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Abstract

Let V be society whose members express preferences about two alterna-
tives, indifference included. Identifying anonymous binary social choice func-
tions with binary functions f = f(k,m) defined over the integer triangular grid
G = {(k,m) ∈ N0 × N0 : k + m ≤ |V |}, we show that every strategy-proof,
anonymous social choice function can be described geometrically by listing, in
a sequential manner, groups of segments of G, of equal (maximum possible)
length, alternately horizontal and vertical, representative of preference profiles
that determine the collective choice of one of the two alternatives. Indeed,
we show that every function which is anonymous and strategy-proof can be
described in terms of a sequence of nonnegative integers (q1, q2, · · · , qs) corre-
sponding to the cardinalities of the mentioned groups of segments. We also
analyze the connections between our present representation with another of our
earlier representations involving sequences of majority quotas.

A Python code is available with the authors for the implementation of any
such social choice function.

AMS Subject Classification: 91B14
JEL Code: D71
Keywords: social choice functions, anonymity, strategy-proofness, indifference, cone, com-
prehensive set.
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1 Introduction

Let V be a finite society that has to implement one of two projects, say alternative a or
alternative b, based upon the profile P = (Pv)v∈V of preferences expressed by its members.
The choice Pv of individual v can be either in favor of a, or in favor of b, or it can be
indifference between the two alternatives1. To determine the collective choice corresponding
to the profile P of preferences, the society needs to apply a rule, or social choice function
(scf, for short), we may say. Let φ : P → {a, b} be such a rule. Notice that we denote by
P the set of all possible profiles.
To ensure a fair consideration of the opinions of all agents, and to prevent strategical false
declarations, typical assumptions on the scf φ are anonymity and strategy-proofnes (see
Definition 2.1).

This paper gives a new geometric characterization of anonymous, strategy-proof scfs, and
a corresponding new representation theorem for such functions.

If φ is an anonymous scf, the collective choice φ(P ) only depends upon the pair (k(P ), m(P ))
of voters that prefer a and b, respectively. Consequently, φ can be seen as a function f
from the integer triangular grid: G = {(k,m) ∈ N0 × N0 : k +m ≤ |V |}, to the set {a, b}.
Precisely:

φ(P ) = f(k(P ), m(P ))

is the law that gives the identification.
We show that φ is in addition strategy-proof if and only if the function f satisfies the
following geometric property: whenever a point (k∗, m∗) of G belongs to the inverse image
{f = a} of the alternative a, then all points belonging to the intersection of G with the
cone A in the picture below 2, also belong to {f = a}, namely they represent profiles that
determine a as the social choice.

k

m

(k∗,m∗)

profiles∈{f = a} cone A

Figure α

k

m

(k∗,m∗)

profiles ∈

∈{f = b}

cone A

Figure β

1We can write, for short, Pv = a, b, ab, to mean a ≻
Pv

b, b ≻
Pv

a, or a ∼
Pv

b respectively.

2The cone A, of vertex (k∗,m∗), is white with dashed axis in Figure α, whereas G is in gray.
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The above property can be formalized as the comprehensiveness of the inverse image of the
alternative a. Comprehensiveness is a property well known for its use in the theory of Core
Allocations (see Aliprantis et al. [1]). Strategy-profness of an anonymous f is at the same
time equivalent to the fact that the inverse image of the alternative b is comprehensive with
respect to the cone with vertex (k∗, m∗) opposite to A (see Figure β above).

As a consequence of the above geometric characterization, we have the following represen-
tation theorem.

Theorem 1.1 The anonymous, strategy-proof scfs are all and only the functions f : G →
{a, b} that correspond to finite sequences q = (q1, q2, . . . ) of integers, with q1 ∈ {0, 1, . . . , |V |},
every further term qi ∈ {1, 2, . . . , |V |}, and

∑

i qi = |V |+ 1, such that, in order:

q1 horizontal segments in G of maximum possible length, represent profiles determining,
according to f , the social choice a;

q2 vertical segments in G of maximum possible length given the above, represent profiles
determining, according to f , the social choice b;

q3 horizontal segments in G of maximum possible length given the above, represent pro-
files determining, according to f , the social choice a;

q4 vertical segments in G of maximum possible length given the above, represent profiles
determining, according to f , the social choice b;

and so on, until G is filled.

The figure below illustrates the representation theorem.

