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Abstract—A singularly perturbed convection-diffusion problem, with a discontinuous convection
coefficient and a singular perturbation parameter ε, is examined. Due to the discontinuity an interior
layer appears in the solution. A finite difference method is constructed for solving this problem,
which generates ε-uniformly convergent numerical approximations to the solution. The method uses
a piecewise uniform mesh, which is fitted to the interior layer, and the standard upwind finite differ-
ence operator on this mesh. The main theoretical result is the ε-uniform convergence in the global
maximum norm of the approximations generated by this finite difference method. Numerical results
are presented, which are in agreement with the theoretical results. c© 2004 Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

Singularly perturbed differential equations arise in many branches of science and engineering [1].
Boundary and interior layers are normally present in the solutions of problems involving such
equations. These layers are thin regions in the domain where the gradient of the solution steepens
as the singular perturbation parameter tends to zero. The convergence of the numerical approx-
imations generated by standard numerical methods applied to such problems depends adversely
on the singular perturbation parameter [2–4]. Robust parameter-uniform numerical methods,
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with maximum norm errors independent of the singular perturbation parameter, have been de-
veloped over the last twenty years (see [2–4] and the references therein). Most of this work has
concentrated on problems having only boundary layers in their solutions. Note that problems
with discontinuous data were treated theoretically, in the case of the reaction-diffusion equation
in, for example, [5]. The analytical techniques developed there are extended in a natural way
to the problems considered in the present paper. In [6], we also examined the behaviour of the
error for a class of singularly perturbed reaction-diffusion problems with interior layers. In a
companion paper [7], we analyzed robust numerical methods for convection-diffusion problems
with weak interior layers.

Here, we develop and analyze parameter-uniform numerical methods for a class of singularly
perturbed convection-diffusion problems, whose solutions contain strong interior layers caused by
a discontinuity in the convection coefficient. More specifically, we are concerned with a two point
boundary value problem for a singularly perturbed convection diffusion equation with a singular
perturbation parameter ε. The novel aspect of the problem under consideration is that the
convection coefficient in the differential equation has a jump discontinuity at one or more points in
the interior of the domain. This gives rise to an interior layer in the exact solution of the problem.
Our goal is to construct an ε-uniform numerical method for solving this problem, by which we
mean a numerical method which generates ε-uniformly convergent numerical approximations to
the solution.

We now outline the main points of the paper. In the next section, we describe the problem
and establish the existence and regularity of its solutions. We state and prove a comparison
principle and some a priori estimates of the solution and its derivatives. Then, we prove a
stability result from which the uniqueness of the solution follows. We decompose this solution
into smooth and singular components and establish ε-explicit bounds on these components and
their derivatives. In Section 3, we construct a piecewise uniform mesh, which is fitted to the
interior layers. The numerical method is defined by using the standard upwind finite difference
method on this mesh. We state and prove a comparison principle and a stability result for the
discrete problem. We introduce a decomposition of the discrete solution in Section 4 and prove
the main theoretical result, namely the ε-uniform convergence in the global maximum norm of
the approximations generated by the finite difference method. In the following section, numerical
results are presented, which are in agreement with the theoretical results. The paper ends with
a section containing the conclusions.

2. CONTINUOUS PROBLEM

A singularly perturbed convection-diffusion equation in one dimension with a discontinuous
coefficient of the first derivative term is considered on the unit interval Ω = (0, 1). A single
discontinuity in the coefficient is assumed to occur at a point d ∈ Ω. It is convenient to introduce
the notation Ω− = (0, d) and Ω+ = (d, 1) and to denote the jump at d in any function with
[ω](d) = ω(d+) − ω(d−). The corresponding two point boundary value problem is as follows.
Find uε ∈ C1(Ω) ∩ C2(Ω− ∪ Ω+), such that

εu′′ε + a(x)u′ε = f, for all x ∈ Ω− ∪ Ω+,

uε(0) = u0, uε(1) = u1,

a(x) < −α1 < 0, x < d, a(x) > α2 > 0, x > d,

|[a](d)| ≤ C, |[f ](d)| ≤ C,

(Pε)

where a, f ∈ C2(Ω− ∪Ω+); these functions are extendable into Ω− and Ω+ in C2. Note the level
of smoothness required of the solution, i.e., uε ∈ C1(Ω). Throughout this paper, C denotes a
generic positive constant that is independent of the singular perturbation parameter ε and of N ,
the dimension of the discrete problem. We measure all functions in the maximum pointwise
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norm, which we denote by
‖w‖D = sup

x∈D
|w(x)|.

When the domain is obvious, we will omit the subscript in this notation.
Note the sign pattern of the coefficient a of the first derivative, which is negative to the left of

the point of discontinuity and positive to the right of this point. In general, there is an interior
layer in the vicinity of the point of discontinuity x = d.

Theorem 1. Problem (Pε) has a solution uε ∈ C1(Ω) ∩ C2(Ω− ∪ Ω+).
Proof. The proof is by construction. Let y1, y2 be particular solutions of the differential
equations

εy′′1 + a1(x)y′1 = f, x ∈ Ω−, and εy′′2 + a2(x)y′2 = f, x ∈ Ω+,

where a1, a2 ∈ C2(Ω) with the following properties:

a1(x) = a(x), x ∈ Ω−, a1 < 0, x ∈ Ω,

a2(x) = a(x), x ∈ Ω+, a2 > 0, x ∈ Ω.

Consider the function

y(x) =
{

y1(x) + (uε(0)− y1(0))φ1(x) + Aφ2(x), x ∈ Ω−,

y2(x) + Bφ1(x) + (uε(1)− y2(1))φ2(x), x ∈ Ω+,

where φ1(x), φ2(x) are the solutions of the boundary value problems

εφ′′1 + a1(x)φ′1 = 0, x ∈ Ω, φ1(0) = 1, φ1(1) = 0,

εφ′′2 + a2(x)φ′2 = 0, x ∈ Ω, φ2(0) = 0, φ2(1) = 1.

