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Abstract

The Maximum Entropy Principle (MEP) maximises the entropy subject to the constraint that the effort remains constant.
The Principle of Least Effort (PLE) minimises the effort subject to the constraint that the entropy remains constant. The paper
investigates the relation between these two principles. It is shown that (MEP) is equivalent with the principle “(PLE) or (PME)”
where (PME) is (introduced in this paper) the Principle of Most Effort, meaning that the effort is maximised subject to the constraint
that the entropy remains constant.
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1. Introduction

Suppose we have m ∈ N probabilities p1, p2, . . . , pm such that

m∑
r=1

pr = 1. (1)

One could think of an m-letter alphabet e.g. (a, b, . . . , z, 1, . . . ,+), where the numbers p1, p2, . . . , pm denote
the probabilities of occurrence of these letters. Hence all probabilities are strictly positive. Of course many other
interpretations are possible.

The average information content, called entropy, of such a system is defined as (cf. [16])

H = −

m∑
r=1

pr . ln(pr ). (2)
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Note that any logarithm can be used; in information theory it is common to use log2 but, for reasons of
simplification of the calculations we will use here ln = loge. Of course any result proved in this paper on (2) will also
be valid when using another logarithm. The measure H is fundamental in the sciences. In information theory it is the
defining formula for bits (binary digits) and for the optimal text-length when using non-fixed length coding (cf. [5]).

Another important aspect of the numbers p1, p2, . . . , pm can be described as effort (of using the m attributes, e.g.
symbols). Let Er > 0 denote the effort of using attribute r (r = 1, . . . , m). We suppose that the order is such that
(Er )r=1,...,m increases. The average effort, denoted by E , is:

E =

m∑
r=1

Er. pr . (3)

Note that, supposing (Er )r=1,..,m to be increasing, is not a mathematical restriction but for the applications it
is convenient to order our attributes this way. Indeed consider the application in linguistics where the attributes
r = 1, . . . , m stand for words in a text: r then denotes the rank of a word (type) according to the number of times it
is used (tokens) in the text (where the higher the rank, the less it is used in the text). In this application it is clear that,
the higher the rank, the more “exotic” the word is (and, usually, because of this, the word is longer), hence the higher
cost (or effort or energy) in using it.

Let us now define two important optimization principles. The Maximum Entropy Principle (MEP) requires H
(formula (2)) to be maximised subject to certain “energy” conditions which have prescribed average values. The
historic definition was given in [6] in the field of physics. Stated exactly, in this paper we define the Maximum
Entropy Principle (MEP) as: maximise H in (2) subject to a fixed value of (3) and also subject to (1) (see also [17,4,
13] for a definition using continuous variables).

The Principle of Least Effort, attributed to Zipf in linguistics [18], requires the average effort E (formula (3)) to be
minimal subject to certain fixed conditions on average information content, i.e. entropy. Stated exactly, in this paper
we define the Principle of Least Effort (PLE) as: minimise E (in (3)) subject to a fixed value of (2) and of course
subject to (1).

When we interpret (intuitively) both principles in the same field, e.g. linguistics, we can say that (MEP) maximises
the information content of a text, among all texts with a fixed average effort value. The (PLE) keeps the information
content fixed and determines the text with this information content, requiring the least average effort in producing it.
Even more intuitively we can say that (MEP) gives maximal profit among different situations requiring the same effort
in producing it, while (PLE) requires a minimum effort among different situations that yield the same profit.

Formulated this way both principles look very similar and one can pose the problem: are (MEP) and (PLE)
equivalent or does one principle only imply the other? In other words: establish the mathematical relation between
(MEP) and (PLE). Before we go into this problem (which will be solved in this paper) we remark that the “state of the
art” of these principles is very different. A search in April 2003 in Mathscinet yielded as much as 177 documents on
the phrase “maximum entropy principle” while there were only 9 documents on the phrase “principle of least effort”
(phrases to appear in the review text). No paper was in the intersection of both sets. Similar results were found in the
database Zentralblatt Math. Hence no paper apparently deals with the relation between (MEP) and (PLE). Although
this is surprising at first glance, the reason, most probably, lies in the fact that both principles have completely different
origins. The (MEP), being introduced in 1957 by Jaynes in physics, is well known in exact sciences, such as, apart
from physics: information science, chemistry, biology, artificial intelligence and of course in probability theory and
analysis. For these applications see e.g. [9,8]. The (PLE), being attributed to [18], was not formulated within the exact
sciences but in linguistics where, in addition, the formulation was not given in mathematical terms. The (PLE), in its
historical formulation is, hence, to be understood as a sociological behaviour of persons and groups of persons, see
also [14].

