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Abstract

We investigate a class of weighted voting games for which weights are randomly distributed over the standard probability
simplex. We provide close-formed formulae for the expectation and density of the distribution of weight of the k-th largest
player under the uniform distribution. We analyze the average voting power of the k-th largest player and its dependence
on the quota, obtaining analytical and numerical results for small values of n and a general theorem about the functional
form of the relation between the average Penrose–Banzhaf power index and the quota for the uniform measure on the
simplex. We also analyze the power of a collectivity to act (Coleman efficiency index) of random weighted voting games,
obtaining analytical upper bounds therefor.
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1. Introduction

An n–player weighted voting game G is described by a
weight vector w := (w1, . . . , wn) ∈ ∆n, where ∆n is the
standard (n− 1)–dimensional probability simplex, and a
qualified majority quota q ∈ ( 1

2 , 1]. In such a game, the
set of winning coalitions W ⊂ P(V ), where V is the set of
players, is defined as follows:

W :=

{
Q ⊂ V :

∑
v∈Q

wv ≥ q
}
. (1)

We denote the set of all n-player weighted voting games
by Gn.

By random weighted voting game we mean a weighted
voting game in which the number of players n and the
quota q are fixed, and the weight vector w is drawn from
the standard probability simplex ∆n with some probability
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measure. Such games seem to be interesting for a number
of reasons. First, the analysis of random weighted vot-
ing games enhances our understanding of weighted voting
games in general. One of the major challenges in the field
lies in the fact that generic results are usually rather diffi-
cult to obtain, while the behavior of weighted voting games
in specific cases depends heavily on the characteristics of
the specific weight vector and is often subject to number-
theoretic peculiarities. For instance, some of the funda-
mental questions touch the relationship between the quota
q and the influence of individual players or efficiency of
the system as a whole. Yet, for fixed weight vectors those
dependencies are not only discontinuous, but highly er-
ratic. Randomizing the weights, and thus averaging them
over the simplex, smooths out the peculiarities of specific
weight vectors, revealing hitherto unobserved regularities.

Second, randomizing the weights is likely to be of inter-
est from the standpoint of voting rule design. Rule design
tends to take place before players’ weights are fixed, and
thus any predictions regarding the effects of the rules must,
to the extent such effects depend on voting weights, neces-
sarily be probabilistic. Also, just like players’ preferences
are treated as random to abstract away from particular is-
sues and focus the attention on the voting rules themselves
(Roth, 1988), treating voting weights as random further
abstracts away the particular configuration of players and
brings other parameters (such as the number of players or
the quota) into the forefront.

Obviously, the characteristics of a random weighted
voting game depend on the choice of the probability mea-
sure. In the present article, we focus on the uniform
(Lebesgue) measure (which is equivalent to the familiar
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Impartial Anonymous Culture Model used in computa-
tional social choice, see Kuga and Nagatani, 1974; Gehrlein
and Fishburn, 1976). For that measure we obtain exact
closed-form formulae for the expectation and density of
the distribution of voting weight of the k–th largest player,
an analytical formula for the expected values of product–
moments of voting weights, a general theorem about the
functional form of the relation between the expected values
of the absolute and normalized Penrose–Banzhaf indices of
the k–th largest player and the quota, the characteristic
function of the distribution of coalition weights, and an
approximation of the Coleman efficiency index (the power
of a collectivity to act). All of those results constitute
an original contribution of the paper. We further outline
several applications of those results in the field of mathe-
matical voting theory and in some other areas.

1.1. Related work

The notion of voting power, i.e., a player’s influence on
the outcome of the game, which, as demonstrated by Pen-
rose (1946), is not necessarily proportional to the player’s
weight, is of fundamental importance to the study of vot-
ing systems. The two of the most popular voting power in-
dices have been introduced by Shapley and Shubik (1954)
and by Banzhaf (1964). Both define the voting power of a
player v in terms of the probability that their vote is de-
cisive, but differ in their definition of the probability mea-
sure on the set of voting outcomes: the Shapley–Shubik
index treats each permutation of players as equiprobable,
while the Penrose–Banzhaf index assigns equal probabili-
ties to all combinations of players. In addition, there are
two versions of the Penrose–Banzhaf index in common use:
one is defined as the probability of a player v casting a deci-
sive vote and is known as the non-normalized or absolute
Penrose–Banzhaf index, ψv (Dubey and Shapley, 1979),
while the other one, βv, is further normalized in order to
ensure that the vector β := (β1, . . . , βn) lies in the proba-
bility simplex ∆n. Note that the vector of Shapley–Shubik
indices always lies in ∆n, hence there is no need for further
normalization.