Any function of this form satisfies y(0) = uε(0), y(1) = uε(1), and εy′′+a(x)y′ = f , x ∈ Ω−∪Ω+.
Note that on the open interval (0, 1), 0 < φi < 1, i = 1, 2. Thus, φ1, φ2 cannot have an internal
maximum or minimum and hence

φ′1 < 0, φ′2 > 0, x ∈ (0, 1).

We wish to choose the constants A, B so that y ∈ C1(Ω). That is, we impose

y(d−) = y
(
d+

)
and y′(d−) = y′

(
d+

)
.

For the constants A, B to exist we require that[
φ2(d)− φ1(d)
φ′2(d)− φ′1(d)

]
6= 0.

This follows from observing that φ′2(d)φ1(d)− φ2(d)φ′1(d) > 0.
Note that there will also be a solution to convection-diffusion problems with a discontinuous

coefficient of the first derivative, when the coefficient a(x) has other sign patterns either side of
the discontinuity. For example, if a(d+) 6= a(d−) and a(x) > 0, x ∈ Ω, then a weak interior layer
occurs to the right of x = d and a boundary layer occurs near x = 0. Similarly, if a(d+) 6= a(d−)
and a(x) < 0, x ∈ Ω, then a weak interior layer occurs to the left of x = d and a boundary layer
occurs near x = 1. These weak interior layers have been examined in [7]. On the other hand, if
the sign of a(x) changes at x = d, for example, if a(x) ≥ α1 > 0, x ∈ Ω−, and a(x) ≤ α2 < 0,
x ∈ Ω+, then, in general, the solution is not bounded independently of ε. We illustrate this case
by considering the following constant coefficient problem.

Find uε ∈ C1(Ω), such that

εu′′ε + u′ε = −1, x < 0.5, εu′′ε − u′ε = −1, x > 0.5, uε(0) = uε(1) = 0.

Its solution has the value uε(0.5) = −0.5 + εe1/(2ε)(1 − e−1/(2ε)), which becomes unbounded
as ε→ 0. We do not discuss such cases in greater detail in this paper.

Let Lε denote the differential operator occurring in (Pε), which is defined as

Lεω ≡ εω′′ + a(x)ω′.

Then, Lε satisfies the following comparison principle on Ω̄.
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Lemma 2. Suppose that a function ω ∈ C0(Ω̄) ∩ C2(Ω− ∪ Ω+) satisfies

ω(0) ≤ 0, ω(1) ≤ 0, [ω′](d) ≥ 0,

Lεω(x) ≥ 0, for all x ∈ Ω− ∪ Ω+, then

ω(x) ≤ 0, for all x ∈ Ω̄.

Proof. We introduce the function v(x), defined by

ω(x) = e−(α(x)|x−d|)/(2ε)v(x),

where α(x) = α1, x < d, α(x) = α2, x > d. Hence, for x ∈ Ω−,

Lεω = e−(α(x)|x−d|)/(2ε)
(
εv′′ + (a + α1)v′ +

α1

2ε

(α1

2
+ a

)
v
)

,

and for x ∈ Ω+

Lεω = e−(α(x)|x−d|)/(2ε)
(
εv′′ + (a− α2)v′ +

α2

2ε

(α2

2
− a

)
v
)

.

Let q be a point at which v attains its maximum value in Ω̄. If v(q) ≤ 0, there is nothing to
prove. Suppose therefore that v(q) > 0, then the proof is completed by showing that this leads
to a contradiction. With the above assumption on the boundary values, either q ∈ Ω− ∪ Ω+ or
q = d. If q ∈ Ω− then

Lεω(q) = e−(α1(d−q))/(2ε)
(
εv′′(q) + (a(q) + α1)v′(q) +

α1

2ε

(α1

2
+ a

)
v(q)

)
< 0,

which is a contradiction. If q ∈ Ω+ then

Lεω(q) = e−(α2(q−d))/(2ε)
(
εv′′(q) + (a(q)− α2)v′(q) +

α2

2ε

(α2

2
− a

)
v(q)

)
< 0,

which is also a contradiction.
The only possibility remaining is that q = d. Note that [v](d) = [ω](d) = 0 and [ω′](d) =

[v′](d) − ((α1 + α2)/(2ε))v(d). Since d is where v takes its maximum value, then v′(d−) ≥ 0,
v′(d+) ≤ 0, which implies that [v′](d) ≤ 0. This implies that [ω′](d) < 0, which is a contradiction.

An immediate consequence of the comparison principle is the following stability result, which
implies uniqueness of the solution.

Theorem 3. Let uε be a solution of (Pε), then

‖uε‖Ω̄ ≤ max{|u0|, |u1|}+
1
γ
‖f‖Ω̄,

where γ = min{α1/d, α2/(1− d)}.
Proof. Put Ψ±(x) = −M−(x‖f‖)/(γd)±uε(x), x ≤ d, and Ψ±(x) = −M−((1−x)‖f‖)/(γ(1−
d))±uε(x), x > d, where M = max{|u0|, |u1|}. Then, clearly Ψ± ∈ C0(Ω̄), Ψ̄±(0) ≤ 0, Ψ±(1) ≤ 0,
and for each x ∈ Ω− ∪ Ω+

LεΨ±(x) ≥ 0.

Furthermore, since uε ∈ C1(Ω)

[Ψ±](d) = ±[uε](d) = 0, and [Ψ′±](d) =
‖f‖

γ(1− d)
+
‖f‖
γd
≥ 0.
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It follows from the comparison principle given in the previous lemma that Ψ±(x) ≤ 0 for all
x ∈ Ω̄, which leads at once to the desired bound on uε.