Figure 0 Figure 0bis

In both figures we have |V | = 20. Blue vertical lines represent profiles corresponding to
which the social choice is b; the magenta horizontal lines represent profiles corresponding to

2
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which the social choice is b. In Figure 0 we have q = (5, 3, 2, 6, 1, 4) and the scf represented
implements the alternative a if all voters are indifferent between a and b. In Figure 0bis we
have q = (0, 3, 2, 4, 5, 1, 6) and the scf represented implements the alternative b if all voters
are indifferent.
Given the role of the integers qi, we give the name {a, b}-list to the sequence q.

Comparison with previous literature. Despite the general circumstance according
to which representation formulas are a quite obvious topic to investigate, to the best of
our knowledge, only recently representation theorems of anonymous strategy-proof scfs in
presence of indifference have been proposed. If indifference is not allowed, [6, Corollary of
page 63] completely describes the |V |+2 existing anonymous strategy proof scfs. Allowing
for indifference, in the literature we find [5, Theorem 2], and the representation [3, Theorem
2.7]. Anonymous strategy-proof scfs are represented in [3] by means of suitably monotone
sequences (up and down sequences) k of majority quotas, in this way providing a natural
extension of [6, Corollary of page 63] for representing the 2|V |+1 anonymous strategy-proof
scfs that exist when agents can declare indifference.
[5, Theorem 2], [3, Theorem 2.7] and Theorem 1.1, are definitely three different results. The
first two having been compared in [3], in Section 4 we compare in details the last two, also
providing the conversion formulas (Theorem 4.1 and its reverse) to move back and forth
from the present geometric representation to the extended quota majority representation
[3, Theorem 2.7].

The remaining sections of the paper are organized as follows. In Section 2, we set the nota-
tions and introduce dually monotone functions. By means of such functions the strategy-
proofness of anonymous scfs is characterized and also related to the comprehensiveness
of the inverse image of the alternatives. Corollary 2.9 is an intermediate representation
theorem. Section 3 is devoted to the characterization of dual monotonicity my means of
{a, b}-lists. Our main result Theorem 1.1 just combines Corollary 2.9 with Theorem 3.1.
The last section presents the proofs of Theorems 3.1 and 4.1.
A Python code, written by the authors, that implements a given anonymous strategy-proof
scf and shows the geometric representation is available. This code can also be used to
convert proper majority quotas into the corresponding {a, b}-list and viceversa.

2 Basic notions, notation

Throughout the sequel we assume that the cardinality of V is n. Given a profile P , the set
D(a, P ) (resp. D(b, P )) denotes the subset of V consisting of voters that prefer a over b
(resp. b over a). The agents that are indifferent are obviously those of V \[D(a, P )∪D(b, P )].
We also set k(P ) = |D(a, P )| and m(P ) = |D(b, P )|.
Typically a scf, i.e. a function that maps profiles of preferences to alternatives that have
to be implemented as the result of a collective choice, will be denoted by φ. The following

3
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definitions are well established and widely employed in the literature after the pioneering
works [4],[7]; see also [2] for specific reference to the binary case.

Definition 2.1 A scf φ is:

anonymous, if φ(P ) = φ(P ◦σ) = φ( (Pσ(v) )v∈V ), for every profile P and for every
permutation σ of V .

non-manipulable, if φ(Pv, P−v) ≻
∼Pv

φ(Qv, P−v), for every voter v, for every pro-

file P , and for every weak ordering Qv.

This paper deals with binary scfs, i.e. only two alternatives are considered. For the sake
of brevity we write scf to mean binary scf.
Let us denote by Φ the set of all anonymous scfs φ.
Let us denote by F the set of all functions f = f(k,m) defined on the integer triangular
grid:

G = {(k,m) ∈ [0, n]2 : k +m ≤ n},

and with values f(k,m) ∈ {a, b}. We set ℓ := n− k −m.

Definition 2.2 Two profiles P and Q are said to be equivalent when k(P ) = k(Q) and
m(P ) = m(Q). In this case we shall write P ≡ Q.

Definition 2.3 For every (k,m) ∈ G, by P (k,m) we denote the profile where the first ℓ
agents are indifferent between a and b, the subsequent k agents declare to prefer a and the
last m agents declare to prefer b.

The proof of the next two propositions are trivial.

Proposition 2.4 The quotient P/≡ and the grid G are in a one-to-one correspondence by
means of the map

P/≡ 7→ (k(P ), m(P )), whose inverse is (k,m) 7→ P (k,m)/≡ .

Moreover,
P ≡ Q ⇒ φ(P ) = φ(Q), ∀φ ∈ Φ.