It is well known that each player’s voting power de-
pends not only on the weight vector, but also on the quota
(Felsenthal and Machover, 1998; Leech and Machover, 2003).
The relationship between the quota and the Penrose–
Banzhaf power index for a fixed weight vector has been in-
vestigated by Leech (2002a) and more generally by Zucker-
man et al. (2012), with the latter reporting several results
on, inter alia, the upper and lower bounds of the ratio and
difference between a player’s weight and their normalized
Penrose–Banzhaf index. Analytical results about the val-
ues of the Penrose–Banzhaf index depending on the quota
are available primarily for extreme quotas: the Penrose
limit theorem (Penrose, 1946, 1952), proven under certain
technical assumptions by Lindner and Machover (2004),
provides that for q = 1/2 and all i, j ∈ V , the ratio ψi/ψj
converges to wi/wj as n → ∞. On the other hand, it
is easy to notice that as q → 1, the values of ψi and βi

converge to 21−n and 1/n, respectively, regardless of w.
S lomczyński and Życzkowski (2006, 2007) have established
that q∗ := 1

2

(
1 + (

∑n
i=1 w

2
i )
−1
)

is a good approximation of
the quota minimizing the distance ‖w − β‖2. For the dis-
cussion of the political significance of this quota, see Grim-
mett (2019). Therefore, if w is uniformly distributed on
∆n, then E(q∗) ≈ 1

2 + 1√
πn

(Życzkowski and S lomczyński,

2013). Upper bounds for the deviation between weights
and Penrose–Banzhaf indices have been provided by Kurz
(2018a). The relationship between the number of dummy
players, i.e., such players v that βv = 0, and the quota has
been studied by Barthélémy et al. (2013).

The case of random weights has been investigated only
for the Shapley–Shubik index Sv. The issue of selecting
quotas maximizing and minimizing the Shapley–Shubik
power of a given player is analyzed by Zick et al. (2011),
who note that testing whether a given quota does so is an
NP-hard problem. They also note that for a large range
of quotas starting with 1/2, the Shapley–Shubik power of
a small player tends to be stable and close to their weight.
Jelnov and Tauman (2014) established that if w is uni-
formly distributed on ∆n, the expected ratio of Shapley–
Shubik index to weight approaches 1 as n→∞. Bachrach
et al. (2017) identify certain number-theoretic artifacts in
the relationship between Sv and q for weights drawn from
a multinomial distribution and normalized, and provides
a lower bound for the expected index Sv of the smallest
player v. A problem similar to ours is posed by Filmus
et al. (2016), who provide a closed-form characterization
of the Shapley values of the largest and smallest players for
w drawn from a uniform distribution on ∆n or obtained by
normalizing n independent random variables drawn from a
uniform distribution. Finally, Bachrach et al. (2016) give
a closed-form formula for the Shapley–Shubik power index
in games with super-increasing weights.

Numerous works analyze weighted voting games in a
variety of empirical settings, including the Council of the
European Union (Laruelle and Widgrén, 1998; Leech, 2002a;
Felsenthal and Machover, 2004; Życzkowski and Cichocki,
2010; Życzkowski and S lomczyński, 2013), the U.S. Elec-
toral College (Owen, 1975; Miller, 2013), the International
Monetary Fund (Leech, 2002c; Leech and Leech, 2013),
the U.N. Security Council (Strand and Rapkin, 2011) and
joint stock companies (Leech, 2002b). The list of refer-
ences is by no means complete, but demonstrates that the
relevance of the subject goes far beyond purely academic.

2. Voting Weight of the k–th Largest Player

2.1. Introduction

Let ∆n be the standard (n− 1)–dimensional probabil-
ity simplex, which represents the set of normalized weight
vectors. We consider a random weighted voting game,
where the weight vector W ∈ ∆n is a random variable with
the uniform probability distribution, which will be there-
after denoted as Unif (∆n). Since the uniform measure is
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symmetric, the players are indistinguishable a priori. But
note that the coordinates of W, i.e., the voting weights of
the players, can almost surely be strictly ordered. This or-
dering provides a natural basis for distinguishing the play-
ers a posteriori.

Notation 1. For k = 1, . . . , n we denote the k–th largest
coordinate of a vector x ∈ Rn as x↓k.

We start with the simplest question: what is the ex-
pected value and density of the distribution of voting
weight of the k–th largest player in a random weighted
voting game? While the coordinates of W can be thought
of as a sample of random variables, and W ↓k as the k–th
largest order statistic of that sample, virtually all results
in the field assume that order statistics are computed for
a sample of independent variables, which is manifestly not
the case for the barycentric coordinates of a vector drawn
from a simplex. For that reason, the problem can be con-
sidered non-trivial.

2.2. Expected value: barycenter of the asymmetric simplex

Each ordering of the coordinates of a generic weight
vector w, w↓1 > w↓2 > · · · > w↓n, corresponds to dividing
the entire simplex ∆n into n! asymmetric parts and select-
ing one of them, which we will denote as ∆̃n. If W is drawn
from the uniform distribution on ∆n, the ordered weight
vector W↓ = (W ↓1 ,W

↓
2 , . . . ,W

↓
n) is uniformly distributed

on the asymmetric simplex ∆̃n with vertices (1, 0, . . . , 0),
1
2 (1, 1, 0, . . . , 0), . . . , 1

n (1, 1, . . . , 1), see Fig. 1.

Figure 1: The case of n = 3: probability simplex ∆3 as well as
the asymmetric simplex ∆̃3 with vertices A,B,C and the barycenter
b = (A+B + C)/3 = (11, 5, 2)/18.

