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1. INTRODUCTION

A single peaked domain on a given alternative space X can be de-
scribed as a collection Dy of preferences on X whose top elements
define a shared compromise-structure for any population of agents en-
dowed with preferences that are included in Dy.

Such a shared compromise-structure is defined as follows: when com-
paring a top-alternative x of some preference in Dx to any other alter-
native y in X all agents with preferences in Dx agree on the identifica-
tion of those alternatives in X which lie between = and y as a genuine
compromise between them, i.e. which are not strictly worse than both
x and 1.}

Thus, the very notion of a single-peaked domain ultimately rests on
an underlying ternary betweenness relation on the relevant alternative
space’. Arguably, a most common and possibly prototypical example
of such a ternary relation is the betweenness induced by a metric on

IThis broad and largely informal description of single peaked domains admits
of several distinct specifications, including the case of preference domains that are
most often denoted single plateau domains, which are not covered here. More on
this below, especially in the final section concerning related literature.

2To be sure, that statement refers to formalization of single peakedness in terms
of ternary spaces (i.e. sets endowed with a ternary relation). Essentially equiv-
alent formalizations of single peakedness via interval spaces, ternary algebras or
incidence structures are also available. But the approach in terms of ternary spaces
is undisputably the most faithful to the original presentation of single peakedness
proposed by Black (1948) and Arrow (1963), and is arguably still the most widely
used one.
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2 STEFANO VANNUCCI

the alternative space as widely employed in standard location models.
However, in Black (1948) -the work which first explicitly introduced
single peaked preferences- using metric information to define the be-
tweenness relation is regarded as a possible option, but it is not at all
required. Indeed, the betweenness relation considered by Black is the
one induced by an ordered line, so that an alternative z lies between
alternatives x and y if and only if it is the median of the triplet z,y,z:
such a betweenness relation defines single peaked preferences on a line,
or line-based single peaked preferences (the relevant line is also referred
to as their spectrum). But then, a most obvious generalization of that
notion of betweenness is betweenness on a tree namely on a connected
graph T without cycles. Since any two alternatives are connected in T’
by a unique path (which can also be regarded as a line), just declare
z to lie between x and y if and only if it lies on the unique path con-
necting x and y, and take T" as the relevant spectrum. Thus, by using
the latter betweenness relation, one obtains single peaked preferences
with respect to a tree-shaped spectrum and the corresponding domains,
henceforth also denoted tree-based single peaked (TSP) domains.

As a matter of fact, tree-based single peaked preferences were first
introduced in Demange (1982) (and also, if only implicitly, in Wendell,
McKelvey (1981) for the special metric*® case which is so typical of lo-
cation theory). Remarkably, it turns out that single peaked preference
domains on a finite tree share several significant properties with single
peaked preference domains on a line. In particular,

(i) the core of any proper simple game is non-empty at any profile
of tree-based single peaked preferences (see Demange (1982)%);

(ii) thus, in particular, at any tree-based single peaked profile the
set of Condorcet winners of a simple majority game is non-empty, and
some appropriate’ version of the median voter theorem consequently
holds;

(iii) any sincere single peaked preference profile of a TSP domain is
a strong Nash equilibrium of the game resulting from the combination
of such profile with the social choice function which is defined on the

Metric topped preferences are those induced by distance-minimization from the
top (see e.g. Wendell and McKelvey (1981), and Bartholdi and Trick (1986), Trick
(1989)). Following the usage introduced by the latter authors, such preferences are
now widely also referred to as narcissistics.

4To be sure, Demange’s result concerns connected strict orders or, equivalently,
antisymmetric total preorders. But the argument of its proof can be easily extended
to ‘topped’ total preorders.

5Depending of course on the exact specification of the notion of single peakedness
under consideration.
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aforementioned domain and selects the median of the top alternatives
at any preference profile (i.e. equivalently such a social choice function
is coalitionally strategy-proof : see Danilov (1994), Vannucci (2016)).°

Such remarkable properties shared by all TSP domains largely ex-
plain the extensive body of literature devoted to them, and to the
related problems of their characterization and recognition. Indeed, in
view of the properties listed above TSP domains may be regarded as
sets of preference configurations that ensure a very robust type of out-
come stability under majoritarian decision rules.

In that connection, the characterization and recognition of TSP do-
mains is a significant task in several respects.

First of all, characterizations of TSP domains (possibly, several and
mutually independent ones) help to assess their plausibility by gauging
the size and width of their collection. Specifically, by singling out some
of the key properties of TSP domains, characterizations make it easier
to locate them (possibly by assisting in the choice of candidate domains
to check”), to determine their maximum size, to identify their maximal
elements, perhaps even to count them at least for small parameter sizes.

Moreover, if Dx is a TSP domain then it is consistent with the
following situation: X is endowed with a shared ‘compromise structure’
that makes submission of true information about private preference
rankings a dominant strategy for each agent under majority voting,
and the resulting outcome is also immune to the most plausible sort
of coalitional manipulation. It follows that whenever such a Dy is
the range of a submitted ballot-profile under majority voting, then it
may be plausibly regarded as good, reliable information about the true
preferences of the relevant ‘voters’ (which would not be the case for a
non-TSP domain).

In particular, recognition and characterization(s) of TSP domains
can support the design of new ‘hybrid’ anonymous voting protocols that
guarantee a suitably adapted version of coalitional strategy-proofness
on the full domain of ‘topped’ total preorders, by combining condi-
tional use of the majority rule on TSP (sub)domains and of random

60n the contrary, transitivity of the binary simple majority relation (namely,
the dominance relation induced by the simple majority game) is not guaranteed
by single peakedness on a tree, unless the tree is in fact a line (see e.g. Demange
(1982)).