Consider the following decomposition of the solution uε = vε+wε into a nonlayer component vε

and an interior layer component wε. Define the discontinuous functions v0 and v1 by

av′0 = f, x ∈ Ω− ∪ Ω+,

v0(0) = uε(0), v0(1) = uε(1),

av′1 = −v′′0 , x ∈ Ω− ∪ Ω+,

v1(0) = 0, v1(1) = 0.

We now define the discontinuous function vε by

Lεvε = f, x ∈ Ω− ∪ Ω+, (2.1a)

vε(0) = uε(0), vε(d−) = v0(d−) + εv1(d−), (2.1b)

vε

(
d+

)
= v0

(
d+

)
+ εv1

(
d+

)
, vε(1) = uε(1). (2.1c)

Define the discontinuous function wε, which is the layer component of the decomposition, as
follows:

Lεwε = 0, x ∈ Ω− ∪ Ω+, (2.2a)

wε(0) = wε(1) = 0, [wε](d) = −[vε](d), [w′ε](d) = −[v′ε](d). (2.2b)

Hence, wε(d−) = uε(d−) − vε(d−) and wε(d+) = uε(d+) − vε(d+). Note that since there is a
unique solution to (Pε), then uε = vε + wε. It is also worth noting that both vε and wε are
discontinuous at x = d, but by (2.2b) their sum is in C1(Ω).

Lemma 4. For each integer k, satisfying 0 ≤ k ≤ 3, the solutions vε and wε of (2.1) and (2.2),

respectively, satisfy the following bounds:

‖vε‖ ≤ C,
∥∥∥v(k)

ε

∥∥∥
Ω−∪Ω+

≤ C
(
1 + ε2−k

)
,

|[vε](d)|, |[v′ε] (d)| , |[v′′ε ] (d)| ≤ C,∣∣∣w(k)
ε (x)

∣∣∣ ≤ {
C

(
ε−ke−(d−x)α1/ε

)
, x ∈ Ω−,

C
(
ε−ke−(x−d)α2/ε

)
, x ∈ Ω+,

where C is a constant independent of ε.

Proof. Apply the arguments given in [3, Chapter 3] separately on each of the subintervals Ω−

and Ω+.

Note that wε is a discontinuous function which is increasing exponentially (decreasing expo-
nentially) to the left (to the right) of the point x = d.

3. DISCRETE PROBLEM

A fitted mesh method for problem (Pε) is now introduced (see [3] for motivation for this choice
of mesh). On Ω a piecewise-uniform mesh of N mesh intervals is constructed as follows. The
domain Ω̄ is subdivided into the four subintervals

[0, d− σ1] ∪ [d− σ1, d] ∪ [d, d + σ2] ∪ [d + σ2, 1], (3.1a)

for some σ1, σ2 that satisfy 0 < σ1 ≤ d/2, 0 < σ2 ≤ (1 − d)/2. On each subinterval a uniform
mesh with N/4 mesh-intervals is placed. The interior points of the mesh are denoted by

ΩN
ε =

{
xi : 1 ≤ i ≤ N

2
− 1

}
∪

{
xi :

N

2
+ 1 ≤ i ≤ N − 1

}
. (3.1b)

Clearly, xN/2 = d and Ω̄N
ε = {xi}N0 .
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Note that this mesh is a uniform mesh when σ1 = d/2 and σ2 = (1 − d)/2. It is fitted to the
singular perturbation problem (Pε) by choosing σ1 and σ2 to be the following functions of N

and ε:

σ1 = min
{

d

2
,
ε

α
lnN

}
, σ2 = min

{
1− d

2
,
ε

α
lnN

}
, (3.1c)

where
α = min{α1, α2}. (3.1d)

Remark. An alternative choice of transition points would be

σ̂1 = d min
{

1
2
,

ε

α1
lnN

}
, σ̂2 = (1− d) min

{
1
2
,

ε

α2
lnN

}
.

The analysis which follows is also applicable to this choice of transition parameters.

On the piecewise-uniform mesh Ω̄N
ε a standard upwind finite difference operator is used. Then,

the fitted mesh method for (Pε) is as follows.
Find a mesh function Uε, such that

LN
ε Uε ≡ εδ2Uε(xi) + a(xi)DUε(xi) = f(xi), for all xi ∈ ΩN

ε ,

Uε(0) = u0, Uε(1) = u1,

D−Uε

(
xN/2

)
= D+Uε

(
xN/2

)
,

(PN
ε )

where

δ2Zi =
2 (D+Zi −D−Zi)

xi+1 − xi−1
, and DZi =


D−Zi, i <

N

2
,

D+Zi, i >
N

2
,

where D+ and D− are the standard forward and backward finite difference operators, respectively.
The following lemma shows that the finite difference operator LN

ε has properties analogous to
those of the differential operator Lε.

Lemma 5. Suppose that a mesh function Z satisfies

Z(0) ≤ 0, Z(1) ≤ 0, LN
ε Z(xi) ≥ 0, for all xi ∈ ΩN

ε , and

D+Z(d)−D−Z(d) ≥ 0, then Z(xi) ≤ 0, for all xi ∈ Ω̄N
ε .

Proof. Let xp be any point at which Z(xp) attains its maximum value on Ω̄N
ε . If Z(xp) ≤ 0

there is nothing to prove. Suppose therefore that Z(xp) > 0, then the proof is completed by
showing that this leads to a contradiction. By the assumptions, xp 6= 0, 1. Consider first the
case of xp 6= d. Without loss of generality, assume xp < d. Because Z attains its maximum value
at xp it is clear that

D−Z(xp) ≥ 0 ≥ D+Z(xp),

and hence
LN

ε Z(xp) = εδ2Z(xp) + a(xp)D−Z(xp) ≤ 0.