The expected value of W↓ coincides with the barycen-
ter b of ∆̃n. The k–th coordinate of that barycenter, bk,
for k = 1, . . . , n, can be expressed by the sum of harmonic
numbers Hl :=

∑l
j=1 1/j, as follows:

bk = (Hn −Hk−1)/n =
1

n

n∑
j=k

1

j
. (2)

Thus we obtain an explicit formula, valid for an arbi-
trary number of players n, for the expected voting weight
of the k–th largest player:

Proposition 2. If W ∼Unif (∆n), then for each
k = 1, . . . , n:

E(W ↓k ) = bk =
1

n

n∑
j=k

1

j
. (3)

E.g., for n = 3 the expected ordered random proba-
bility vector is E(W↓) = (11, 5, 2)/18, while for n = 6
one obtains E(W↓) = (147, 87, 57, 37, 22, 10)/360. Note
that for a large n the harmonic numbers scale as lnn+ γ,
where γ is the Euler–Mascheroni constant, so the first co-
ordinate scales as lnn/n, the median coordinate as ln 2/n,
and the smallest coordinate as 1/n2.

2.3. Densities

More generally, we obtain the following theorem, with
proof given in the Appendix:

Theorem 3. If W ∼Unif (∆n), then W ↓k , k = 1, . . . , n,
is distributed according to an absolutely continuous distri-
bution supported on [1/n, 1] for k = 1 and on [0, 1/k] for
k > 1, with piecewise polynomial density fn,k : [0, 1] → R
given by:

fn,k (x) := n(n− 1)

(
n− 1

k − 1

)
×

min(n,b1/xc)∑
j=k

(−1)j−k
(
n− k
j − k

)
(1− jx)

n−2
. (4)

1 2 3 4

k

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

x

fk,n

Figure 2: Densities of the distributions of the voting weight of the
k-th largest of 4 players for k = 1, . . . , 4.

Remark 4. The above result can also be obtained from
results on the order statistics of uniform spacings (Darling,
1953; Rao and Sobel, 1980; Devroye, 1981). Nevertheless,
we believe that the approach described in the Appendix is
more promising in the context of a possible generalization
to the family of Dirichlet distributions.
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Remark 5. Elementary techniques of real analysis are suf-
ficient to demonstrate that fn,k is smooth of class Cn−3 for
n > 2.

Remark 6. Theorem 3 extends an earlier result by Qeadan
et al. (2012), where, inter alia, closed-form formulae are
obtained for the joint density of a sum and maximum of
exponentially distributed i.i.d. random variables. It suf-
fices to note that the normalized vector of n independent
exponential random variables with mean 1 is uniformly dis-
tributed on ∆n (Jambunathan, 1954).

Proposition 7. If W ∼Unif (∆n), then for k = 1, . . . , n,(
W ↓1 , . . . ,W

↓
n

)
d
=

( n∑
j=1

Wj

j
, . . . ,

n∑
j=n

Wj

j

)
. (5)

Proof. By Jambunathan (1954) we can assume that for
j = 1, . . . , n,

Wj =
Xj∑n
i=1Xi

, (6)

where X1, . . . , Xn ∼ Exp (1) are independent random vari-
ables. Then by Rényi representation formula (Rényi, 1953),(
X↓1 , . . . , X

↓
n

)
d
=

( n∑
j=1

Xj

j
, . . . ,

n∑
j=n

Xj

j

)
. (7)

Moreover,

n∑
k=1

X↓k =

n∑
k=1

Xk =

n∑
k=1

n∑
j=k

Xj

j
. (8)

Thus, from (7) and (8),

(
X↓1∑n
i=1Xi

, . . . ,
X↓n∑n
i=1Xi

)
d
=

(∑n
j=1

Xj

j∑n
i=1Xi

, . . . ,

∑n
j=n

Xj

j∑n
i=1Xi

)
,

(9)

and by (6)

(∑n
j=1

Xj

j∑n
i=1Xi

, . . . ,

∑n
j=n

Xj

j∑n
i=1Xi

)
=

( n∑
j=1

Wj

j
, . . . ,

n∑
j=n

Wj

j

)
,

(10)

as desired.

2.4. Product–moments of weights

Product–moments of voting weights are interesting for
a number of reasons. Firstly, they appear in the defini-
tion of Rényi entropy (Rényi, 1961) of integer order m,
where m > 1, given by − ln

∑n
i=1 w

m
i . Secondly, we use

them in Sec. 4 to obtain the characteristic function of the
distribution of the total weight of a random coalition of
players. Finally, the sum of squared weights appears in

the definitions of the Herfindahl–Hirschman–Simpson in-
dex of diversity (Hirschman, 1945; Simpson, 1949; Herfind-
ahl, 1950),

∑n
i=1 w

2
i , the Laakso–Taagepera index of the

effective number of players (Laakso and Taagepera, 1979;

Taagepera and Grofman, 1981),
(∑n

i=1 w
2
i

)−1
, and the op-

timal quota minimizing the Euclidean distance between
weight and power vectors (S lomczyński and Życzkowski,
2006, 2007), 1

2

(
1 + (

∑n
i=1 w

2
i )
−1
)
.

We obtain a general theorem about the expected value
of the product–moment of voting weights:

Theorem 8. If W ∼ Unif (∆n), then for every m :=
(m1, . . . ,mn) ∈ Nn,

E
( n∏
j=1

W
mj

j

)
=

∏n
j=1mj !

(n)|m|
, (11)

where |m| :=
∑n
j=1mj and (k)l :=

∏l−1
j=0(k + j).

Proof. Substituting d = n − 1, D = n, and lj = xj
(j = 1, . . . , n) for (t1, . . . , tn) ∈ (0, 1)

n
in Baldoni et al.