"That is so because any characterization amounts to a set of criteria, and a
candidate domain that fails any one of them can be immediately discarded, to the
effect of easing the selection of promising domains to submit to the recognition test.
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dictatorship (or some other coalitionally strategy-proof rule) on other
domains.®

However, it turns out that -to the best of the author’s knowledge-
characterizations of general? TSP domains are not yet available in the
literature, while a polynomial recognition algorithm has been proposed
only for the special case of TSP domains consisting of linear orders (i.e.
antisymmetric total preorders).

The aim of the present work is precisely to fill this gap in the lit-
erature, providing a characterization of TSP domains of ‘topped’ total
preorders (i.e. of reflexive, connected, transitive binary relations with
a unique mazimum), with respect to a very comprehensive notion of
single peakedness requiring that an alternative located between the top
and another alternative be just not worse (as opposed to strictly better)
than the latter.'”

Such a problem is addressed here relying upon two building blocks:
(i) an adaptation and extension to general topped total preorders of
Trick’s Make Tree recognition algorithm for single-peaked linear or-
ders on a tree, which amounts to a specific procedure to build single-
peakedness-respecting tree-consistent paths starting from leaves (Trick
(1989)), and (ii) an application to the specific issue of TSP domains
of a recent characterization of finite tree-betweenness relations due to
Chvatal, Rautenbach, Schifer (2011), that in turn relies on the seminal
results of Sholander (1952) concerning tree-intervals, with no reference
whatsoever to single peakedness.

The present characterization of TSP domains singles out three'' prop-
erties of the aforementioned characterization of tree-betweenness that
the betweenness relations attached to the output of the adapted ver-
sion of the Make Tree algorithm do satisfy precisely when the input is

8The ‘hybrid’ qualifier refers both to the combination of two well-known basic
voting rules and to the use of a modular arithmetical component to implement a
conditional pseudorandom selection between them. The underlying design principle
is the following: if the revealed preference profile is a TSP domain then use a
lottery to select between simple majority and random dictatorship as a voting rule.
Otherwise use random dictatorship.

9As opposed to the special case of line-based TSP domains (Ballester and
Haeringer (2011) and Puppe (2018)), or of TSP domains of linear orders (Chat-
terji, Sen and Zeng (2016)): see the Related Literature section for more details on
such contributions.

10A related problem is TSP domain recognition i.e. finding an algorithm that
decides whether Dx is a TSP domain or not.

" That is so because the other two properties from the aforementioned charac-
terization of tree-betweenness are embedded in the very definition of the class of
tree-admissible betweenness relations employed in the statement of our main result.
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a TSP domain. As a result, it shows that an adapted version of the
specific Make Tree procedure (originally designed to find one tree -if
any such tree exists- that guarantees single peakedness for a domain of
linear orders) can also be deployed to find out all trees'” -if any- that
guarantee single peakedness for an arbitrary domain of topped total
preorders.

2. TREE-BASED SINGLE PEAKED DOMAINS: DEFINITIONS AND
PRELIMINARIES

Let X be a finite set with |X| = m, Tx the set of all binary relations
»=C X? which are topped i.e. with a unique mazimum topx (=) € X.
Moreover, let T% C Tx be the set of all total preorders on X having a
unique maximum, Ly the set of all linear orders (i.e. antisymmetric
total preorders) on X. The following notation will be used: for any
=€ Tx , »;and ~;denote respectively the asymmetric and symmet-
ric components of =;, and Ay := {(x,z) : € X}; moreover, for any
Dx ={=1,....,=n} CTx and any x € X, N(Dx) = {1,...,n}.

A ternary relation B C X? is a (nonstrict) betweenness on X if
and only if for any z,y, z € X the following two conditions hold:

(By)(Closedness): for each z,y,z € X, (z,y,2) € B whenever
y € {z, 2},

(B1)(Symmetry): for each z,y,z € X, if (z,y,2) € B then
(z,y,2) € B.

A topped ’=; € T is single peaked with respect to betweenness
relation B C X3 if for each 1 € N and any z,y,z € X, v = topx (3=;)
and (z,y, z) € B entail that z =; y does not hold. A domain Dy C Ty
is single peaked with respect to betweenness B if every =, € Dx is
single peaked with respect to B.

The strength and significance of single peakedness depends of course
on the strength of the underlying betweenness. For instance, consider
the so called trivial betweenness relation B on X defined as follows: for
any x,y,z € X, (z,y,2) € BYifand only if y € {z, 2}, i.e. equivalently

B :={(x,y.2) € X*: [{z,y,2}| < 2}.

It is easily checked that B? is indeed a betweenness relation since it
satisfes properties By and Bi, and that the following claim holds true:

Claim 1. Let Dx C Tx. Then Dx 1is a single peaked domain with
respect to BY.

12This property of Trick’s Make Tree algorithm is also discussed at length in
Peters and Elkind (2016) with reference to domains of linear orders.
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The present work is only concerned with single peakedness with re-
spect to tree-betwenness, namely the specific sort of betweenness which
is induced by trees on X.

A tree on X is a simple graph T' = (X, F) where the set of edges
E C{AC X :|A| =2} issuch that: (i) T is connected, namely for any
two distinct nodes x,y € X, there exists a simple path connecting them
i.e. a finite sequence 7,y = (21,..., ) such that {z1, 2} = {x,y},
{zi,zi:1} € E, and {z;, zit1} # {7, zj41} for each 4,5 = 1,...,k — 1,
with ¢ # j, and (ii) T is acyclic namely T has no cycle i.e. no path
T{zyt = (21,..., 2) such that z; = 2.