We even noted that some papers confuse (MEP) and (PLE): in [15] the correct definition of (PLE) is given but, in
the subsequent mathematical calculations of it, one uses (MEP) instead. In [10,11] there is no mistake except for the
fact that the (MEP) is called “Principle of Least Effort”.

It is now clear from the above that a mathematical proof of a relation between (MEP) and (PLE) would be
interesting. This will be given in the next section. The development of the proof makes it clear that, in order to describe
the complete relation between (MEP) and (PLE), we are in need of another optimization principle, the Principle of
Most Effort (PME). Its definition is clear from the one of (PLE): (PME) requires to maximise the average effort E
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(formula (3)) subject to a fixed value of H (formula (2)) and of course subject to (1). The practical usability of (PME)
is of no importance here: (PME) is the (mathematically) missing link between (MEP) and (PLE) as will become clear
in the next section. It also turns out that there is no such principle as the “minimal entropy principle”: in the next
section we will show that any constrained extremal problem for H (subject to constant E (formula (3)) and subject to
(1)) yields a maximum for H ; this is not the case for the extremal problem for E subject to constant H and (1), hence
leading to a possible maximum (hence (PME)) as introduced above.

2. Characterisation of the Maximum Entropy Principle in terms of the Principles of Least and Most Effort

In this section we will prove the following (surprising) result.

Theorem. The following assertions are equivalent:

(i) The Maximum Entropy Principle
(ii) The Principle of Least Effort or the Principle of Most Effort.

The proof is split up in several propositions: the first three giving necessary conditions for the m-tuple
p1, p2, . . . , pm to satisfy the (MEP), (PLE) and (PME) respectively; the fourth proposition gives in one proof that
the necessary conditions are also sufficient. So we obtain characterisations (in terms of the values of the probabilities
p1, p2, . . . , pm) of all three principles (MEP), (PLE) and (PME) from which the main theorem will follow. For the
notation we refer to formulae (1)–(3).

Proposition 2.1. (MEP) implies

pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃ρ > 0.

Proof. (MEP) requires H to be maximal subject to a fixed value of E and subject to (1). The method of the
multiplicators of Lagrange (see e.g. [1]) yields a necessary condition for this problem. So we form the function G
(in the variables p1, p2, . . . , pm, λ, µ):

G = −

m∑
r=1

pr . ln(pr ) + λ

(
E −

m∑
r=1

Er .pr

)
+ µ

(
1 −

m∑
r=1

pr

)
(4)

for which we require

∂G

∂pr
= 0 (5)

for all r = 1, 2, . . . , m as a necessary condition for (MEP).
(At this moment we obtain a necessary condition for the constraint H to be extremal, hence also for H to be

maximal but the proof of the sufficient condition will show that H can only be maximal and it will also be shown that
this is not the case for the constraint extremum of the average effort E).

Formulae (4) and (5) yield:

∂G

∂pr
= −1 − ln(pr ) − λEr − µ = 0

hence

pr = e−1−µ.e−λEr

pr = c.ρ−Er with c = e−1−µ > 0 and ρ = eλ > 0 for all r = 1, 2, . . . , m. �

Proposition 2.2. (PLE) implies

pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃ρ ≥ 1. (6)



4 L. Egghe, T. Lafouge / Mathematical and Computer Modelling 43 (2006) 1–8

Proof. (PLE) requires E to be minimal subject to a fixed value of H and subject to (1). The same method as in
Proposition 2.1 gives (for the moment we only use the constrained extremality of E but later in this proof the obtained
condition will be sharpened using the full (PLE)): we define the function G∗ as follows:

G∗
=

m∑
r=1

pr .Er + λ

(
H +

m∑
r=1

pr . ln(pr )

)
+ µ

(
1 −

m∑
r=1

pr

)
. (7)

A necessary condition for (PLE) is given by:

∂G∗

∂pr
= 0 (8)

for all r = 1, 2, . . . , m. This gives

∂G∗

∂pr
= Er + λ(1 + ln(pr )) − µ = 0

hence

pr = e
µ
λ
−1.e−

Er
λ

hence

pr = c.ρ−Er with c = e
µ
λ
−1 > 0 and ρ = e

1
λ > 0 for all r = 1, 2, . . . , m.

Note that λ 6= 0 since λ = 0 implies ρ = ∞ and hence pr = 0 for all r = 1, 2, . . . , m contradicting (1) (and the
fact that all probabilities are strictly positive).

Note that we proved (6) but only for ρ > 0. That ρ ≥ 1 will follow from (PLE), i.e. that the average effort
E is minimal. This will be proved now. Since we have (6), we will have proved ρ ≥ 1 if we can show that the
p1, p2, . . . , pm decrease, since we assume the E1, E2, . . . , Em to be positive and to increase (Note: our proof does
not depend on the increasing order of the E1, E2, . . . , Em : for E1, E2, . . . , Em in any order we then have to show
that the p1, p2, . . . , pm are in inverse order with respect to the E1, E2, . . . , Em , hence again ρ ≥ 1; using increasing
E1, E2, . . . , Em , however, better fixes the ideas).

Let ρ 6= 1. Suppose that the p1, p2, . . . , pm satisfy (PLE), hence are of the form (6) and that they do not decrease.
Let then i < j, i, j ∈ {1, . . . , m} be such that pi < p j . Define π to be the elementary permutation of {1, . . . , m}

defined as:

(π(1), . . . , π(m)) = (1, . . . , i − 1, j, i + 1, . . . , j − 1, i, j + 1, . . . , m). (9)

Then we have that

−

m∑
r=1

pr . ln(pr ) = H = −

m∑
r=1

pπ(r). ln(pπ(r)) (10)

and

m∑
r=1

pr = 1 =

m∑
r=1

pπ(r). (11)

But
m∑

r=1

Er .pπ(r) = Ei pπ(i) + E j pπ( j) +

∑
r 6=i, j

Er .pπ(r)

= Ei pi + E j p j +

∑
r 6=i, j

Er .pπ(r) + Ei (pπ(i) − pi ) + E j (pπ( j) − p j )

=

m∑
r=1

Er .pr + (E j − Ei )(pπ( j) − pπ(i)) (12)
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since π(i) = j and π( j) = i and π(r) = r , ∀r ∈ {1, . . . , m} \ {i, j}. But i < j implies Ei < E j (since the Er
are increasing and since Ei = E j implies pi = p j by the already proved formula (6), contradicting pi < p j ) and
pπ( j) − pπ(i) = pi − p j < 0.

Hence

(E j − Ei )(pπ( j) − pπ(i)) < 0.

Consequently

m∑
r=1

Er pπ(r) <

m∑
r=1

Er pr . (13)

Now (10), (11) and (13) contradict the fact that the p1, p2, . . . , pm satisfy (PLE). So the p1, p2, . . . , pm decrease,
hence ρ > 1 (if ρ 6= 1). Consequently ρ ≥ 1. �

That (PME) is “complementary” with respect to (PLE), in the connection of (MEP) follows from the next
proposition.

Proposition 2.3. (PME) implies

pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃0 < ρ ≤ 1.