(2011, Corollary 14) we obtain

∑
m∈Nn

n∏
j=1

t
mj

j

(n)|m|∏n
j=1 (mj)!

∫
∆n

n∏
j=1

x
mj

j dx =
1∏n

j=1 (1− tj)
.

(12)

Expanding (1− tj)−1
into Taylor series, we get

∑
m∈Nn

n∏
j=1

t
mj

j

(n)|m|∏n
j=1 (mj)!

E
( n∏
j=1

W
mj

j

)
=
∑

m∈Nn

n∏
j=1

t
mj

j .

(13)

Then the assertion follows from the uniqueness of Taylor
expansion.

From this result, we obtain the following corollaries:

Corollary 9. If a random vector W ∼ Unif (∆n), then
for every m ∈ N+,

E
( n∑
j=1

Wm
j

)
=

m!

(n+ 1)m−1

. (14)

Corollary 10. If a random vector W ∼ Unif (∆n), then:

E
( n∑
j=1

W 2
j

)
=

2

n+ 1
, (15)

and

Var

( n∑
j=1

W 2
j

)
=

4 (n− 1)

(n+ 1)
2

(n+ 2) (n+ 3)
. (16)
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3. Voting Power of the k–th Largest Player

3.1. Definitions

The notion of a power index serves to characterize the
a priori voting power of a player in a weighted voting
game by measuring the probability that their vote will be
decisive in a hypothetical ballot, i.e., the winning coalition
would fail to satisfy the qualified majority condition if this
player were to change their vote. In the classical approach
by Penrose (1946, 1952) and Banzhaf (1964), it is assumed
that all potential coalitions of players are equiprobable.

Let ω := |W| be the total number of winning coalitions,
and for i = 1, . . . , n, let ωi := |{Q ∈ W : i ∈ Q}| be the
number of winning coalitions that include the i–th player.

Definition 11. The absolute (non-normalized) Penrose–
Banzhaf index ψi of the i–th player, where i = 1, . . . , n, is
the probability that the i–th player is decisive, i.e.,

ψi :=
ωi − (ω − ωi)

2n−1
=

2ωi − ω
2n−1

. (17)

To compare these indices for games with different num-
bers of players, it is convenient to define the normalized
Penrose–Banzhaf index.

Definition 12. The normalized Penrose–Banzhaf index βi
of the i–th player, where i = 1, . . . , n, is

βi :=
ψi∑n
j=1 ψj

. (18)

The absolute Penrose–Banzhaf index, unlike the nor-
malized one, has a clear probabilistic interpretation; how-
ever, for the latter the vector of indices always lies on ∆n.

3.2. Analytical results for very small values of n

For any G, J ∈ Gn, let I : V (G)→ V (J) be an isomor-
phism mapping the k–th largest player in G to the k–th
largest player in J (assuming linear orderings of players
in both games), and let ∼ be an equivalence relation on
Gn such that G ∼ J if and only if W (G) = W (J) up to
isomorphism I. For small values of n, the elements of the
quotient set Gn/ ∼ can be easily enumerated – see Muroga
et al. (1962); Winder (1965); Muroga et al. (1970) and
more generally Kirsch and Langner (2010); Barthélémy
et al. (2011); Kurz (2012, 2018c). Their number increases
rapidly with n: there are 2 elements of Gn/ ∼ for n = 2
players, 5 for 3 players, 14 for 4 players, 62 for 5 players,
566 for 6 players, and 11971 for 7 players.

For a fixed q ∈ ( 1
2 , 1] and for each χ ∈ Gn/ ∼ there

exists a set Lqχ ⊂ ∆n such that for any point within Lqχ the

ordered power index vector (β↓1, ..., β
↓
n) equals (βχ1 , ..., β

χ
n).

Note that the volume of Lqχ depends on the quota q. The
expected voting power of the k–th largest player equals:

E
(
β↓k

)
=

∑
χ∈Gn/∼

βχk λ
(
Lqχ
)
, (19)

where by λ we denote the Lebesgue measure on ∆n.
The case of n = 2 is straightforward, as there are only

two classes of games – the unanimity and the dictatorship
of the largest player. Ordered power index vectors (β↓1, β

↓
2)

for those classes are equal to ( 1
2 ,

1
2 ) and (1, 0), respectively.

Thus, we obtain:

E
(
β↓1

)
= 2

(
1

2
λ
((1

2
, q
))

+ λ
((
q, 1
)))

=
3

2
− q, (20a)

E
(
β↓2

)
= λ

((1

2
, q
))

= q − 1

2
. (20b)

Now let us consider the simplest non-trivial case – that
of n = 3. There are five elements of Gn/ ∼ to consider:

βχ condition (χ) probability (λ
(
Lqχ
)
)

( 1
3 ,

1
3 ,

1
3 ) q > w↓1 + w↓2 1− F3(1− q)

( 1
2 ,

1
2 , 0) w↓1 + w↓2 > q > w↓1 + w↓3 F3(1− q)− F2(1− q)

( 3
5 ,

1
5 ,

1
5 )

(w↓1 + w↓3 > q > w↓2 + w↓3)

∧ (w↓1 + w↓3 > q > w↓1)

(1− F1(1− q))F1(q)

−F1(1− q)(1− F1(q))

−1 + F2(1− q)

( 1
3 ,

1
3 ,

1
3 )

(w↓2 + w↓3 > q)

∧ (w↓1 < 1/2)
F1(1− q)

(1, 0, 0) (w↓1 > q) ∧ (w↓1 > 1/2) 1− F1(q)

where by Fk we denote the cumulative distribution of the
k–th largest player’s weight, k = 1, 2, 3.