Thus, a simple graph is a tree if and only if every pair of distinct
nodes is connected by a (unique) path. As a result -in view of its
finiteness- there must be some nodes which belong to just one edge,
and are also denoted as leaves of the tree.

The betweenness relation By of a tree T = (X, E) is defined as
follows: for any z,vy, 2z € X,

(#,9,2) € By if and only if either y € {z, 2} or y lies on T, .y =
(21, ..., 2¢) namely y € {z1,...,2x}. A ternary relation B on X is a
tree-betweenness if and only if there exists a tree T' = (X, E) such
that B = BT-

We are now ready to introduce the notion of a single peaked domain
with a tree-shaped spectrum, or tree-based single peaked domain.

Definition 1. (Tree-Based Single Peaked Domains ) A finite do-
main Dx = {1, ..., =n} C Tx is Tree-based Single Peaked (TSP)
if there exists a tree-betweenness B C X3 such that every =;€ Dyx is
single peaked with respect to B.

It is worth emphasizing here that a tree-based single peaked domain
may admit several distinct trees as spectra, unless it consists of metric
topped total preorders (see Trick (1989), Peters and Elkind (2016) and
note 3 above).

The ensuing analysis will take advantage of the following character-
ization of tree-betweenness.

Proposition 1. (Chvdtal, Rautenbach, Schifer (2011)) A ternary
relation B C X3 is a tree-betweenness if and only if it satisfies the
following independent conditions: for each x,y,z € X,

(B1) (Symmetry (S)): if (x,y,z) € B then (z,y,z) € B;

(Bs) (Overlapping-Path Tree-Consistency (OPC)): if (z,y,z) €
B, (y,z,w) € B and y # z then (x,z,w) € B;
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(B3) (Nested-Path Tree-Consistency (NPC)): if (x,y,z) € B
and (z,z,w) € B then (y,z,w) € B;
(By) (Compromise Awvailability for Triplets (CAT)):
if B0{(z,y,2),(y, z,x), (2,2,y)} = & then there existsu € X\{x}
such that (z,u,y) € B and (z,u,z) € B;
(Bs) (Minimal Closed Acyclicity (MCA)): (z,y,z) € B and (y,x,z2) €
B if and only if v = y.

Remark 1. The present characterization result is due to Chvétal,
Rautenbach and Schiifer (2011) (see their Corollary 5: the descriptive
labels are mine). Such a characterization in turn builds upon some
earlier work by Sholander on the characterization of tree-intervals (also
denoted as tree-segments: see Sholander (1952)).

Remark 2. Notice that a tree-betweenness By does also satisfy By
hence it is a special instance of a betweenness relation as defined above.
To check this claim, consider any z,y,z € X, (z,y,2) € B such that
y € {z,z}. Then, either x = y, or z = y. In the first case, (z,y,z) € B
by Bs. In the second case, (z,y,x) € B by Bs whence (z,y,2) € B
by B;. Moreover, consider any partial order < on X. The ‘canonical’
order-betweenness relation BS C X3 is defined in the obvious way,
namely

Bs :={(z,y,2) e X s <y<zorz<y<uzorye{rz}} Itis
quite easy -and left to the reader- to check that if < is connected hence
it is a linear order then BS (a line-betweenness, by definition) does
satisfy properties B; — Bs i.e. it is indeed a special instance of a tree-
betweenness. It should also be noticed -for future reference- that a
tree-betweenness Br on X obviously satisfies a few basic properties
including the following:

Idempotence: for any =,y € X, if (z,y,2z) € By then z = y.

Convexity: for any z,y,u,v,z € X, if {(z,u,y), (z,v,y)} C Br
and (u, z,v) € Br then (z,z,y) € Br.

A betweenness relation that satisfies Idempotence and Convexity is
also sometimes denoted as the betweenness relation of a road-system'?
or a road-betweenness relation. Thus, validity of the following Claim
is easily established.

B3A road system is a hypergraph (or set system) (X,R) -i.e. X is a nonempty
set and R C P(X), the set of ‘roads’, is a subset of the power set of X, - such that:
(i) {z} € R for each z € X, and (ii) for every z,y € X there exists an S € R with
{z,y} C S. The betweenness relation Bg induced by R is defined by the following
rule: (z,y,z) € Bgr if and only if y € S whenever {z,z} C S € R (see Bankston
(2013)).
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Claim 2. Fvery tree-betweenness is a road-betweenness. Moreover,
the trivial betweenness BY := {(z,y,2) € X®: |{z,y,2}| < 2} is also a
road betweenmness.

Remark 3. Observe that -under the standard notion of simple-
graph-betweenness Bg which declares (z,y,2) € Bg with 2z ¢ {z,y}
to hold if and only if z lies on a shortest simple path (geodesic) of G
connecting x and y, Idempotence holds but Convexity may be violated.
To see this, just consider the simple connected graph

e Y {zu) {z0} fu 2} o2}
G‘(X‘{x’y’““m—{ {w.y) oy} (=) })

where {(z,u,y), (z,v,y)} C Bg~ and (u, z,v) € Bg+, yet (z,z,y) ¢
Bg-.

Next, we provide an adaptation and extension to topped total pre-
orders of a polynomial recognition algorithm for tree-based linear orders
due to Trick (1989). Such an adaptation requires a suitable preprocess-
ing of the preference domain as described below.