Proof. Using exactly the same function as in Proposition 2.2 we again find that

pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃ρ > 0. (14)

(In fact at this stage we only used the constrained extremality of E which also contains (PME).) We now have to
show that 0 < ρ ≤ 1. In other words, by (14) and the fact that the E1, E2, . . . , Em increase, we have to prove that the
p1, p2, . . . , pm increase. This proof goes along the lines of the similar proof in Proposition 2.2. Let ρ 6= 1. Suppose
that the p1, p2, . . . , pm are not increasing. Let then i < j, i, j ∈ {1, . . . , m} be such that pi > p j . Define π to be the
elementary permutation of {1, . . . , m} defined as in Proposition 2.2. Hence also (12) is valid. But now i < j implies
Ei < E j and pπ( j) > pπ(i), hence by (12),

∑m
r=1 Er pπ(r) >

∑m
r=1 Er pr contradicting that the p1, p2, . . . , pm

satisfy (PME). So the p1, p2, . . . , pm increase and hence 0 < ρ ≤ 1. �

We will now show, in one proof, that all the necessary conditions proved in Propositions 2.1–2.3 are also sufficient.

Proposition 2.4.

(i)

pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃ρ > 0 (15)

implies (MEP).
(ii)

pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃ρ ≥ 1 (16)

implies (PLE).
(iii)

pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃0 < ρ ≤ 1 (17)

implies (PME).

Proof. Given one of the situations (15), (16) or (17), define the following function fr of the variable xr > 0, r =

1, . . . , m:

fr (xr ) = xr . ln(xr ) − (1 + ln c)xr + (ln ρ)Er .xr . (18)

Then we have that

f ′
r (xr ) = 1 + ln(xr ) − 1 − ln(c) + ln(ρ)Er = 0
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implies that

xr = eln(c)−ln(ρ)Er

xr = cρ−Er

r = 1, . . . , m, hence the given functions (15), (16) or (17) respectively. Furthermore

f ′′(xr ) =
1
xr

> 0

for all xr . Hence the given functions (15), (16) or (17) satisfy f ′
r (pr ) = 0 and f ′′

r (pr ) > 0, hence fr has a minimum
in xr = pr with pr as in (15), (16) or (17), respectively, r = 1, . . . , m. So for all xr > 0, r = 1, . . . , m:

fr (xr ) ≥ fr (pr )

i.e.

xr . ln(xr ) − (1 + ln c)xr + (ln ρ)Er .xr ≥ pr . ln(pr ) − (1 + ln c)pr + (ln ρ)Er .pr . (19)

Hence
m∑

r=1

xr . ln(xr ) − (1 + ln c)
m∑

r=1

xr + (ln ρ)

m∑
r=1

Er .xr

≥

m∑
r=1

pr . ln(pr ) − (1 + ln c)
m∑

r=1

pr + (ln ρ)

m∑
r=1

Er .pr . (20)

The proof is now split into four parts: (a) represents the proof of (i), (b) represents the proof of (ii) for ρ 6= 1, (c)
represents the proof of (iii) for ρ 6= 1, and (d) represents the proof of (ii) and (iii) for ρ = 1.

(a) Let now (15) be given: ρ > 0 and require:

m∑
r=1

xr =

m∑
r=1

pr = 1,

m∑
r=1

Er xr =

m∑
r=1

Er pr = E

be constants. Then (20) implies, for any ρ > 0: −
∑m

r=1 xr . ln(xr ) ≤ −
∑m

r=1 pr . ln(pr ).
Hence the p1, p2, . . . , pm of the form (15) (for any ρ > 0) satisfy the (MEP). This completes the proof of (a).

(b) Let now (16) given and let ρ 6= 1. So ρ > 1 and

m∑
r=1

xr =

m∑
r=1

pr = 1

−

m∑
r=1

xr . ln(xr ) = −

m∑
r=1

pr . ln(pr ) = H

be constants. Then (20) implies, for ρ > 1 (hence ln(ρ) > 0):

m∑
r=1

Er xr ≥

m∑
r=1

Er pr .

Hence the p1, p2, . . . , pm of the form (16) (ρ > 1) satisfy the (PLE).
(c) Let now (17) be given and let ρ 6= 1. So 0 < ρ < 1 and

m∑
r=1

xr =

m∑
r=1

pr = 1

−

m∑
r=1

xr . ln(xr ) = −

m∑
r=1

pr . ln(pr ) = H
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be constants. Then (20) implies, for 0 < ρ < 1 (hence ln(ρ) < 0):
m∑

r=1

Er xr ≤

m∑
r=1

Er pr .

