.
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