To avoid a contradiction, LN
ε Z(xp) = 0. This implies that

Z(xp−1) = Z(xp) = Z(xp+1).

Repeat the argument at the point xp−1. Continue until the boundary point x0 is reached and a
contradiction is achieved. Let us now consider the case of xp = d. Then,

D−Z(d) ≥ 0 ≥ D+Z(d) ≥ D−Z(d),

and so
Z

(
xN/2−1

)
= Z(d) = Z

(
XN/2+1

)
.

Repeat earlier argument to reach the desired contradiction.
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Lemma 6. If Uε is the solution of (PN
ε ), then

|Uε(xi)| ≤ C, ∀xi ∈ Ω̄N
ε ,

where C is a constant independent of ε and N .

Proof. The proof is the discrete analogue of the continuous stability bound given in Theo-
rem 3.

4. ERROR ANALYSIS

To bound the nodal error |(Uε−uε)(xi)|, the argument is divided into two main parts. Initially,
we define mesh functions VL and VR, which approximate vε, respectively, to the left and to the
right of the point of discontinuity x = d. Then, we construct mesh functions WL and WR (to
approximate wε on either side of x = d) so that the amplitude of the jump WR(d) −WL(d) is
determined by the size of the jump |[vε](d)|. Also WL and WR are sufficiently small away from the
interior layer region. Using these mesh functions the nodal error |(Uε − uε)(xi)| is then bounded
separately outside and inside the layer.

Define the mesh functions VL and VR to be the solutions of the following discrete problems:

LN
ε VL = f(xi), for all xi ∈ ΩN

ε ∩ Ω−, (4.1a)

VL(0) = vε(0), VL(d) = vε(d−), (4.1b)

and

LN
ε VR = f(xi), for all xi ∈ ΩN

ε ∩ Ω+, (4.1c)

VR(1) = vε(1), VR(d) = vε

(
d+

)
. (4.1d)

Using the following barrier functions, separately, on the appropriate sides of the discontinuity,

−C
xiN

−1

d
, −C

(1− xi)N−1

1− d
,

one can easily deduce (see [3]) the following error bounds:

|VL(xi)− vε(xi)| ≤ CN−1xi, xi ∈ ΩN
ε ∩ Ω−, (4.2a)

|VR(xi)− vε(xi)| ≤ CN−1(1− xi), xi ∈ ΩN
ε ∩ Ω+. (4.2b)

Define the mesh functions WL : Ω̄N
ε ∩ [0, d]→ R and WR : Ω̄N

ε ∩ [d, 1]→ R to be the solutions
of the following system of finite difference equations:

LN
ε WL = 0, for all xi ∈ ΩN

ε ∩ Ω−, (4.3a)

LN
ε WR = 0, for all xi ∈ ΩN

ε ∩ Ω+, (4.3b)

WL(0) = 0, WR(1) = 0, (4.3c)

WR(d) + VR(d) = WL(d) + VL(d), (4.3d)

D+WR(d) + D+VR(d) = D−WL(d) + D−VL(d). (4.3e)

Note that we can define Uε to be

Uε(xi) =


VL(xi) + WL(xi), xi ∈ ΩN

ε ∩ Ω−,

VL(d) + WL(d) = VR(d) + WR(d), xi = d,

WR(xi) + VR(xi), xi ∈ ΩN
ε ∩ Ω+.
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By Lemma 6 |Uε(d)| ≤ C and with Theorem 3, one easily deduces that

|WL(d)| ≤ C and |WR(d)| ≤ C.

Observe that WL (WR) satisfies a homogeneous difference equation (4.3a) ((4.3b)) and that
WL(0) = 0 (WR(1) = 0). From the arguments in [3, Chapter 3], for xi ≤ d−σ1 and, respectively,
xi ≥ d + σ2, we have

|WL(xi)| ≤ |WL(d)|N−1 ≤ CN−1, |WR(xi)| ≤ |WR(d)|N−1 ≤ CN−1, (4.4)

when σ1 = σ2 = (ε/γ) lnN . For xi ≤ d− σ1 and σ1 = (ε/α) lnN , we then have the error bound

|WL(xi)− wε(xi)| ≤ |WL(xi)|+ |wε(xi)| ≤ |WL(d)|N−1 + Ce−ασ1/ε ≤ CN−1. (4.5a)

Similarly, for xi ≥ d + σ2 and σ2 = (ε/α) lnN , we obtain

|WR(xi)− wε(xi)| ≤ CN−1. (4.5b)

We now state and prove the main theoretical result in this paper.

Theorem 7. The solutions uε and Uε of (Pε) and (PN
ε ) satisfy the following bound:∥∥Ūε − uε

∥∥
Ω̄
≤ CN−1(lnN)2,

where Ūε is the piecewise linear interpolant of Uε on Ω̄ and C is a constant independent of N

and ε.

Proof. Consider first the case of σ1 = σ2 = σ = (ε/α) lnN . From (4.5) and the bounds (4.2),
it follows that

|Uε(d− σ)− uε(d− σ)| ≤ CN−1, |Uε(d + σ)− uε(d + σ)| ≤ CN−1. (4.6)

Note that for xi ∈ (d−σ, d + σ) \ {d}, using the bounds on the derivatives given in Lemma 4, we
have that ∣∣LN

ε (Uε − uε)
∣∣ ≤ εh

∣∣∣u(3)
ε

∣∣∣ + h
∣∣∣u(2)

ε

∣∣∣ ≤ C
h

ε2
,

where h = (4σ)/N is the fine mesh size. At the mesh point xi = d,∣∣(D+ −D−
)
(Uε − uε)

∣∣ =
∣∣(D− −D+

)
(uε) + [u′ε]

∣∣
≤

∣∣u′ε(xi)−D+uε(xi)
∣∣ +

∣∣u′ε(xi)−D−uε(xi)
∣∣ ≤ C

h

ε2
=

Cσ

ε2N
.