Proposition 2.5 The function sets Φ and F are in a one-to-one correspondence by means
of the map

L : φ ∈ Φ 7→ L(φ) ∈ F , where L(φ) is the function fφ defined by fφ(k,m) = φ(P (k,m)).

The inverse of L is

f ∈ F 7→ φf ∈ Φ where φf (P ) := f(k(P ), m(P )).

4
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We now introduce the concept of dual monotonicity for functions f(k,m).

Definition 2.6 We say that f ∈ F is dually monotone if the following implication holds
true:

f(k,m) = a ⇒ f(k + 1, m) = f(k,m− 1) = a.

As we see below, dual monotonicity can be defined also with reference to the alternative b
instead of a. We denote by Ca and Cb the two cones in the km-plane defined respectively
by

(α, β) ∈ Ca ⇔ α ≥ 0 & β ≤ 0,

(α, β) ∈ Cb ⇔ α ≤ 0 & β ≥ 0.

If we adopt the notation H +C, when H ⊆ G and C is one of the two above cones, for the
set {(k′, m′) ∈ G : (k′, m′) = (k,m) + (α, β), for some (k,m) ∈ H and some (α, β) ∈ C},
then we easily see that:

Proposition 2.7 For f ∈ F , TFAE:

1. f is dually monotone

2. f(k,m) = b ⇒ f(k − 1, m) = f(k,m+ 1) = b

3. {f = a}+ Ca ⊆ {f = a}

4. {f = b}+ Cb ⊆ {f = b}

Property 3. above says that the set {f = a} is comprehensive. Equivalently the set {f = b}
is comprehensive. Notice that , however, the cones are different.
It is obvious from the previous proposition that if f is dually monotone, then f(0, n) = a
corresponds to the constant function f = a, and f(n, 0) = b corresponds to the constant
function f = b.

Theorem 2.8 φ ∈ Φ is strategy-proof if and only if fφ is dually monotone.

proof: We write here f instead of fφ, for short.
Let us assume that φ is anonymous and strategy-proof. If f is not dually monotone, we
have f(k,m) = a and either f(k + 1, m) = b or f(k,m − 1) = b. In both cases we get
a contradiction. We analyze the case f(k + 1, m) = b, the other case being analogous.
By definition we have φ(P (k,m)) = a and φ(P (k + 1, m)) = b. The difference between
the profiles P (k,m) and P (k + 1, m) is: one agent that in P (k,m) is indifferent, under
P (k + 1, m) prefers a. So, this agent can advantageously manipulate P (k + 1, m) by
declaring indifference.

5
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For the converse let us suppose that fφ is dually monotone whereas φ is manipulable. So,
we have an agent v0, a profile P , and a profile Q = (Qv0 , P−v0) such that

(∗) φ(Qv0 , P−v0) ≻
Pv0

φ(Pv0 , P−v0).

Let us set |D(a, P )| = k, |D(b, P )| = m and |D(a,Q)| = k′, |D(b, Q)| = m′. The relation
(∗) can be written as

(∗) f(k′, m′) ≻
Pv0

f(k,m),

and only two cases are possible from (∗).

Case v0 prefers a: It means that f(k′, m′) = a. Comparing (Qv0 , P−v0) and (Pv0 , P−v0), we
see that if the agent v0 Qv0-prefers b, then m′ = m + 1 and k′ = k − 1. If the agent v0 is
Qv0-indifferent between a and b, then m′ = m and k′ = k − 1.
In both cases the dual monotonicity of f gives us that f(k,m) = a and this is impossible.

Case v0 prefers b: It is analogous. ✷

Corollary 2.9 A scf φ is anonymous and strategy-proof if and only if it is of the form φf

for a dually monotone f ∈ F .

3 Dually monotone functions on G

In this section we give a representation of all dually monotone functions. Because of
Corollary 2.9, this will give us the representation of all anonymous, strategy-proof scfs that
have been stated as Theorem 1.1.
Let q be a finite sequence (q1, q2, . . . ). We say that it is an {a, b}-list if q1 ∈ {0, 1, . . . , n},
every further term qi belongs to {1, 2, . . . , n}, and

∑

i qi = n + 1. Given q, we define the
sets

Qa = {(0, q1 − 1), (q2, q1 + q3 − 1), (q2 + q4, q1 + q3 + q5 − 1), . . . },

and

Qb = {(q2 − 1, q1), (q2 + q4 − 1, q1 + q3), (q2 + q4 + q6 − 1, q1 + q3 + q5), . . . }.

