
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

Golden Ratio Versus Pi as Random Sequence Sources for Monte Carlo

Integration

S.K. Sen, Ravi P. Agarwala, and Gholam Au Shaykhian"

aDepartment of Mathematical Sciences, Florida Institute of Technology, 150 West University

Boulevard, Melbourne, FL 32901-69 75, United States

bNational Aeronautics and Space Administration (NASA), Engineering Directorate, NE-Cl, Kennedy

Space Center, FL 32899, United States

Abstract

The algebraic irrational number golden ratio 	 = (1 + 'J) /2= one of the two roots of the algebraic

equation x 2 - x —1 = 0 and the transcendental number ir = 2 sin' (1) = the ratio of the

circumference and the diameter of any circle both have infinite number of digits with no apparent
pattern. We discuss here the relative merits of these numbers as possible random sequence sources.
The quality of these sequences is not judged directly based on the outcome of all known tests for the
randomness of a sequence. Instead, it is determined implicitly by the accuracy of the Monte Carlo
integration in a statistical sense. Since our main motive of using a random sequence is to solve real
world problems, it is more desirable if we compare the quality of the sequences based on their
performances for these problems in terms of quality/accuracy of the output. We also compare these
sources against those generated by a popular pseudo-random generator, viz., the Matlab rand and the
quasi-random generator ha/ton both in terms of error and time complexity. Our study demonstrates
that consecutive blocks of digits of each of these numbers produce a good random sequence source.
It is observed that randomly chosen blocks of digits do not have any remarkable advantage over
consecutive blocks for the accuracy of the Monte Carlo integration. Also, it reveals that r is a better
source of a random sequence than ç when the accuracy of the integration is concerned.

1. Introduction

The distribution of digits in an irrational number' - both algebraic and transcendental - has not
been extensively explored. Only to a limited extent this has been discussed in [1]. So far as a rational
number is concerned, it could have either infinite number of digits in the conventional decimal
number system or it could have a finite number of digits in a number system (not necessarily
decimal). Whenever a rational number has infinite number of digits, these digits are necessarily
recursive in some form(s). Hence the distribution of its digits is usually known/can be determined or
even predicted. Our conjecture is that digits of a rational number cannot be uniformly randomly
distributed. Much effort is not required to prove/disprove this conjecture. However, our
inquisitiveness is with respect to the distribution of digits in an irrational number in which the
knowledge of the current and previous digits does not help to predict the next digit.

*Corresponding author: Tel.:+1 321 674 7714; fax: +1 321 674 7412
• E-mail addresses: sksen(fit.edu (S.K. Sen), aqarwaI(äfit.edu (Ravi P. Agarwal), ali.shaykhian(2inasa.gov

(Gholam All Shaykhian)

'An irrational number is one which cannot be expressed as the ratio of two integers. This implies that an irrational
number will have infinite number of digits for its exact representation.

To start with we have chosen one popular irrational number, viz., golden ratio from among the
algebraic numbers 2 and one extremely used more popular irrational number, viz., r from among the
transcendental numbers 3 . We have studied the distribution of the digits of [1] as well as those of

r, which are then employed as a random sequence source (RSS) to compute the values of Monte
Carlo integrals. The question "Which is better - or r - in uniformity in distribution of its

digits as well as in computing an integral?" is attempted for an answer. In fact, similar exploration
could be carried out for other well-known/famous irrational numbers or even ordinary irrational
numbers. Some of the ordinary irrational numbers could possibly turn out to be
remarkable/outstanding in terms of uniformity of their digits or randomness of their digits. Some of

the other famous irrational numbers are the Hilbert number2' 	 2.66514414269023, the Euler-

Mascheroni constant y = iim(--- in n) 0.57721566490153, and	 the numbers

i 1 =e 2 0.207879576350762, ite 22.459l57718361l (believed (not proved) to be a
transcendental number) and e 't 23.1406926327793. Such an exploration will help one to decide
which irrational number should be used as an RSS not only for Monte Carlo integration but also for
randomized/evolutionary algorithms such as ant system approaches, genetic algorithms, and
simulated annealing. Some randomized algorithms perform better with a quasi-random sequence
while others perform better with a pseudo-random sequence [2-36]. It may be noted that quasi-
random sequences are more uniformly distributed (with less discrepancy) than pseudo-random
sequences. One important advantage of using an irrational number for an RSS is that it obviates the
need of employing a random number generator. We would need, for a reasonable real world
problem, a generation of truly large random sequence a sequence of billions or possibly trillions
of random numbers - to solve multidimensional problems. Here the extra time of generation of
random numbers are eliminated since we can simply pick out blocks of digits consecutively from an
irrational number. However, such an extra time appears near about the same as that required for
retrieval of numbers. An efficient storage and retrieval system possibly could improve the time
complexity and could even prove better than instant generation of random numbers. It may be
pointed out that not all irrational numbers are having digits randomly occurring. For instance, the
Liouville number 0.1100010000000000000000010000 which has a 1 in the 1 st, 2nd 6th, 24th 120th

etc. places and Os elsewhere, is an irrational number where 0's and l's are not random. These are
exactly predictable.