Consider the discrete barrier function

Ψ = −CN−1 − C
N−1σ

ε2

{
xi − (d− σ), xi ∈ ΩN

ε ∩ (d− σ, d),

(d + σ)− xi, xi ∈ ΩN
ε ∩ (d, d + σ).

Note that

LN
ε Ψ = C

N−1σ

ε2

{ −a, xi ∈ ΩN
ε ∩ (d− σ, d),

a, xi ∈ ΩN
ε ∩ (d, d + σ),

and

D+Ψ(d)−D−Ψ(d) = 2C
N−1σ

ε2
.

Applying the discrete comparison principle to Ψ ± (Uε − uε) over the interval [d − σ, d + σ], we
get

|Uε(xi)− uε(xi)| ≤ C
N−1σ2

ε2
≤ CN−1(lnN)2.
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We complete the proof by considering the case where at least one of the two transition points σ1, σ2

takes the value d/2 or (1−d)/2. In all such cases ε−1 ≤ C lnN . Applying the discrete comparison
principle across the entire domain ΩN

ε , we have for xi 6= d

∣∣LN
ε (Uε − uε)

∣∣ ≤ εN−1
∣∣∣u(3)

ε

∣∣∣ + N−1
∣∣∣u(2)

ε

∣∣∣ ≤ C
N−1

ε2
≤ CN−1(lnN)2,

and

∣∣(D+ −D−
)
(Uε − uε)

∣∣ =
∣∣− (

D+ −D−
)
(uε) + [u′ε]

∣∣ ≤ C
N−1

ε2
≤ CN−1(lnN)2.

Use the barrier function

Ψ1 = −CN−1(lnN)2
{

(1− d)xi, xi ∈ ΩN
ε ∩ (0, d),

d(1− xi), xi ∈ ΩN
ε ∩ (d, 1),

to get the nodal error estimate

|(Uε − uε)(xi)| ≤ CN−1(lnN)2, xi ∈ Ω̄N
ε .

Follow the arguments in [3, Section 3.4], applied separately on the intervals [0, d] and [d, 1] to
extend this to the global error bound∥∥Ūε − uε

∥∥
Ω
≤ CN−1(lnN)2.

5. NUMERICAL EXAMPLE

Consider the particular problem
εu′′ε + a(x)u′ε = f, (5.1a)

with the boundary conditions
uε(0) = 0, uε(1) = 1, (5.1b)

where

a(x) =
{ −1, 0 ≤ x ≤ 0.4,

1, 0.4 < x ≤ 1,
(5.1c)

and

f(x) =


−4x, 0 ≤ x ≤ 0.25,

−1, 0.25 < x ≤ 0.4,

1, 0.4 < x ≤ 0.5,

2− 2x, 0.5 < x ≤ 1.

(5.1d)

This problem is solved numerically using (PN
ε ) and the fitted meshes ΩN

ε defined in (3.3). Plots
of the numerical solutions with N = 32 are shown for some values of ε in Figures 1–3, together
with plots of the approximate global error in each case. The global error is approximated by the
maximum pointwise difference between the numerical solution on the mesh Ω32

ε and that on the
mesh Ω4096

ε . That is,

EN
ε,nodal = max

xi∈ΩN
ε

∣∣UN
ε − Ū4096

ε

∣∣ ,

EN
ε,global = max

xi∈Ω4096
ε

∣∣ŪN
ε − U4096

ε

∣∣ .
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(a). U32
1 (- -), U4096

1 (—).

(b). E32
ε=1,global.

Figure 1. Plots of the numerical solution UN
ε , the continuous solution uε, and ap-

proximate global error EN
ε,global, respectively, for ε = 1 and N = 32.
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(a). U32
0.01 (- -), U4096

0.01 (—).

(b). E32
ε=0.01,global.

Figure 2. Plots of the numerical solution UN
ε , the continuous solution uε, and ap-

proximate global error EN
ε,global, respectively, for ε = 0.01 and N = 32.
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(a). U32
0.0001 (- -), U4096

0.0001 (—).

(b). E32
ε=0.0001,global.

Figure 3. Plots of the numerical solution UN
ε , the continuous solution uε, and ap-

proximate global error EN
ε,global, respectively, for ε = 0.0001 and N = 32.
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Table 1. Maximum pointwise errors EN
ε,nodal for the fitted mesh method (PN

ε ) applied

to problem (5.1).