It is elementary to check that

[Qa + Ca] ∩ [Qb + Cb] = Ø,

hence the following fq is a well defined function on G.

(k,m) ∈ G 7→ fq(k,m) =

{

a, if (k,m) ∈ Qa + Ca

b, if (k,m) ∈ Qb + Cb.

6
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The structure of the function fq has been already described more intuitively in the state-
ment of Theorem 1.1. Indeed, it is easy to check that fq can be described as follows.
In order:

q1 horizontal segments in G of maximum possible length are mapped by fq to a;

q2 vertical segments in G of maximum possible length given what above, are mapped
by fq to b;

q3 horizontal segments in G of maximum possible length given what above, are mapped
by fq to a;

q4 vertical segments in G of maximum possible length given what above, are mapped
by fq to b;

and so on.

Theorem 3.1 An element f ∈ F is dually monotone if and only if for some {a, b}-list q
one has f = fq.

The proof of the theorem will be given in the Appendix.

We conclude the section rephrasing Theorem 1.1 as follows.
Theorem 1.1 A scf φ is anonymous and strategy-proof if and only if φ = φfq , for some
{a, b}-list q.

4 Comparison with proper extended quota majority

methods

In [3] we proved that the scfs that are anonymous and strategy-proof can be characterized
as proper extended quota majority methods (denoted by φk; see [3, Definition 2.2] for
the definition of the scf φk), the majority quotas k = (k0, k1, . . . , kr) forming a sequence
satisfying the following up and down conditions.

down-up:

0 < kr−1 < ... < k5 < k3 < k1 < k0 < k2 < k4 < k6 < ... < n+ 1 = kr

0 = kr < ... < k5 < k3 < k1 < k0 < k2 < k4 < k6 < ... < kr−1 < n+ 1

up-down:

n+ 1 = kr > ... > k5 > k3 > k1 > k0 > k2 > k4 > k6 > ... > kr−1 > 0

n+ 1 > kr−1 > ... > k5 > k3 > k1 > k0 > k2 > k4 > k6 > ... > 0 = kr

7
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At the same time, as we have seen in Theorem 1.1, the scfs under consideration are iden-
tifiable by means of {a, b}-lists q as scfs φ = φfq . It is therefore natural to investigate
formulas that connect up and down majority quotas k and {a, b}-lists q when they identify
the same scf, namely when φk = φfq .
The purpose of the present section is to provide a one-to-one map T that transforms an up
and down sequence k into an {a, b}-list q such that the scf represented is the same.
It will be a map like

(q1, q2, . . . , qs) = T (k0, k1, . . . , kr)

i.e. we shall give formulas like

qi = Ti(k0, k1, . . . , kr), i ≤ s = s(r).

Theorem 4.1 Let φ be an anonymous, strategy-proof scf and k = (k0, k1, . . . , kr) the cor-
responding up and down sequence of majority quotas (i.e. φ = φk).

1. If φ selects the alternative a when the collectivity is unanimously indifferent between
the two alternatives a and b3, the {a, b}-list satisfying the equation φk = φfq is
(q1, q2, . . . , qr, qr+1), where

q1 = k◦
r−1, q2 = kr−2, q3 = k◦

r−3 − k◦
r−1, q4 = kr−4 − kr−2, . . .

qi =

{

k◦
r−i − k◦

r−i+2, if 5 ≤ i ≤ r is odd
kr−i − kr−i+2, if 5 ≤ i ≤ r is even ,

qr+1 = n + 1−

r
∑

1

qi

2. If φ selects the alternative b when the collectivity is unanimously indifferent between
the two alternatives a and b, the {a, b}-list satisfying the equation φk = φfq is
(0, q1+1, . . . , q1+r, qr+2), where

q1+1 = kr−1, q1+2 = k◦
r−2, q1+3 = kr−3 − kr−1, q1+4 = k◦

r−4 − k◦
r−2, . . .

q1+i =

{

kr−i − kr−i+2, if 5 ≤ i ≤ r is odd
k◦
r−i − k◦

r−i+2, if 5 ≤ i ≤ r is even ,
qr+2 = n + 1−

r
∑

1

q1+i

The proof of the theorem will be given in the Appendix.

Above formulas can be both written as x = Ty if T is the lower triangular matrix of order
r:

3We recall that, by the definition of extended quota majority method, kr = 0 (resp. kr = n + 1)
corresponds to scfs choosing the alternative a (resp. b) for a collectivity which is unanimously indifferent
between the two alternatives a and b.

8
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T =





































1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 0 0 0

... ... ...