Hence the p1, p2, . . . , pm of the form (17) (0 < ρ < 1) satisfy the (PME).
(d) Let now ρ = 1. Hence p1 = p2 = · · · = pm =

1
m . Now (20) cannot be used anymore since ln(ρ) = 0. We will

now show directly that (PLE) and (PME) are valid. Let
m∑

r=1

xr =

m∑
r=1

pr = 1

−

m∑
r=1

xr . ln(xr ) = −

m∑
r=1

pr . ln(pr ) = H = ln(m)

then xr = pr for all r = 1, . . . , m. This is well known since H attains its free maximum (apart from the
requirement

∑m
r=1 xr = 1) in only one point, namely

(x1, . . . , xm) =

(
1
m

, . . . ,
1
m

)
= (p1, . . . , pm).

We refer the reader to [7] or to [12]. Hence
m∑

r=1

Er xr =

m∑
r=1

Er pr =
1
m

m∑
r=1

Er ,

hence (PLE) as well as (PME). Note that this case is degenerate since only one point ( 1
m , . . . , 1

m ) is involved here.
This completes the proof of (ii) and (iii) and hence of the proposition. �

We hence have proved the theorem:

Theorem 2.5. (i) (MEP) is equivalent with pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃ρ > 0 (15)
(ii) (PLE) is equivalent with pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃ρ ≥ 1 (16)

(iii) (PME) is equivalent with pr = cρ−Er r = 1, . . . , m, ∃c > 0, ∃0 < ρ ≤ 1 (17).

The case ρ = 1 is the only one in the intersection (PLE) and (PME) and corresponds to the “degenerate” case of
(MEP) where an unconstrained (w.r.t. E) maximum is obtained for H .

Finally, from Theorem 2.5, we obtained the theorem announced in the beginning of this section:

Theorem 2.6. The following assertions are equivalent:

(i) (MEP)
(ii) (PLE) or (PME).

Remark. The use of the method of the multiplicators of Lagrange to solve the constraint extremal problems such as
(MEP), (PLE) or (PME) is well known (see [1]) but yields only a necessary condition; only for free extrema one can
prove necessary and sufficient conditions. As said above, Rapoport [15] obtains the function (15) for ρ > 0, using
(MEP) but calls it (PLE). He then continues by assuming the value:

Er = E . ln(r) (21)

for each r = 1, . . . , m, with E > 0 a certain constant. This then leads to the function (cf. (15))

pr = c.ρ−E ln(r)
= cr−E . ln(ρ)

pr =
c

rβ
(22)

a power law, where β > 0 in case ρ > 1, hence the decreasing law of Zipf if r denotes the rank. Based on our results
we see this only follows from (PLE). (PME) implies an increasing sequence pr and (MEP) allows both increasing
and decreasing sequences. In the same sense, the papers [17,4,13], which use (MEP) (but with continuous variables),
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do not provide a complete explanation of Zipf’s law as a decreasing function. If we interpret pr as pn where pn is the
fraction of sources (e.g. journals or authors) with n articles, then (22) is known as the law of Lotka. So also this law
follows from (PLE) in its decreasing version (which is the only acceptable one). For more on the law of Lotka and
Zipf we refer to [3] or the recent [2].

Assuming (21) is very natural. Indeed, as explained in [15] and in terms of texts consisting of words with i letters
(i = 1, 2, 3, . . .) we have that the cost (effort) of using a word with i letters is proportional to i hence to logN (r)

where N is the number of different letters and r is the rank of a word with i letters. In fact, this argument is the same
as the one leading to the definition of entropy and bits where log2(r) is the number of bits needed to the binary coding
of r symbols; for N -ary coding of r symbols we need logN (r) “N -ary bits” (e.g. N = 10: decimals).

In [11], other functions for Er than the one in (21) are used, leading to other functional relations for pr , r =

1, . . . , m.
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