ε
Number of Intervals N

8 16 32 64

1 2.0830E− 3 9.1112E− 4 4.6146E− 4 2.3036E− 4

2−1 6.6563E− 3 3.2670E− 3 1.6896E− 3 8.4847E− 4

2−2 1.8844E− 2 1.0269E− 2 5.4071E− 3 2.7673E− 3

2−3 4.4488E− 2 2.4705E− 2 1.3442E− 2 7.0005E− 3

2−4 9.0864E− 2 4.4888E− 2 2.2601E− 2 1.2381E− 2

2−5 1.1643E− 1 6.4920E− 2 3.3428E− 2 1.6773E− 2

2−6 1.2614E− 1 7.3339E− 2 3.9266E− 2 2.0446E− 2

2−7 1.3146E− 1 7.9200E− 2 4.3956E− 2 2.2509E− 2

2−8 1.3425E− 1 8.2509E− 2 4.5454E− 2 2.3662E− 2

2−9 1.3566E− 1 8.4256E− 2 4.6360E− 2 2.4324E− 2

2−10 1.3638E− 1 8.5151E− 2 4.6846E− 2 2.4706E− 2

2−11 1.3673E− 1 8.5600E− 2 4.7095E− 2 2.4907E− 2

2−12 1.3690E− 1 8.5822E− 2 4.7217E− 2 2.5007E− 2

2−13 1.3699E− 1 8.5930E− 2 4.7276E− 2 2.5055E− 2

2−14 1.3703E− 1 8.5982E− 2 4.7304E− 2 2.5077E− 2

2−15 1.3705E− 1 8.6008E− 2 4.7317E− 2 2.5088E− 2

2−16 1.3706E− 1 8.6020E− 2 4.7323E− 2 2.5093E− 2

2−17 1.3706E− 1 8.6026E− 2 4.7326E− 2 2.5096E− 2

2−18 1.3706E− 1 8.6029E− 2 4.7328E− 2 2.5097E− 2

2−19 1.3707E− 1 8.6031E− 2 4.7328E− 2 2.5097E− 2

ε
Number of Intervals N

128 256 512 1024

1 1.1368E− 4 5.5073E− 5 2.5717E− 5 1.1025E− 5

2−1 4.2062E− 4 2.0419E− 4 9.5446E− 5 4.0939E− 5

2−2 1.3807E− 3 6.7310E− 4 3.1532E− 4 1.3539E− 4

2−3 3.5356E− 3 1.7335E− 3 8.1452E− 4 3.5028E− 4

2−4 6.9735E− 3 3.4659E− 3 1.6398E− 3 7.0767E− 4

2−5 8.4353E− 3 4.1872E− 3 1.9965E− 3 9.0290E− 4

2−6 1.0330E− 2 5.1919E− 3 2.5176E− 3 1.1176E− 3

2−7 1.1399E− 2 5.7018E− 3 2.7529E− 3 1.2171E− 3

2−8 1.2081E− 2 6.0461E− 3 2.9070E− 3 1.2804E− 3

2−9 1.2564E− 2 6.2754E− 3 3.0189E− 3 1.3265E− 3

2−10 1.2797E− 2 6.4256E− 3 3.0958E− 3 1.3623E− 3

2−11 1.2899E− 2 6.4984E− 3 3.1456E− 3 1.3879E− 3

2−12 1.2952E− 2 6.5381E− 3 3.1740E− 3 1.4044E− 3

2−13 1.2976E− 2 6.5570E− 3 3.1840E− 3 1.4112E− 3

2−14 1.2987E− 2 6.5654E− 3 3.1883E− 3 1.4142E− 3

2−15 1.2992E− 2 6.5691E− 3 3.1901E− 3 1.4155E− 3

2−16 1.2995E− 2 6.5709E− 3 3.1909E− 3 1.4161E− 3

2−17 1.2996E− 2 6.5717E− 3 3.1912E− 3 1.4163E− 3

2−18 1.2996E− 2 6.5721E− 3 3.1913E− 3 1.4164E− 3

2−19 1.2997E− 2 6.5722E− 3 3.1914E− 3 1.4165E− 3
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Table 2. Maximum global errors EN
ε,global for the fitted mesh method (PN

ε ) applied

to problem (5.1).