From the above and (4), we obtain, see Fig. 3:

λ
(
Lqχ
)

βχ q ≤ 2/3 q ≥ 2/3

( 1
3 ,

1
3 ,

1
3 ) 0 9q2 − 12q + 4

( 1
2 ,

1
2 , 0) 12q2 − 12q + 3 −15q2 + 24q − 9

( 3
5 ,

1
5 ,

1
5 ) −24q2 + 30q − 9 3q2 − 6q + 3

( 1
3 ,

1
3 ,

1
3 ) 9q2 − 12q + 4 0

(1, 0, 0) 3q2 − 6q + 3 3q2 − 6q + 3

At this point, from (19) we get:

E
(
β↓1

)
=

{
12
5 (q − q2) + 1

30 , q ≤ 2/3,
1
10 (16− 16q + 3q2) + 1

30 , q ≥ 2/3,
(21a)

E
(
β↓2

)
=

{
21
5 q

2 − 4q + 1 + 1
30 , q ≤ 2/3,

1
10 (68q − 39q2 + 26), q ≥ 2/3,

(21b)

E
(
β↓3

)
=

{
− 9

5q
2 + 2q − 1

2 + 1
30 , q ≤ 2/3,

2
5 (9q2 − 13q) + 2 + 1

30 , q ≥ 2/3.
(21c)

3.3. Numerical results for small values of n

As mentioned in Sec. 1, if a player’s voting weight is
fixed, the dependence of the voting power on the quota
q ∈ ( 1

2 , 1] seems to be highly erratic. This is illustrated by
Figure 4.
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A B C D E

χ

0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

q

λ(Lχ
q)

Figure 3: Probabilities of the five classes of games χ ∈ G3/ ∼ as
a function of the quota q. Classes A, B, C, D, and E correspond,
respectively, to weight vectors βA := ( 1

3
, 1
3
, 1
3

), βB := ( 1
2
, 1
2
, 0),

βC := ( 3
5
, 1
5
, 1
5

), βD := ( 1
3
, 1
3
, 1
3

), and βE := (1, 0, 0).

On Fig. 5 we plot numerical estimates of E(β↓k) and

E(ψ↓k) as functions of q, obtained by Monte Carlo sam-
plings of 216 random vectors of length n = 3, 6, 9. Their
examination reveals certain general regularities.

For q → 1/2 the average voting power of the largest

player, E(β↓1), is considerably greater than their average

weight, E(w↓1), at the expense of all the other players, and
then decreases monotonically with the quota q. The sec-
ond player initially loses the most, but their average voting
power, E(β↓2), increases up to its single maximum, qmax

2 ,

while the average voting power of the third player, E(β↓3),
has two extrema, qmin

3 and qmax
3 . The average voting power

of small players initially fluctuate mildly with q around
their average weights, with the amplitudes of these fluctu-
ations diminishing as k increases, and for q → 1 the voting
powers of all players converge to 1/n.

Careful examination of the numerical results suggests
a following conjecture:

Conjecture 13. For the uniform distribution on the prob-
ability simplex ∆n and for every k = 1, ..., n, the aver-
age normalized Penrose–Banzhaf power index of the k–th
largest player, E(β↓k), has exactly k − 1 local extrema over
(1/2, 1) as a function of q.

Remark 14. Note that for n = 3, Conjecture 13 follows
immediately from the analytic form of E(β↓k) given by (21).

The voting power of the second largest player, E(β↓2), ad-
mits a maximal value at qmax

2 = 34/39 (≈ 87.18%), while

E(β↓3) exhibits a minimum at qmin
3 = 5/9 (≈ 55.56%) and

a maximum at qmax
3 = 13/18 (≈ 72.22%).

4. The power of a collectivity to act

The power of a collectivity to act, i.e., the ease of reach-
ing a decision, is usually measured with the Coleman effi-
ciency index (Coleman, 1971), defined as the probability

0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

n=6

q

βi

1 2 3 4 5 6

i

Figure 4: Normalized Penrose–Banzhaf power indices β1, . . . , β6 in a
six-player weighted voting game with weights fixed at the barycenter
of the asymmetric simplex, b = (147, 87, 57, 37, 22, 10)/360, as func-
tions of the quota q. Horizontal lines represent the voting weights of
each player. An earlier version of this figure appeared in Rz ↪ażewski
et al. (2014, p. 282), cf. Fig. 5.

that a random coalition Q ∈ P(V ) is a winning one:

C :=
ω

2n
, (22)

where ω := |W|.

Remark 15. Note that C is a decreasing function of the
quota q ∈ ( 1

2 , 1]. Since it is impossible for any coalition
Q ∈ P(V ) that both Q and V \Q be winning, C ≤ 1

2 . On

the other hand, C ≥ C (1) = 2−|{j= 1,...,n : wj>0}|.