In section 2, we describe simple Monte Carlo procedures for numerical integrations by
appropriately slicing the n-dimensional domain after mapping it onto a standard domain. Since our
main purpose of using a random sequence is to solve a real world problem, it is more desirable if we
compare the popular random number generators along with the concerned irrational numbers based
on their performances in terms of quality (error bounds) and cost (computationalltime complexity) of
the solutions that they produce. In section 3, we present the numerical results considering typical
single integrals. Section 4 comprises conclusions.

2 An algebraic number is a root of any rational polynomial.

Transcendental number is a number that is not the root of any polynomial (of finite degree) whose coefficients are
rational (or integer) numbers. That is, it is not the root of any integer polynomial implying that it is not an algebraic
number of any degree. Every real transcendental number must be irrational since a rational number is, by definition, an

algebraic number of degree I. Some of the proven transcendental numbers are in 2, e, ir, 2', sin(l), ['(1 / 3), and

elt.

V M

2. Monte Carlo Integration

A Monte Carlo (MC) procedure is a method based on using uniformly distributed random numbers
(RNs). This procedure is sometimes preferred over a numerical quadrature when the integrand is
violently fluctuating or involves long trigonometric/special functions. We have chosen here the
Monte Carlo integration for the purpose of comparing it and as RSS's. Also, compared are it

and q against the popular pseudo-random generator Matlab rand and quasi-random generator

halton.
Let the single integral be

1= Jf(x)o=Jf(x),	 (1)

where the function f(x) is continuous, non-negative, and single real-valued in the interval [a, b].
The MC procedure is as follows.

a	 b

Figure 1 MC integration of f(x) in [a, bJ determines the area under the curve y = f(x) from

x=a to x=b.

S.1 Choose M ^ largest value of f(x) in the interval [a, b]. Initialize hit = 0 and N = 5000 (say).

S. 2 Generate/choose a pair of random numbers (x, y) such that x E [a, bJ and y E [0, M]. If
f(x) ^ y then it is a hit and hence update hit = hit ^1.

S. 3. Continue S. 2 N times. The integration value is then I = !--(b - a)M.

This MC procedure can be generalized for the integrand f(x) which has both negative as well as

positive values in the interval [a,b] by introducing the minimum value R off(x), replacing

y E [0, M] by y e [R, M], and appropriately determining hit with proper signs. An alternative way

is to divide the integration into or more parts such that in each part the function f(x) is either

wholly nonnegative or wholly negative. WE then apply for each part the procedure similar to the
foregoing MC procedure.

However, we prefer to use MC method on an integral with fixed limits of integration, say, 0 and 1
since the summation-based MC method (presented later) remains invariant. Any integral with limits
of integration [a, b] can be mapped onto the integral with limits of integration [0,1] where the new

integrand is a linear transformation of the original integrand. For example, the integral

I = ff(x)dx= JF(t)dt.

where the new integrand F(t) = pf(pt + q), p = b - a, q = a, dr = pdt. These values are derived
from the linear transformation x = pt + q. When x = a, t =0 = q = a. When
x=b,t=1=p=b—a.Ifa=0,b=x,then

1= Jf(x)dx = Jf(x)dx + Jf(x)d,

where r is a finite positive real number. The interval [0, r] can be changed, as before, to [0,11. For
the interval [r, co], use the nonlinear transformation x = 1 /(pt + q). The interval [—co, co] can be
similarly changed (mapped) to finite intervals [37].

Without any loss of generality, we now consider the single, double, and triple integrals

I = Jf(x)dx, 12 = JJJ(x, y)dydx, 13 = JJJf(x, y, z)dzdydx.

The unbiased MC estimate of the values of I, '2' 13 are

í i =-fx), 12	
1

13
r i=I	 =	 i=1 j=I	 r	 j=I k=I

where each of x 1 , y,, Zk is chosen uniformly randomly in the interval [0,1]. The constant r = N in

the expression of I is the number of random numbers used to compute I. The constant r 2 = N in

the expression of '2 is the number of random numbers used to compute '2 while the constant

r 3 = N in the expression of 1 3 is the number of random numbers used to compute 1 3 .The

generalization to an n -dimensional integral is straight-forward. TheMC estimate tends to the true
value of the integral as N •-+ co. We, however, restrict ourselves to single integrals for the purpose
of comparison between r and q. The MC multiple integration will be discussed in a future work.

Let the function f(x) be square integrable4 . From the central limit theorem, the standard error

tends to l//, the variance of the MC estimate I is S =
	

,and an estimate

of the error in 1 is E	 / N. However, a general numerical way of the relative error estimation

[38] is to compute I with N = 5000 uniformly distributed RNs (pseudo-RNs or preferably quasi-

RNs) assuming sufficiently large precision RNs. Call the resulting integration value as the quantity
of lower order accuracy Q' . Once again compute I with N = 50000 uniformly distributed RNs.
Call the resulting integration value as the quantity of higher order accuracy Q . The relative error is

4 A function is square integrable if fi f(x) j 2d is finite.

then (Q - Q')/ Q. If the precision (length) of the RNs is not sufficiently large then even with higher

number of RNs, accuracy may not improve. It may sometimes even become worse due to clustering.