I: Data Preprocessing.

Let Dx = {=;:i € N(Dx)} C T% be the relevant preference do-
main. To begin with, let us introduce the linear representation of Dx,
written £(Dx ), which is defined as follows:

L(Dy) = {{?'ij}j:L...,k(z‘) = N(DX)} where {#ij}j:17_._7k(i) C Lx
k(i)
is such that ;= [J =i, for each i € N(Dx), (namely {>=3;},_,
2
is the family of all linear orders which are consistent with >=;).
An L(Dx)-profile is a family == {=;;},_ v (p ) such that j € {1,..., k(:)}
for any pair ij, and £(Dx)V(Px) denotes the set of all £(Dyx)-profiles.
Moreover, for any such profile =€ £(Dx )N Px) and for any Y C X,
i € N(Dx), and any linear order =;;C>=; let us define a set-valued
operator AL :Y — 2 by the following rule: for any 2 € Y,
{yeY 1y a} if x # topy (=)
AY (x) = and
{topv\(s (i) } if @ = topy (=)

IT: Informal description of the Adapted Make Tree algorithm, and
definition of tree-admissible paths.

The algorithm starts the tree-building process from possible leaves,
to be located among elements of the bottom indifference classes of the
total preorders of Dy.
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Let Dy C T% with £(Dy) := {{%a‘}jzl,...,k@ i€ N(DX)} its lin-
ear representation, and for each i € N(Dx), j € {1,....,k(i)}, h =
1,...,m, denote by xfj the h-th best alternative of X according to lin-
ear order =;;. Then, a tree-admissible path m = [x1, ..., x,] of Dx with
respect to L(Dx )-profile == {hj}ieN(DX) €L(Dx)NWPx),

(with p <m, and for each r,s = 1,...;m,r # s, x, € X , x, # x;) is
defined inductively as follows:

(i) 21 € {a :i € N(Dx)};

(i) zae (N AL (),

=1J

i€N(Dx)
(i) € ) AN (@) forany [ =1, .., p — 1.
iEN(Dx)
A sequence 7 := [z, ...,x,] of elements of X is a tree-admissible

path of Dy joining x; and x, if there exists an L£(Dx)-profile
7={Zijtien(py) €L(Dx)NPx) such that 7 is a tree-admissibile path
of Dx with respect to profile »=.

III. The set fo of consistent partial selections of tree-admissible
paths with a maximal domain.

For any z,y € X, © # y that are joined by at least one tree-
admissible path we denote by [14(z,y)] the set of all tree-admissible
paths joining x and y, and by

14(Dy) = {[m* (e, )] : 2,y € X, & # )

the collection of all equivalence classes of tree-admissible paths be-
tween pairs of distinct elements of X (observe that, by construction,
[74(z,y)] = [r(y, z)] for any x,y € X. Then,

f: X2\ Ax — O4(Dy)| if f(x,y) is defined }
then f(z,y) = f(y,2) € [v*(z,y)]

denotes the set of all domain-maximal partial selections of tree-
admissible paths of Dy that are consistent i.e. such that for any
x,y,z with © # y # z # z, if f(z,2) is well-defined f(z,y) = m and
F(y,2) = 73 jointly imply f(z,2) = 71 0 w3, and {v, 2} C f(z,y) =

FYx C

=[x =21, =V, ., T = 2, ..., Ty, = y| implies f(v, 2) = {xp, ..., v}

Moreover, ng C FPx denotes the set of domain-maximal and con-
sistent partial selections of tree-admissible paths of Dy that are total
i.e. well-defined functions f : X2\ Ay — II4(Dx).

Now, we can rely on the set F'¥X of domain-maximal and consistent
partial selections of tree-admissible paths to define the tree-admissible
betweenness relations of a domain Dx C T% which are to fulfil a key
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role in the characterization of TSP domains to be presented in the next
section.

Definition 2. (Tree-admissible betweenness relations of a do-
main of topped total preorders) Let Dx C T% be a domain of topped
total preorders, and f € fo . Then, the tree-admissible betweenness of
Dx induced by f is the ternary relation Br(sy C X* defined as follows:
foranyx,z,y € X, (x,y,2) € B if and only if y € f(x,2)U{z, 2}.

Observe that by construction a tree-admissible relation By can be
extended to a tree-betweenness, but need not be a tree-betweenness
itself (see Remark 4 below for some examples).

3. TREE-BASED SINGLE PEAKED DOMAINS: A CHARACTERIZATION

We are now ready to state and prove a characterization result for
tree-based single peaked domains of total preorders.

Theorem 1. Let Dx C T% , fo the set of all domain-maximal
and consistent partial selections of tree-admissible paths for Dx, and

Fﬁx C FPx the subset of well-defined functions in FPX. Then, the
following statements are equivalent:

(i) Ty + o

(ii) There exists f € F2X such that Bryy satisfies CAT, OPC,
NPC;

(i1i) Dx is a TSP domain.

Moreover, if (i)-(ii)-(iii) hold then

(iv) F{¥ = FZX and Bry) satisfies CAT, OPC, NPC for every
feFyx.

Proof. (i)==(ii): Suppose that f € FY¥ is a well-defined function f :
X%\ Ay — II*(Dx). Then, take any z,y,z € X such that BrN
{(z,y,2),(y,x, 2), (y,z,2))} = &. Hence z,y, z are distinct and y ¢
[z, 2), 2 ¢ fy,2), = ¢ fy,x). By construction, = € f(z,y) N f(z,2).
Now, suppose that f(z,y)Nf(z,z) = {z}: then f(y,2) =ly,...,x, ..., 2]
ie. = € f(y,2), a contradiction. Hence, there exists some u # x
such that u € f(x,y) N f(z,2), namely both (z,u,y) € Br() and
(z,u, z) € Br(y). It follows that By satisfies CAT.