Let µn be the Bernoulli measure on {0, 1}n, and let
Z : ∆n×{0, 1}n → R be given by the formula Z (w, ξ) :=∑n
i=1 wiξi −

1
2 , where w ∈ ∆n and ξ ∈ {0, 1}n. Note that

Eλ×µn
(C) = 1− FZ

(
q − 1

2

)
, (23)

where λ is the Lebesgue measure on ∆n, and FZ is the
distribution function of Z with respect to the probability
measure λ×µn on ∆n×{0, 1}n. This distribution function
can be calculated by the following proposition:

Theorem 16. The characteristic function of Z is given
by

ϕZ (t) = 1z2

(
n

1
2 + n

2 ,
n
2

;−
(
t

4

)2
)
, (24)

for t ∈ R, where 1z2 is a generalized hypergeometric func-
tion.

Proof. For a fixed w ∈ ∆n and k = 1, . . . , n, let Xk :=
wk(ξk − 1

2 ) and X :=
∑n
k=1Xk. Then for t ∈ R,

ϕXk
(t) =

1

2

(
e

1
2 itwk + e−

1
2 itwk

)
= cos

(
twk
2

)
, (25)
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Figure 5: Absolute and normalized Penrose–Banzhaf power indices of n players averaged over the probability simplex ∆n with respect to the
uniform measure as functions of the quota q. Horizontal lines represent the average voting weight of each player. The vertical line q = q∗

represents the approximation of the quota minimizing the distance ‖w − β‖2, see Życzkowski and S lomczyński (2013). An earlier version of
one of the figures appeared in Rz ↪ażewski et al. (2014, p. 287).

7



and

ϕX (t) =

n∏
k=1

cos

(
twk
2

)
=

∞∑
j=0

tj

j!

dj

dtj

n∏
k=1

cos

(
twk
2

)∣∣∣∣∣
t=0

=

∞∑
j=0

t2j

(2j)!

∑
j1+...+jn=j

(−1)
j

2−2j (2j)!

n∏
k=1

w2jk
k

(2jk)!

=

∞∑
j=0

(−1)
j

(
t

2

)2j ∑
j1+...+jn=j

n∏
k=1

w2jk
k

(2jk)!
. (26)

It can be shown that the resulting series is absolutely con-
vergent. Hence, and by Theorem 8,

ϕZ (t) =

∫
∆n

ϕX (t) dλ

=

∞∑
j=0

(−1)
j

(
t

2

)2j ∑
j1+...+jn=j

E
(∏n

k=1W
2jk
k

)
∏n
k=1 (2jk)!

=

∞∑
j=0

(−1)
j

(
t

2

)2j
1

(n)2j

(
j + n− 1

n− 1

)

= 1z2

(
n

1
2 + n

2 ,
n
2

;−
(
t

4

)2
)
, (27)

as desired.

Thus by numerical inversion of the characteristic func-
tion ϕZ , we can easily estimate the expected Coleman ef-
ficiency index Eλ×µn

(C) for any quota q ∈ ( 1
2 , 1]. The

results for a number of arbitrarily chosen values of n are
plotted on Fig. 6.

n=3

n=16

0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

q

C

Figure 6: Coleman efficiency indices C of weighted voting games
with n = 3, 6, 9, 12, 16, averaged in each case over ∆n with respect
to the uniform measure, as functions of the quota q.

The following results provide analytical formulae for,
respectively, the upper bound and the asymptotic approx-
imation of the Coleman efficiency index.

Remark 17. Let W ∼ Unif (∆n). By the central limit
theorem and (23), the expected Coleman efficiency index,
Eλ×µn

(C), can be approximated for fixed n and q by

C1 := 1− Φ

(√
2 (n+ 1)

(
q − 1

2

))
, (28)

where Φ is the standard normal cumulative distribution
function. The upper bound for the approximation error can
be obtained from the Berry–Esseen theorem (Berry, 1941;
Esseen, 1942). However, numerical simulations suggest
that it exceeds the actual approximation error by several
orders of magnitude.

The above approximation is particularly useful when
one is interested in finding such value of q as to obtain a
specific expected Coleman efficiency index, see Fig. 7.

0 0.1 0.2 0.3 0.4 0.5

0.925

0.950

0.975

1.000

1.025

1.050

1.075

y

r 4 6 9 12

n

Figure 7: Error ratio r of the approximation (28) of the expected
Coleman efficiency index in random weighted voting games with n =
4, 6, 9, 12, where r(y) := C−1

1 (y)/(E(C))−1(y) = C−1
1 (E(C)(q))/q for

y = E(C)(q) ∈ [2−2n, 2−1].

For any fixed weight vector w, we have the following
upper bound for the Coleman efficiency index C:

Proposition 18. In a weighted voting game with q ≥ 1/2
the Coleman efficiency index C is bounded from the above
in the following manner:

C ≤ exp

(
−2 (q − 1/2)

2∑n
i=1 w

2
i

)
. (29)

Proof. A proof follows from the Hoeffding’s inequality
(Hoeffding, 1963). If Y1, . . . , Yn are independent random
variables such that Yi is almost surely bounded by

[
τ−i , τ

+
i

]
for every i = 1, . . . , n, then for any h ≥ 0:

Pr

(
n∑
i=1

(Yi − E (Yi)) ≥ h

)
≤ exp

(
−2h2∑n

i=1

(
τ+
i − τ

−
i

)2
)
.