ε
Number of Intervals N

8 16 32 64

1 3.2571E− 3 1.2069E− 3 5.3242E− 4 2.4720E− 4

2−1 8.4268E− 3 3.7600E− 3 1.8106E− 3 8.7879E− 4

2−2 2.2307E− 2 1.0993E− 2 5.6245E− 3 2.8177E− 3

2−3 4.9157E− 2 2.5897E− 2 1.3871E− 2 7.1129E− 3

2−4 9.6434E− 2 4.5796E− 2 2.3243E− 2 1.2713E− 2

2−5 1.2788E− 1 6.7233E− 2 3.3905E− 2 1.7014E− 2

2−6 1.4223E− 1 7.8174E− 2 3.9632E− 2 2.0653E− 2

2−7 1.5065E− 1 8.6360E− 2 4.5356E− 2 2.2721E− 2

2−8 1.5534E− 1 9.1431E− 2 4.8127E− 2 2.3867E− 2

2−9 1.5786E− 1 9.4357E− 2 4.9993E− 2 2.4516E− 2

2−10 1.5921E− 1 9.5983E− 2 5.1134E− 2 2.5206E− 2

2−11 1.5991E− 1 9.6867E− 2 5.1793E− 2 2.5739E− 2

2−12 1.6027E− 1 9.7340E− 2 5.2161E− 2 2.6047E− 2

2−13 1.6045E− 1 9.7582E− 2 5.2357E− 2 2.6214E− 2

2−14 1.6055E− 1 9.7701E− 2 5.2454E− 2 2.6296E− 2

2−15 1.6060E− 1 9.7759E− 2 5.2502E− 2 2.6336E− 2

2−16 1.6063E− 1 9.7789E− 2 5.2525E− 2 2.6357E− 2

2−17 1.6064E− 1 9.7803E− 2 5.2537E− 2 2.6367E− 2

2−18 1.6065E− 1 9.7810E− 2 5.2543E− 2 2.6371E− 2

2−19 1.6065E− 1 9.7814E− 2 5.2546E− 2 2.6374E− 2

ε
Number of Intervals N

128 256 512 1024

1 1.1784E− 4 5.6104E− 5 2.5974E− 5 1.1089E− 5

2−1 4.2819E− 4 2.0608E− 4 9.5919E− 5 4.1057E− 5

2−2 1.3942E− 3 6.7656E− 4 3.1618E− 4 1.3561E− 4

2−3 3.5652E− 3 1.7414E− 3 8.1649E− 4 3.5077E− 4

2−4 7.1137E− 3 3.5022E− 3 1.6491E− 3 7.1004E− 4

2−5 8.5349E− 3 4.2235E− 3 2.0087E− 3 9.0698E− 4

2−6 1.0428E− 2 5.2275E− 3 2.5301E− 3 1.1219E− 3

2−7 1.1486E− 2 5.7369E− 3 2.7651E− 3 1.2210E− 3

2−8 1.2172E− 2 6.0800E− 3 2.9192E− 3 1.2846E− 3

2−9 1.2650E− 2 6.3089E− 3 3.0306E− 3 1.3303E− 3

2−10 1.2880E− 2 6.4578E− 3 3.1074E− 3 1.3661E− 3

2−11 1.2981E− 2 6.5300E− 3 3.1569E− 3 1.3919E− 3

2−12 1.3032E− 2 6.5699E− 3 3.1852E− 3 1.4084E− 3

2−13 1.3056E− 2 6.5890E− 3 1.1954E− 3 1.4151E− 3

2−14 1.3067E− 2 6.5975E− 3 3.1997E− 3 1.4181E− 3

2−15 1.3072E− 2 6.6014E− 3 3.2015E− 3 1.4194E− 3

2−16 1.3074E− 2 6.6031E− 3 3.2022E− 3 1.4199E− 3

2−17 1.3075E− 2 6.6039E− 3 3.2026E− 3 1.4201E− 3

2−18 1.3076E− 2 6.6043E− 3 3.2027E− 3 1.4202E− 3

2−19 1.3076E− 2 6.6045E− 3 3.2028E− 3 1.4203E− 3
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Table 3. Estimated rates of convergence pN,ε and uniform rates pN for the fitted

mesh method (PN
ε ) applied to problem (5.1).

ε
Number of Intervals N

8 16 32 64 128 256 512

1 1.4380E + 0 9.5859E− 1 9.8879E− 1 9.9336E− 1 9.9753E− 1 9.9857E− 1 9.9936E− 1

2−1 1.1158E + 0 9.1638E− 1 9.7415E− 1 9.8420E− 1 9.9303E− 1 9.9639E− 1 9.9822E− 1

2−2 8.8184E− 1 8.7523E− 1 9.3777E− 1 9.6732E− 1 9.8386E− 1 9.9174E− 1 9.9589E− 1

2−3 8.0470E− 1 8.0139E− 1 8.9924E− 1 9.4309E− 1 9.7142E− 1 9.8530E− 1 9.9261E− 4

2−4 1.0073E + 0 1.0999E + 0 9.5546E− 1 6.4678E− 1 9.4415E− 1 9.7067E− 1 9.8493E− 1

2−5 7.0615E− 1 9.0546E− 1 1.0150E + 0 9.8768E− 1 9.5767E− 1 9.9654E− 1 9.1094E− 1

2−6 6.5627E− 1 8.3667E− 1 9.1406E− 1 9.7763E− 1 9.4660E− 1 9.3585E− 1 9.3153E− 1

2−7 6.1219E− 1 6.8873E− 1 9.6181E− 1 9.6881E− 1 9.5512E− 1 9.4255E− 1 9.4355E− 1

2−8 5.3404E− 1 7.3523E− 1 9.2699E− 1 9.4397E− 1 9.4950E− 1 9.4948E− 1 9.4926E− 1

2−9 4.9653E− 1 7.5232E− 1 9.1958E− 1 9.0917E− 1 9.5462E− 1 9.4459E− 1 9.5198E− 1

2−10 4.7817E− 1 7.6158E− 1 9.0748E− 1 9.0955E− 1 9.3975E− 1 9.4167E− 1 9.4829E− 1

2−11 4.6909E− 1 7.6643E− 1 8.9819E− 1 9.1538E− 1 9.3555E− 1 9.3172E− 1 9.4272E− 1

2−12 4.6457E− 1 7.6892E− 1 8.9369E− 1 9.1855E− 1 9.3314E− 1 9.2673E− 1 9.3798E− 1

2−13 4.6232E− 1 7.7018E− 1 8.9148E− 1 9.2022E− 1 9.3037E− 1 9.2784E− 1 9.3558E− 1

2−14 4.6120E− 1 7.7082E− 1 8.9039E− 1 9.2108E− 1 9.2907E− 1 9.2859E− 1 9.3484E− 1

2−15 4.6064E− 1 7.7114E− 1 8.8985E− 1 9.2152E− 1 9.2844E− 1 9.2902E− 1 9.3402E− 1

2−16 4.6035E− 1 7.7130E− 1 8.8958E− 1 9.2174E− 1 9.2813E− 1 9.2926E− 1 9.3365E− 1

2−17 4.6021E− 1 7.7138E− 1 8.8944E− 1 9.2185E− 1 9.2798E− 1 9.2938E− 1 9.3349E− 1

2−18 4.6014E− 1 7.7142E− 1 8.8937E− 1 9.2190E− 1 9.2790E− 1 9.2945E− 1 9.3341E− 1

2−19 4.6011E− 1 7.7144E− 1 8.8934E− 1 9.2193E− 1 9.2787E− 1 9.2948E− 1 9.3337E− 1

pN 4.6011E− 1 7.7144E− 1 8.8934E− 1 9.2193E− 1 9.2787E− 1 9.2948E− 1 9.3337E− 1

(a). Ũ32
0.01 (- -), Ũ4096

0.01 (—).

Figure 4. Plots of the numerical solution ŨN
ε , computed on a uniform mesh, and the

continuous solution uε, for ε = 0.01 and ε = 0.0001, respectively, with N = 32.
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(b). Ũ32
0.0001 (- -), Ũ4096

0.0001 (—).

Figure 4. (cont.)

The evident waves in these plots depict the increase in the error between mesh points of the
mesh Ω32

ε .
The differences between the numerical solutions for various values of N and the numerical

solution for N = 4096, which are indicative of the nodal errors, are presented in Table 1.
Orders of convergence of the numerical solutions, estimated from the ratios of the two mesh

differences, as in [3] are presented in Table 3. They bear out the theoretical results given above
in Theorem 7.