Next, take any z,y, z,w € X with y # z such that (z,y, z) € By
and (y,z,w) € Br(s). Thus, by definition, y € 7 := f(x,2) and z €
7' = f(y,w). But then, z € mon’ = f(x,w) (by definition of f and
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its consistency). It follows that (x,z,w) € By holds, hence Br(y)
satisfies OPC.

Finally, consider any z,y,z,w € X such that both (x,y,2) € By
and (x,z,w) € Brgy hold. Thus, y € 7 := f(x,2) and z € 7" :=
f(z,w). Then, {y, 2z} C mon” whence, by construction and consistency
of f,z € f(y,w)ie. (y,z,w) € Byp. It follows that By also satisfies
NPC.

(ii)==-(iii): To begin with, notice that by construction Dx is indeed
a single peaked domain with respect to Brp(y). To check this, consider
any (z,y,2) € Br(y such that x = top(’=;) for some »=;€ Dx. Clearly,
if y € {x, z} there is nothing to prove. So, let suppose that y € f(z, z).
Then, by construction, there exists one and only one tree-admissibile
path f(x,z) =7 := [21,...,x,) of Dx such that {z, 2} = {z1,2,} and
y = xy, for some h, 1 < h < p. Then, y ¥=; z by definition of B and
construction of m again. Hence, Dx is a TSP domain if By 5 is a tree
betweenness.

To begin with, Br(y, satisties CAT, ONC and NPC by hypothesis.

Moreover, for each z,y,z € X, (x,y,2) € Br(y iff either y € {z, 2}
ory € m:= f(x,2) = f(2,2) hence in either case (2,y,z) € Br(y) and
Symmetry (S) holds.

Finally, for each z,y,z € X, if (z,y,2) € Br(y) and (y,z,z) € By
then the following cases should be distinguished: (a) y € {z,z} and
x € {y,z}: in this case x = y (and possibly z =y = 2); (b) y € {z, 2}
and x € f(y, z): but by construction f(y, z) entails y # z hence x =y
also holds; (¢) y € f(x,z) and x € {y, z}: since f(z,2) entails x # 2
by construction, from z € {y, z} it follows that z =y ; (d) = € f(y, 2)
and y € f(z,2): in this case  # y implies -by construction of f that
[z, ...,y ..., 2] = f(z,2) = [z,2] whence = ¢ f(y,z) by consistency of
fyand [y, ...z, ....2] = f(y,2) = [y, 2], thus x € f(y,z), a contradic-
tion . Therefore x = y holds under every possible case. Conversely, if
x =y then both (x,y,2) € Br(y) and (y,x, 2) € Br(y) trivially hold by
definition of Bp(y). It follows that Br(s) also satisfies Minimal Closed
Acyclicity (MCA). Thus, by Proposition 1, By is indeed a tree be-
tweenness, and Dy is a TSP domain.

(iii)==-(i): Suppose that Dx is a TSP domain i.e. there exists a
tree T = (X, Er) such that, for every i € N(Dyx), =is single peaked
with respect to Bp, the tree-betweenness induced by 7'. Notice that
if X = {z,y}, |X| = 2 then Dx C {(z,v),(y,2)} and II*(Dy) :=
{74 (2,y) = [, y]} whence F{™ = {f = with f(z,y) = f(y.2) = [z,y]}.
It follows that f is a well-defined function on X?\ Ay, and we are done.
Thus, let us assume w.l.o.g. that |X| > 3. Moreover, for any ¥ C X
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andy € Y, posit Ny(y,Y) :={i € N(Dx) : z >,y foreach z € Y, x # y}
and N(y,Y) :={i € N(Dx) :y =; z for all z € Y'}. Since T is a finite
tree, it includes -by acyclicity- a non-empty set of leaves, namely a
non-empty set {z1,...,z,} € X such that for each z;, j = 1,...,m
there exists a unique y; € X, y; # x; with {z;,y;} € Epr. More-
over, for any y;, j = 1,....,m there exists a k; > 1 and 21, ..., 2jx,
€ X \ {zj,y;} such that (a) {y;,zjn} € Er, h =1, ..., k;, and (b) for
every u € X \UJL, {7;,y;} there exists a (finite) path m, = [21, 22, ..., 2]
of T with 2y = y;, 20 = zj, for some j € {1,...,m} and h € {1, ..., k;},
and z; = u. Then, for any leaf z; € X consider N,(z;, X) and Ny(z;, X)

as defined above. It is easily checked that |JN,(z;,X) # @. In-
=1

j=
deed, suppose that Ny(x;, X) = @. Then, for each i € N(Dx) there
must exist at least one path 7/ = {z;,...,2'} where 2 € W () :=
{zeX:xmzforallz e X}, and 2* € {1,...,2,,} i.e. 2°is a leaf.
That is so because otherwise there would exist one or more paths in-
cident to W (3=;) and joining x; to a leaf x, ¢ W (>=;). But that is a
contradiction, since by hypothesis Dx is single-peaked with respect to

Br. It follows that |J Ny(z;, X) # @, as claimed above.
j=1

Now, consider any leaf z; such that Ny(z;, X) # @ and the unique
y; with {z;,y;} € Er. Clearly, y; = z; for every i € Ny(z;, X).
Moreover, y; =; z; for every i € N\ (Ny(z;, X) U Ny(z;, X)) (that is
so, because if x; >; y; then the existence of a path of 1" joining x; to
top(=;) -which follows from the fact that 7" is indeed a tree- contradicts
the hypothesis that Dy is a single-peaked domain with respect to Br).
Finally, for any ¢ € Ny(x;, X), it must be the case that y; »=; z for any
z € X \ {z;} (because there exists a unique path 7 of T" joining y; to
any such z, while the concatenation of {z;,y,} to 7 gives the unique
path of T' joining z; to z: thus, (z;,y,,2) € Br and z >; y; would
imply that 3=;is not single-peaked with respect to By, a contradiction).