(30)

Putting Pr = µn, Yi = wiξi, h = q − 1/2, τ+
i = wi and

τ−i = 0, we obtain Proposition 18.
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5. Splines

Any quantity that is a function of the weighted vot-
ing game (e.g., the Coleman efficiency index, the Penrose–
Banzhaf and Shapley–Shubik power indices, etc.), aver-
aged over the probability simplex ∆n, and considered as a
function of the quota, has the following property:

Theorem 19. Let U : ∆n × ( 1
2 , 1] → Gn be a function

mapping a weight vector and a quota to the related weighted
voting game. If W ∼ Unif (∆n), then for any p : Gn → R,

(1/2, 1] 3 q → E (p (U (W, q))) ∈ R (31)

is a spline of degree at most n− 1.

Proof. Note that (∆n × (1/2, 1]) / kerU is a partition of
the polytope ∆n × (1/2, 1] into blocks

PG := {(w,q) ∈ ∆n × (1/2, 1] : U (w, q) = G} (32)

for G ∈ Gn. Each PG is a convex polytope (Grünbaum
et al., 2003, ch. 2), since it can be described by a sys-
tem of 2n linear inequalities with one inequality for each
coalition Q ∈ P(V ), corresponding to the condition that
Q be winning or losing, i.e., that 〈1Q,w〉 ≥ q if Q ∈ G
and 〈1Q,w〉 ≤ q if Q /∈ G (Mason and Parsley, 2016). For
every G ∈ Gn, and q ∈ ( 1

2 , 1], the intersection of PG and
an affine hyperplane Θq := {x ∈ Rn : 〈1,x〉 = 1} × {q}
parallel to ∆n, is called the weight polytope P qG (Kurz,
2018b).

For any p : Gn → R, let q ∈ (1/2, 1] be fixed. Clearly,
p (U (W, q)) is constant over P qG for each G ∈ Gn. Thus,
E (p (U (W, q))) is an affine combination of the volumes of
weight polytopes:

E (p (U (W, q))) =
∑
G∈Gn

p (G) λ (P qG) , (33)

where λ is the Lebesgue measure on ∆n × {q}. It is well–
known that the volume of an intersection of an n–polytope
P and a moving hyperplane Θt sweeping P over some
interval (t0, t1) ⊂ R is a piecewise polynomial function
(spline) of t of degree at most n− 1 (De Boor and Höllig,
1982; Bieri and Nef, 1983; Lawrence, 1991; Gritzmann and
Klee, 1994, Theorem 3.2.1). Thus, E (p (U (W, ·))) is a
sum of splines of degree at most n − 1, and accordingly
also a spline of the same or lower degree.

6. Concluding remarks

In the present article we obtain a number of new ana-
lytical results, including explicit formulae for the expected
value and density of the voting weight of the k–th largest
player in a random weighted voting game, and for the
expected values of product–moments of voting weights,
a characteristic function of the distribution of the total
weight of a random coalition of players, and a general theo-
rem about the functional form of the relation between any

quantity that is a function of the weighted voting game
and the quota. In addition, we note several regularities
appearing in numerical simulations that seem to provide
promising subjects for further study.

The results presented above enhance our understand-
ing of the relationship between voting game parameters,
such as the Coleman efficiency index or voting power, and
the qualified majority quota q in random voting games
where weights are drawn from the uniform distribution on
the probability simplex ∆n. These can have potential ap-
plications in the area of voting rule design, especially if
the rules are drafted behind a veil of ignorance with re-
gard to the actual distribution of players’ weights (as is
the case for business corporations). Moreover, the results
presented in Sec. 2, regarding the distribution of voting
weights of the k–th largest player and the expected values
of product–moments of voting weights, may find applica-
tions in other areas of social choice theory. For instance,
Theorem 3 can be applied to obtain the probability of a
candidate with a specified vote share winning the election
held under the plurality rule.

Future work will focus on proving Conjecture 13; de-
veloping a workable large–n approximation on the basis
of the normal approximation of the Penrose–Banzhaf in-
dex; and generalizing the results presented here for other
Dirichlet measures.
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Appendix. Proof of Theorem 3

LetX1, . . . , Xn ∼ Exp (1) be independent random vari-
ables with densities fXj (x) := e−x for every j = 1, . . . , n
and x > 0. As in the proof of Proposition 7, we can assume
that

W ↓k =
X↓k∑n
i=1Xi

. (34)

By David and Nagaraja (2003, (2.1.3)), the order statis-

tic X↓k (k = 1, . . . , n) has an absolutely continuous distri-
bution with the density given, for x ∈ R+, by

fX↓k
(x) = k

(
n

k

)
e−kx

(
1− e−x

)n−k
. (35)

Let Ψ :=
∑n
j=1Xj . By the Markov property of order

statistics (David and Nagaraja, 2003, Thm. 2.5), the con-

ditional distribution of X↓1 , . . . , X
↓
k−1 given X↓k = y > 0, is

the same as the distribution of order statistics Y ↓1 , . . . , Y
↓
k−1

from i.i.d. random variables Y1, . . . , Yk−1 with Yj ∼ Exp (1)
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truncated to (y,∞) for j = 1, . . . , k−1. Likewise, the con-

ditional distribution of X↓k+1, . . . , X
↓
n given X↓k = y > 0, is

identical to the distribution of order statistics Z↓1 , . . . , Z
↓
n−k

from i.i.d. random variables Z1, . . . , Zn−k such that Zj ∼
Exp (1) truncated to (0, y) for j = 1, . . . , n − k. More-
over, we can choose Y1, . . . , Yk−1 and Z1, . . . , Zn−k to be
independent. Thus, for their sums we obtain respectively:k−1∑