Figure 4 shows the numerical solutions ŨN
ε obtained using standard upwinding LN

ε on a uniform
mesh

ΩN
unif =

{
xi : xi =

i

N
, 1 ≤ i ≤ N − 1

}
, (5.2)

with N + 32, for ε = 0.01 and ε = 0.0001.
The differences between the numerical solutions obtained using standard upwinding on uniform

meshes ΩN
unif, for various values of N , and the numerical solution on the piecewise uniform

mesh Ω4096
ε , which are again indicative of the nodal errors for these meshes, are presented in

Table 4.
Observe in Table 4 that in the region where εN ≤ 0.25, the maximum pointwise errors actually

increase as the mesh is refined. This indicates that the method is not ε-uniform. This undesirable
behaviour should be contrasted with the corresponding entries in Table 1. In Table 1, the
maximum pointwise errors decrease as the mesh is refined irrespective of size of ε. Note also that
the maximum pointwise errors are being measured at different mesh points in Tables 1 and 4. In
Table 1, half of the mesh points in the fitted mesh method are always located within the layer
region. In Table 4, for εN ≤ 0.25, the mesh points on the uniform mesh are located only in the
smooth regions outside the interior layers.
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Table 4. Maximum pointwise errors EN
ε,nodal for standard upwinding on uniform

meshes applied to problem (5.1).

ε
Number of Intervals N

8 16 32 64

1 4.3407E− 3 1.5301E− 3 6.5766E− 4 3.0250E− 4

2−1 1.0721E− 2 4.5160E− 3 2.1639E− 3 1.0490E− 3

2−2 2.5803E− 2 1.2606E− 2 6.4248E− 3 3.2271E− 3

2−3 5.2045E− 2 2.7637E− 2 1.4466E− 2 7.3961E− 3

2−4 7.7957E− 2 4.2938E− 2 2.2837E− 2 1.1742E− 2

2−5 9.8480E− 2 5.7780E− 2 3.2267E− 2 1.7115E− 2

2−6 9.9740E− 2 6.8632E− 2 4.6194E− 2 2.6167E− 2

2−7 9.5653E− 2 6.2928E− 2 5.3016E− 2 4.0122E− 2

2−8 9.2892E− 2 5.4902E− 2 4.4089E− 2 4.4923E− 2

2−9 9.1354E− 2 5.0066E− 2 3.4245E− 2 3.4470E− 2

2−10 9.0544E− 2 4.7456E− 2 2.8489E− 2 2.3805E− 2

2−11 9.0129E− 2 4.6099E− 2 2.5417E− 2 1.7642E− 2

2−12 8.9919E− 2 4.5408E− 2 2.3830E− 2 1.4368E− 2

2−13 8.9813E− 2 4.5059E− 2 2.3023E− 2 1.2680E− 2

2−14 8.9760E− 2 4.4883E− 2 2.2616E− 2 1.1823E− 2

2−15 8.9734E− 2 4.4795E− 2 2.2412E− 2 1.1391E− 2

2−16 8.9720E− 2 4.4751E− 2 2.2310E− 2 1.1174E− 2

2−17 8.9714E− 2 4.4729E− 2 2.2258E− 2 1.1066E− 2

2−18 8.9710E− 2 4.4718E− 2 2.2233E− 2 1.1012E− 2

2−19 8.9709E− 2 4.4713E− 2 2.2220E− 2 1.0984E− 2

ε
Number of Intervals N

128 256 512 1024

1 1.4348E− 4 6.8456E− 5 3.2035E− 5 1.4099E− 5

2−1 5.1088E− 4 2.4699E− 4 1.1629E− 4 5.1274E− 5

2−2 1.6020E− 3 7.8165E− 4 3.6933E− 4 1.6267E− 4

2−3 3.7052E− 3 1.8139E− 3 8.5614E− 4 3.7453E− 4

2−4 5.8812E− 3 2.8633E− 3 1.3300E− 3 5.5965E− 4

2−5 8.8194E− 3 4.3420E− 3 2.0142E− 3 8.2851E− 4

2−6 1.4354E− 2 7.3913E− 3 3.6086E− 3 1.6318E− 3

2−7 2.2925E− 2 1.2889E− 2 6.6230E− 3 3.2170E− 3

2−8 3.6981E− 2 2.1245E− 2 1.2133E− 2 6.2558E− 3

2−9 4.0794E− 2 3.5382E− 2 2.0387E− 2 1.1747E− 2

2−10 2.9607E− 2 3.8705E− 2 3.4572E− 2 1.9951E− 2

2−11 1.8556E− 2 2.7158E− 2 3.7651E− 2 3.4162E− 2

2−12 1.2204E− 2 1.5921E− 2 2.5926E− 2 3.7119E− 2

2−13 8.8360E− 3 9.4809E− 3 1.4594E− 2 2.5306E− 2

2−14 7.1016E− 3 6.0681E− 3 8.1165E− 3 1.3903E− 2

2−15 6.2213E− 3 4.3113E− 3 4.6836E− 3 7.4245E− 3

2−16 5.7778E− 3 3.4199E− 3 2.9160E− 3 3.9894E− 3

2−17 5.5553E− 3 2.9709E− 3 2.0191E− 3 2.2173E− 3

2−18 5.4438E− 3 2.7455E− 3 1.5673E− 3 1.3182E− 3

2−19 5.3879E− 3 2.6326E− 3 1.3406E− 3 8.6534E− 4
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6. CONCLUSION

A singularly perturbed convection-diffusion problem, with a discontinuous convection coeffi-
cient and a singular perturbation parameter ε, was examined. Due to the discontinuity an interior
layer appears in the solution. A finite difference method was constructed for solving this problem,
which generates ε-uniformly convergent numerical approximations to the solution. The method
uses a piecewise uniform mesh, which is fitted to the interior layers, and the standard upwind
finite difference operator on this mesh. The main theoretical result is the ε-uniform convergence
in the global maximum norm of the approximations generated by this finite difference method.
Numerical results were presented, which are in agreement with the theoretical results.
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