Next, consider subtree 777 := (X \ {z;}, EN (X \ {z;})?), and its
leafs which by construction include y;. By the same argument presented
above we may conclude that any path 7 of tree T" is indeed an admissible
path, i.e. the function fr : X?\ Ax — {m: 7 is a path of T} with
fr(xz,y) = 7y, (where m,, denotes the unique path of T" joining = and
y, for any = # y) is by construction consistent, and a well-defined

function i.e. fr € Fix.

(i)=(iv) If FIA?X # & then FZX = F* by definition of FYX. Thus,
it follows from the first part of the present proof that, for any f € Ff X,
Bry satisfies CAT, OPC and NPC. O
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Remark 4. The previous characterization (ii)<=>(iii) is tight.
Specifically, since tree-betweenness relations are a subclass of road-
betweenness relations (see Claim 2 above), we claim that CAT, OPC
and NPC are mutually independent properties of road-betweenness re-
lations on X with respect to which certain domains of topped total
preorders are single peaked. To see this, consider the following do-
mains of topped total preorders on X = {z,v,y,z}, with |X| = 4
(where (abed) denotes a > b > ¢ > d, and [abc| denotes a ~ b ~ ¢):

(1) Dy = {=1:= (zyvz), =h:= (yzvx), =5:= (zzvy)} . It is easily checked
that fo = {f@} where f?: X2\ Ax — I*(Dx) is undefined every-
where on X2\ Ax (notice that by construction f? is a domain-maximal
and trivially consistent partial selection of tree-admissible paths for
Dyx).

(a,b,c):a,b,ce X, _po

[{a,b,c}| <2 )

trivially satisfies OPC and NPC, but violates CAT

(since e.g. {(z,v,y), (v,y,2), (y,2,v)} N By = @ and

{(z,2,v), (x, 2,y)} N Bpy = @ as well). Moreover, Br(y) is trivially
a road-betweenness (see Remark 2 above) but of course not a tree-
betweenness in view of Proposition 1. Observe that D’ is trivially
single peaked with respect to Bry).

(2) D = {=1:= (zlyz]v), =5:= (ylav]2]), =5:= (vlyzlz), =i:= (z[zv]y)}.
Now, consider B"” C X? defined as follows:

B { (a,b,¢) :a,b,c€e X, }U{ (z,y,v), (y,v, 2), (v, 2,2), (z,2,y) }

' [{a,b,c}| <2 (v,9,7), (z,0,9), (2,2,0), (y,2,2) |

B” trivially satisfies CAT and NPC (since the relevant clauses never
apply), but it violates OPC because

{(z,y,v),(y,v,2)} C B”, yet (x,v,2) ¢ B". Moreover, B” is a road-
betweenness (though of course not a tree-betweenness by Proposition
1). Notice that D% is single peaked with respect to B”.

(8) DY — {21~ (alyv]2), == (vlay2]), == (ylavz]), m=lfim (<log)a)}

Take B C X3 defined as follows:

B" .= { <a’l‘)’{2’ b:lc’}b” CSGQX’ }U{(x,z,v), (x,y,v), (v,2,2), (v,y,x)}.

It is easily checked that B" trivially satisfies CAT and OPC (since,
again, their clauses never apply), but it violates NPC because

{(z,y,v),(y,v,2)} C B" yet (z,v,z) ¢ B". Moreover, B” is a
road-betweenness (though, again, not a tree-betweenness by Proposi-

i

tion 1). Notice that fo = O because the tree-admissible paths in-
clude f(a,b) = [a,b] for every a,b € X, a # b, such that {a, b} # {z, 2z},

Hence Br(y) :=
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and f(z,2) € {[z,v, z],[z,y, 2]} (hence no consistent selection of tree-
admissible paths of DY can be total: e.g. if f(z,2) = [z,v, 2] then by
consistency f(x,z) = [z,y, z] as well, a contradiction). Of course, DY

is single peaked with respect to B” by construction.

Remark 5. Indeed, the tree-admissible paths are computed by
an algorithm which is an adaptation to (topped) total preorders of
the original Make Tree algorithm proposed by Trick to solve Linear
TSP Domain Recognition for linear orders (see Trick (1989), Peters
and Elkind (2016)). Such an algorithm is known to be solvable by a
polynomial algorithm of time-complexity O(n - m?). The adaptation
of Make Tree to topped total preorders presented above gives rise to
an algorithm of time-complexity O(n - (m — 1)! - m?), since a topped
total preorder on X may be represented by a family of linear orders
of cardinality ranging from 1 up to (m — 1)!. The resultant increase
in time-complexity is of course considerable, but the problem may be
rendered fized parameter tractable' through some suitable parameter-
ization (the most obvious option from a mechanism-design perspective
being an upper bound on the cardinality of X).