j=1

X↓j

∣∣∣∣∣X↓k = y

 d
=

k−1∑
j=1

Y ↓j
d
=

k−1∑
j=1

Yj , (36)

i.e., the sum of k − 1 independent exponential random
variables variables truncated to (y,∞), and n∑

j=k+1

X↓j

∣∣∣∣∣X↓k = y

 d
=

n−k∑
j=1

Z↓j
d
=

n−k∑
j=1

Zj , (37)

i.e., the sum of n−k independent exponential random vari-
ables truncated to (0, y). But it is easy to see that a sum
of k − 1 left–truncated independent exponential random
variables is a gamma–distributed random variable with pa-
rameters (k − 1, 1) shifted by a constant, y (k − 1). Thus,(

Ψ

∣∣∣∣X↓k = y

)
=

(
(Ψ−X↓k)

∣∣∣∣X↓k = y

)
+ y

d
= Ξ, (38)

where Ξ :=
∑k−1
j=1 Yj + yk +

∑n−k
j=1 Zj , and

∑k−1
j=1 Yj ∼

Gamma (k − 1, 1) is independent of Z1, . . . , Zn−k. Hence,
the characteristic function of their sum is given by the
product of the characteristic functions:

ϕ∑k−1
j=1 Yj

(t) := (1− it)−(k−1)
, (39)

for t ∈ R, and

ϕZj
(t) :=

ey

1− e−y

∫ y

0

eitx−xdx

= (1− it)k−n
(
ey − eity

ey − 1

)n−k
, (40)

for t ∈ R and j = 1, . . . , n− k. Accordingly,

ϕΞ (t) = (1− it)1−n
(
ey − eity

ey − 1

)n−k
eityk, (41)

Applying the binomial theorem, we obtain

ϕΞ(t) = (ey − 1)k−n×
n∑
l=k

(
n− k
l − k

)
(1− it)1−n

ey(n−l)eiπ(l−k)eityl. (42)

As ϕΞ is integrable, for every x ∈ R+ we obtain by
Lévy’s inversion formula (Billingsley, 1995, p. 347, (26.20)):

fΞ(x) =
1

2π

∫ +∞

−∞
e−itxϕΞ(t) dt =

1

2π
(ey − 1)k−n×

n∑
l=k

(−1)
l−k
(
n− k
l − k

)
ey(n−l)F

{
(1− it)1−n

}
(x− yl).

(43)

By Bateman (1954, § 3.2 (3), p. 118), we have

F
{

(1− it)1−n
}

(s) =

{
2πsn−2e−s

Γ(n−1) , s > 0,

0, s ≤ 0.
(44)

From (38), (43), and (44),

fΨ|X↓k = y(x) = fΞ (x) = (ey − 1)k−n×
min(n,bx/yc)∑

l=k

(−1)
l−k

(n− 2)!

(
n− k
l − k

)
(x− yl)n−2

eny−x. (45)

Thus, by Curtiss (1941), the density of the ratio is given
by

fW↓k
(x) =

∫ ∞
0

|z| fX↓k ,Ψ(xz, z) dz

=

∫ ∞
0

|z| fΨ|X↓k = xz(z) fX↓k
(xz) dz

=

∫ ∞
0

|z|
T (n,x)∑
l=k

k (−1)
l−k

(n− 2)!

(
n− k
l − k

)(
n

k

)
(z − xzl)n−2

ez
dz

=
k

(n− 2)!

T (n,x)∑
l=k

Γ (n)

(
n− k
l − k

)(
n

k

)
(−1)

l−k

(1− lx)
2−n

= n (n− 1)

(
n− 1

k − 1

) T (n,x)∑
l=k

(
n− k
l − k

)(
n

k

)
(−1)

l−k

(1− lx)
2−n ,

(46)

where T (n, x) := min (n, b1/xc), as desired.
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Życzkowski, K., S lomczyński, W., 2013. Square Root Voting System,
Optimal Threshold and π, in: Power, Voting, and Voting Power:
30 Years After. Springer, Berlin–Heidelberg, pp. 573–592. doi:10.
1007/978-3-642-35929-3\_30.

12

http://dx.doi.org/10.2307/1951053
http://dx.doi.org/10.1038/163688a0
http://arxiv.org/abs/physics/0610271
http://arxiv.org/abs/physics/0701338
http://dx.doi.org/10.1177/1046878110365514
http://dx.doi.org/10.1177/004912418101000104
http://dx.doi.org/10.1177/004912418101000104
http://dx.doi.org/10.1109/PGEC.1965.264136
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-089
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-089
http://dx.doi.org/10.1016/J.ARTINT.2011.12.003
http://dx.doi.org/10.1007/978-3-642-35929-3_30
http://dx.doi.org/10.1007/978-3-642-35929-3_30

	1 Introduction
	1.1 Related work

	2 Voting Weight of the k–th Largest Player
	2.1 Introduction
	2.2 Expected value: barycenter of the asymmetric simplex
	2.3 Densities
	2.4 Product–moments of weights

	3 Voting Power of the k–th Largest Player
	3.1 Definitions
	3.2 Analytical results for very small values of n
	3.3 Numerical results for small values of n

	4 The power of a collectivity to act
	5 Splines
	6 Concluding remarks