0 0 0 0 0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 1





































and, for formula 1. of Theorem 4.1,

x′ = (q1, q2, . . . , qr), and y′ = (k◦
r−1, kr−2, k

◦
r−3, . . . , k

◦
r−(r−1), kr−r).

For 2. of Theorem 4.1, we have to consider

x′ = (q1+1, q1+2, . . . , q1+r), and y′ = (kr−1, k
◦
r−2, kr−3, . . . , kr−(r−1), k

◦
r−r).

By using the inverse of T

T−1 =









































1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0

... ... ...

0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1









































we solve, with respect to k, given q, the equation φk = φfq as follows.

Theorem 4.1 reversed Let φ be an anonymous, strategy-proof scf and q = (q1, . . . , qs)
the corresponding {a, b}-list (i.e. φ = φfq).

1. If φ selects the alternative a when the collectivity is unanimously indifferent between
the two alternatives a and b4, the sequence of majority quotas satisfying the equation
φk = φfq is (k0, k1, . . . , kr), where r = s− 1,

(k◦
r−1, kr−2, k

◦
r−3, . . . , k

◦
r−(r−1), kr−r)

′ = T−1(q1, . . . , qr)
′ and kr = 0

4Hence q1 > 0.

9
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2. If φ selects the alternative b when the collectivity is unanimously indifferent between
the two alternatives a and b5, the sequence of majority quotas satisfying the equation
φk = φfq is (k0, k1, . . . , kr), where r = s− 2,

(kr−1, k
◦
r−2, kr−3, . . . , kr−(r−1), k

◦
r−r)

′ = T−1(q1+1, . . . , q1+r)
′ and kr = n + 1

Explicitly, we have

• for case 1.
k◦
r−1 = q1, kr−2 = q2, k◦

r−3 = q1 + q3, kr−4 = q2 + q4, k◦
r−5 = q1 + q3 + q5,

kr−6 = q2 + q4 + q6, ...

• for case 2.
kr−1 = q1+1, k◦

r−2 = q1+2, kr−3 = q1+1 + q1+3, k◦
r−4 = q1+2 + q1+4, kr−5 = q1+1 +

q1+3 + q1+5, k◦
r−6 = q1+2 + q1+4 + q1+6, ...

5 Appendix: proofs

5.1 Proof of Theorem 3.1

Suppose f is given and it is dually monotone. Let q1 be the cardinality of the set

{m ∈ [0, n] : f(0, m) = a}.

In case q1 = n + 1, this means f(0, n) = a and because of dual monotonicity, f = f(q1).
Suppose instead that q1 < n + 1. Since f is dually monotone,

q1 − 1 = max{m ∈ [0, n] : f(0, m) = a}6

hence we have f(0, m) = a, ∀m ∈ [0, q1[ and f(0, q1) = b, and by dual monotonicity
f(0, q1 − 1) + Ca ⊆ {f = a}. The following figure, where magenta lines indicate points of
G that f maps to a, illustrates the situation.

5Hence q = (0, q1+1, . . . , q1+r, qr+2).
6The elements of the set {m ∈ [0, n] : f(0,m) = a}, and of similar sets introduced later, are necessarily

consecutive.

10
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f(0, q1 − 1) = a
f(0, q1) = b

Figure 1

Now, let q2 be the cardinality of the set

{k ∈ [0, n− q1] : f(k, q1) = b},

or, in other words, let q2 − 1 be the maximum of such set. In case q2 − 1 = n− q1, we have
(n− q1, q1) + Cb ⊆ {f = b} since f is dually monotone. Hence f = f(q1,q2).

If instead we have q2 − 1 < n − q1, then f(k, q1) = b, ∀k ∈ [0, q2[, and f(q2, q1) = a.
Moreover (q2 − 1, q1) + Cb ⊆ {f = b} since f is dually monotone. Figure 2 extends the
previous one, and illustrates the situation. The blue lines indicate points of G that f maps
to b

f(0, q1 − 1) = a
f(0, q1) = b f(q2 − 1, q1) = b

Figure 2

Let q3 be the cardinality of the set

{m ∈ [q1, n− q2] : f(q2, m) = a},

11
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or, in other words, let q1 + q3 − 1 be the maximum of such set. Again we have two cases.
If q1 + q3 − 1 = n− q2, then (q2, n− q2) + Ca ⊆ {f = a}, hence f = f(q1,q2,q3).