Moreover, it remains to be seen whether alternative representations
of single peaked domains in terms of an incidence structure'® can bring
some significant computational improvement.

Computational complexity issues however are beyond the scope of
the present work, hence the relevant details are best left as a topic for
further research.

Remark 6. The characterization offered by Theorem 1 concerns
arbitrary tree-based single peaked domains of topped total preorders.
No special treatment is given here to the sub-family of rich'® tree-based

" The reader is referred to Downey and Fellows (2013), p.15 and p.63 for the
relevant basic definitions concerning fized parameter tractability.

I5A structure consisting of two sets and a binary relation (see note 17 be-
low). The most ‘natural’ approach seems to be here the following one: take
(P(X),P(X),<Q) as the underlying incidence structure and represent any total
preorder on X as the chain (or flag) of that incidence structure- or equivalently
of (P(X), C)- consisting of its (nested) upper contours. A domain of topped total
preorders is then just a finite family of such flags. Therefore, the domain thus
represented is a tree-based single peaked domain if and only if the collection of all
elements of its flags satisfy the three axioms claimed by Sholander (1952) to provide
a characterization of tree intervals (see also Theorem 1 of Chvdtal, Rautenbach and
Schiifer (2011) for a full validation of Sholander’s partly unproved claims on this
matter).

16 A single peaked domain of topped preorders Dx is rich if for each & € X there
exists a preference preorder =€ Dx such that (i) x = top(=) and (ii) for each y € X
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single peaked domains which play such a significant role in the study
of strategy-proofness properties of single peaked preferences (see e.g.
Nehring and Puppe (2007), Puppe (2018), Vannucci (2016)). It should
be emphasized, however, that every tree-based single peaked domain
admits minimal (and mazimal) rich completions to which all of the
relevant results just alluded to above do apply.

4. RELATED LITERATURE

As a matter of fact, ‘single peakedness’ is by now a term commonly
used to refer to an entire family of distinct if broadly related preference
domains. This is not the place for a detailed review of the several
distinct notions of single peakedness that have been advanced in the
extant literature, and of the relevant results concerning them. But a
few basic distinctions are to be recalled and quickly summarized in
order to make it possible to locate the significance of the present work,
and its marginal contribution.

Indeed, the main distinctions among the available notions of ‘single
peaked domain’ concern:

(i) the required structure on the ground set X of alternatives (most
typically a ternary space, an interval space, or an incidence structure
are deployed, and even a ternary algebra might be appropriately in-
voked!");

(ii) the sort of betweenness relation deployed (closed vs open): even
if the required structure is agreed to be a ternary space (following
the original formal presentation of single peakedness'®), the relevant

the upper contour of y at »= is precisely the set of all alternatives that lie between
z and y.

177 ternary space is a set endowed with a ternary relation, its betweenness re-
lation. An interval space is a set endowed with a symmetric interval function
attaching to each pair of its elements a set including them, the closed interval hav-
ing the elements of the pair as its extrema. An incidence structure is a triplet
consisting of two nonempty sets and a binary reflexive and symmetric relation de-
fined on their cartesian product, the incidence relation. A ternary algebra is of
course a set endowed with a ternary operation. The main ideas if not the details
concerning the relevant connections between ternary spaces, ternary algebras and
interval spaces are to be found in the seminal Sholander (1952). Following Inada
(1964), a generalized version of the original notion of single peakedness with respect
to a unique line-betweenness has also been occasionally contemplated, by invoking
an entire family of possibly distinct local line-betweennesses, one for each triplet of
alternatives. That view is partly reflected in the discussion of single peakedness and
value restriction of the classic Sen (1970). But such a ‘generalized’ notion has been
shown to be a special case of single peakedness with respect to a tree-betweenness
(see Demange (1982)).

18Such a presentation dates back to the first, 1951 edition of Arrow (1963).
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ternary betweenness relation may be taken to be a closed (or nonstrict)

or an open (or strict) one'?;

(iii) the very definition of a single peaked domain which in turn may
vary along several dimensions, namely:

(a) comprehensive focus on (total) preorders ws restriction to lin-
ear orders i.e. antisymmetric total preorders: comprehensive focus on
possibly not antisymmetric total preorders raises the possibility of fur-

ther significant distinctions on the notion of single peaked domain as

summarized by points (b) and (c) below?’;

(b) distinction of single peaked from single plateau preferences wvs
collapse of both notions under the common ‘single peaked’ label: the
usage which requires single peaked preferences to have a unique top
element as opposed to single plateau preferences (which may also have
two or more top elements) is widely established, but far from being
universal®!.

(¢) nonstrictly vs strictly single peaked domains: an alternative that
lies between a top alternative and another one is required to be not

It should also be emphasized that, by that time, the study of betweenness rela-
tions was already well-established, because (a) it was firmly rooted in the modern
axiomatization of Euclidean geometry as pursued and achieved through the joint
efforts of Pasch, Peano and Hilbert (see Pambuccian (2011) for an extremely com-
prehensive historical reconstruction), and (b) had been further bolstered by the rise
of lattice theory (as testified by a key paper such as Pitcher and Smiley (1942)).

9The open version is the original proposal of Arrow (1963) and may be regarded
as more intuitively appealing than the closed one. However, the closed version is
much more convenient when it comes to clarifying the relationship of the ternary
space approach to equivalent approaches to single peakedness via interval spaces,
incidence structures or ternary algebras.