If q1 + q3 − 1 < n − q2, then f(q2, m) = a, ∀m ∈ [q1, q1 + q3 − 1], and f(q2, q1 + q3) = b.
Moreover (q2, q1 + q3 − 1) + Ca ⊆ {f = a}.

We illustrate the situation with the next update of Figure 2.

f(0, q1 − 1) = a
b

a a on the left is f(q2, q1 + q3 − 1)

Figure 3

Let q4 be the cardinality of the set

{k ∈ [q2, n− q1 − q3] : f(k, q1 + q3) = b},

or, in other words, let q2 + q4 − 1 be the maximum of such set.
Again we have two cases. If q2+q4−1 = n−q1−q3, then (n−q1−q3, q1+q3)+Cb ⊆ {f = b},
hence f = f(q1,q2,q3,q4).

If q2+q4−1 < n−q1−q3, then f(k, q1+q3) = b, ∀k ∈ [q2, q2+q4−1], and f(q2+q4, q1+q3) = a.
Moreover (q2 + q4 − 1, q1 + q3) + Cb ⊆ {f = b}.

We illustrate the situation with the next update of the previous figures.

12



Geometry of ... Proofs

f(0, q1 − 1) = a
b

a
b

a on the left is f(q2, q1 + q3 − 1)
b on the left is f(q2 + q4 − 1, q1 + q3)

b on the left is f(q2 − 1, q1)

Figure 4

The procedure continues by defining q5 as the cardinality of the set

{m ∈ [q1 + q3, n− q2 − q4] : f(q2 + q4, m) = a},

or, in other words, q1 + q3 + q5 − 1 = max{m ∈ [q1 + q3, n− q2 − q4] : f(q2 + q4, m) = a},
and so on. The procedure stops as soon as the sum of the qi’s reaches n+ 1.

That every fq is dually monotone is obvious by definition. ✷

5.2 Proof of Theorem 4.1

We show the assertion in 2., assuming that the given sequence of majority quotas is

0 < kr−1 < ... < k5 < k3 < k1 < k0 < k2 < k4 < k6 < ... < n + 1 = kr

in the other cases the argument is quite similar. The straightforward application of the
definition of extended quota majority method (see [3, Definition 2.2]), and the fact that for
the dual quotas k◦

i the above reciprocal ordering is reversed, leads to identify that, with
reference to the grid G,

• the profiles for which φ selects a as social choice are those that corresponds to points
of coordinates (k,m) such that:
k ≥ k0, or (k,m) ∈ [k1, k0[×[0, k◦

0[, or (k,m) ∈ [k3, k1[×[0, k◦
2[, or

(k,m) ∈ [k5, k3[×[0, k◦
4[, or, ... , (k,m) ∈ [kr−1, kr−3[×[0, k◦

r−2[.

• the profiles for which φ selects b as social choice are those that corresponds to points
of coordinates (k,m) such that:
m ≥ k◦

0, or (k,m) ∈ [0, k1[×[k◦
2, k

◦
0[, or (k,m) ∈ [0, k3[×[k◦

4, k
◦
2[, or

(k,m) ∈ [0, k5[×[k◦
6 , k

◦
4[, or, ... , (k,m) ∈ [0, kr−1[×[k◦

r , k
◦
r−2[.
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Geometry of ... Proofs

Since k◦
r = 0, there are no full horizontal lines identifying profiles for which the social

choice is a (in other words q1 = 0), whereas there are kr−1 full vertical lines of profiles
for which the social choice is b. So, q2 = kr−1. This is illustrated in Figure 5 where
|V | = 20, kr = 21, kr−1 = 3, kr−2 = 19, kr−3 = 7, kr−4 = 14, . . .

Figure 5 Figure 6

Now, horizontal lines that represent profiles for which the social choice is a will depart from
k = kr−1 and there are k◦

r−2 many of such lines, i.e. q3 = k◦
r−2. This is illustrated in Figure

6
Now, further vertical lines that represent profiles for which the social choice is b will depart
from k = k◦

r−2 and there are kr−3−kr−1 many of such new lines, i.e. q4 = kr−3−kr−1. This
is illustrated in Figure 7.
Again, further horizontal lines that represent profiles for which the social choice is a will
depart from k = kr−3 and there are k◦

r−4−k◦
r−2 many of such new lines, i.e. q5 = k◦

r−4−k◦
r−2.

This is illustrated in Figure 8.

Figure 8Figure 7
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Geometry of ... References

The argument flows like above, alternating horizontal and vertical lines, till the grid G is
completely filled, according to the sequence k = (. . . , 14, 7, 19, 3, 21)7. ✷
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