20The early literature on single peaked domains is typically focused on total
preorders (see e.g. Black (1948), Arrow (1963), Moulin (1980) among others).
Many later contributions however concern linear orders (see e.g. Demange (1982),
Trick (1989), Danilov (1994), Nehring and Puppe (2007), Ballester and Haeringer
(2011), Peters and Elkind (2016)). As mentioned in the text, focusing on linear
orders makes the further distinctions described in the text below (under points (iii)
(b) and (iii) (c)) entirely irrelevant.

2lTndeed, Black requires uniqueness of top elements for single peaked preferences
as opposed to truncated single peaked ones (see Black(1948)), but Arrow’s formal
definition (Arrow (1963)) allows for two distinct top elements. Moreover, the de-
finition of single peaked preferences provided by Fishburn (1973) allows for single
plateaus with an arbitrary number of top elements.
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worse (respectively, strictly better) than the latter. Clearly, (non-
strictly) single peaked domains comprise a larger, more comprehensive
family than strictly single peaked domains®.

Characterizations for the special case of line-based single peaked do-
mains have been quite recently provided by both Ballester and Haeringer
(2011) and Puppe (2018), two significant contributions which are re-
markably different in aim and scope. Ballester and Haeringer (2011)
is only concerned with preference domains of finite linear orders®: it
provides a characterization of all line-based single peaked domains of
linear orders™.

On the contrary, Puppe (2018) covers preference domains of both
(finite) linear orders and possibly single-plateau total preorders, and
in the latter case it focuses on nonstrictly single plateau domains. On
the other hand, the two main characterization results of that work only
concern the full domains of all line-based single peaked linear orders and
all line-based nonstrictly single plateau total preorders, respectively®.

Concerning the general case of finite tree-based single peaked do-
mains, Trick (1989) introduces the Make Tree recognition algorithm,
a polynomial algorithm that establishes whether any given domain of
linear orders is actually tree-based single peaked or not.

More recently, Chatterji, Sen and Zeng produced a global-style and
explicitly mechanism-design oriented characterization® of tree-based

228ingle peaked domains of total preorders under a nonstrict interpretation are
considered in Moulin (1980), Duggan (2016), Vannucci (2016), Puppe (2018). Con-
versely, a strict interpretation is proposed by Arrow (1963), Fishburn (1973), and
Nehring and Puppe (2007), among others. Dummett and Farquharson (1961) is
an early contribution which makes a clear distinction between those two notions of
single peakedness for the line-based case, using both of them.

23St1rictly speaking, Ballester and Haeringer (2011) discuss domains of strict
linear orders i.e. connected asymmetric orders.

24The Ballester-Haeringer characterization may be summarized as follows: each
triplet of elements of the ground set should include an element which no linear order
of the domain ranks as its local minimum for that triplet, and no pair of linear orders
of the domain should be mutually reverse on a triplet and rank a fourth alternative
above their common medium alternative in the former triplet. Hence, that is in
fact a characterization of a local sort, since it relies on local properties (concerning
arbitrary restrictions to triplets and quartets) of the specific linear orders of a given
domain.

25 Accordingly, the characterization results of Puppe (2018) are indeed of a global
sort, since they rely on general properties of the relevant domains (such as connect-
edness and richness, maximal width), over and above properties of their constituents
(i.e. universal existence of Condorcet winners).

26T be sure, every characterization of single peaked domains is arguably mo-
tivated by some sort of mechanism-design issue. That is so because the main
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single peaked domains of linear orders within the class of ‘connected®’
domains (Chatterji, Sen and Zeng (2016)). Specifically, they prove that
(finite) ‘connected’ tree-based single peaked domains of linear orders
are the only (finite) ‘connected” domains of linear orders which admit a
random social choice function that is strategy-proof, top-only, ex-post
efficient and satisfies a certain ‘compromise property’ requiring assign-
ment of a positive probability to an unanimous second-best choice when
top choices are maximally polarized between two alternatives.

However, to the best of the present author’s knowledge, no charac-
terization is available in the previous literature for the general case
of arbitrary domains of nonstrictly single peaked topped total preorders
with a tree-shaped spectrum.

Thus, the present work fills a gap in the literature, and contributes
to the study of single peaked domains along the following lines:

(i) it provides a local-style characterization of arbitrary domains of
nonstrict single peaked of uniquely topped total preorders: hence it cov-
ers a family of very comprehensive single peaked domains while retain-
ing the original requirement of peak-uniqueness;

(ii) the characterization offered here relies on the mutual adaptation
and combination of two largely unrelated pieces of previous work: a
polynomial recognition algorithm for a specialized class of tree-based
single peaked domains of linear orders and a quite recent, entirely gen-
eral characterization of tree-betweenness relations as a class of ternary
relations. The result is a sort of dual axiomatic/algorithmic character-
ization which might be usefully deployed to design new ballot-sensitive
aggregation /voting mechanisms®® with nice coalitional-strategy-proofness
properties.

source of interest in such domains is precisely the fact that they support reliance
on majority-like aggregation and voting protocols. Hence any characterization of
single peaked domains may be helpful for mechanism-design tasks at least in two
ways. Namely, by assisting the mechanism-designing agency (a) to gauge the plau-
sibility of such domains, and () to define admissible ballot spaces. In particular,
local-style characterizations may be especially helpful with reference to point ()
above.

2TA domain of linear orders is said to be ‘connected’ if for any two alternatives
there is a finite sequence of linear orders of the domain such that: (a) the first
(respectively, last) order of the sequence has the first (respectively, the second)
alternative as its top element, and (b) any two adjacent orders of the sequence are
the same except for a permutation of their first two elements.

28We refer the reader to note 8 of the Introduction.
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