Dividing the interval/domain of integration For the sake of obtaining desirable accuracy in the
integration value, it is, in general, necessary to keep a provision of writing the given integral into a
series of integrals by appropriately slicing/dividing the intervalldomain into a number of
subintervals/subdomains. Integrate the function in each subdomain and add the resulting integration
values. The subdomains may or may not be equal. We, however, have considered them equal
irrespective of whether the function (integrand) is ill-posed or not in a subdomain. For a real-world
problem, such a programming simplification, in a Matlab environment or for that matter in most
other programming environment, does not have a significant negative effect on the computational
complexity or on accuracy. Since the sensitivity of the integrand could vary from one subdomain to
another, accuracy of computation will also vary from one subdomain to another. When we add up
the resulting integration values with unequal accuracies, the final integration value will be less
accurate than the least accurate integration value. However, when one works with a precision of 15
digits with appropriate equal subdomains, the relative error propagation is most unlikely to hit the
fifth digit in the final integration value. It may be noted that a real world engineering implementation
cannot be usually more accurate than four significant digits. This is because no measuring device
can measure, in general, a quantity with more than 0.005% accuracy [38]. We can write, allowing
a=a1 and /3=a, p, =a1 –a1_ 1 ,q, =a,_1 , a. >a,_1 , i=2(1)n-1, (i.e., i=2,3,4,.",n-1,)

'	
= Jf(p1 t ^ q1)pdt

Iff(x)=xsin(1/x), a=a1 and fi=a, p. =a1 –a, 1 ,q =a 1 , a, >a1_1 , i=2(1)n–1, then

I = Jxsin(l/x)dv=J(a –a11)[(a –a1)t+a1]	
1

sin()dt.
a	 i=2	 (a, –a1_1)t^a1_1

Iff(x)
=	 a = a1 = 0 and /3 = a = c, then, using the transformation x = 1/(pt + q) [37], we

have

Sint	 1	 1	
lue). = [+	 sin(—)jdt = - (exact va

l–t	 1-1	 2 0

Considering the second integral, we have a = 0, /3 = 1 if we desire to change the interval of

integration [0,co) to [0,1]. However, we can instead choose as 20000 (say) for sufficient

numerical accuracy for real world implementation and write

20000.	 I

f [dx = 20000 Jsin(20000t)dt
20000t	 2 ox	 o	 0

It may be observed that as t - 0, sin(20000t) /(20000t) - 1 (in the limit). Or, in other words, if we

choose t = 100, we automatically get, in Matlab, sin(20000t) /(20000t) as 0.999999999999333

which is correct up to 12 decimal digits (sufficiently accurate for a real world application). Thus we
may replace the lower limit of integration, viz., 0 by 10_ b whenever a division by zero could occur.
We may also vary the decimal number 20000 and observe the change (if any) in the value of
integration up to, say, seven digits.

3. Numerical Experiments

We have considered several typical single test integrals having variable sensitivity over the interval
of integration. Also, we have considered an integral whose solution is not known. Our focus is to
compare r and q' to determine which one is a better source of a random sequence although we have

brought in the pseudo-random generator, viz, the widely used Matlab rand generator and the quasi-
random generator, viz., the halton generator [2, 3, 11]. The quasi-random generators for Monte Carlo
integration are expected to perform better since these produce more uniformly distributed (with less
discrepancy) random sequences than those produced by pseudo-random generators. Our numerical
experiments also depict this fact.

Let the general form of our single integral be as given in the equation (1). We have used the
following notations in Table 1 that depicts Monte Carlo integration values for the following single
integrals Ij and '2 along with relative error in each of rand, halton, pi, and phi: RSS = random
sequence source/generator, n = number of subintervals for the interval (/3 — a), N = 5000 =

number of random numbers used in each subinterval, True value = True/exact value of the integral.
The single integrals along with their true/exact values, that we have considered are

(i)11 =Jx2dx=.,

sinx 1	 1 10000 r	 sinx
(ii) 12 = J-dx = j [— + sin(—)]dx = —	

J
—ax,

0	
X	

0	
X	 l–x 1–x 10_b	 X

10000

(iii) I = S(slnx 2 —) dx=— j•
()2 tL_l5707963267949

x	 2 10_b	 X

(iv) 14_ f 	 J[_ 2 +	 12]d-1.5707963267949,
01+x	

0
l+x	 (1–x) +1	 2

(v) I = fxsin--dx	 fxsin ! dx 0.3785283345

(the value 0.3785283345 of the integral 15 is computed dividing the interval [100, 1] into one

million equal subintervals since the exact/true value of 15 is not known.),

	

10000	 -

(vi) '6 =
	 2Jcosixif038936l48l 2 j cosix

,x 2 +4	 0x2+4	 2e6	 x+4
10000

(vii)J
= jxsinx = 2 çXS1flX =	

1.155734979 2 ç xsmx
e	 1+x2

0

(viii)18 = fIn xdx = [xlnx — x] 1 –[xlnx — x] 101 , – .999999997597415,

lit / 2, 0 < w < 1
- Jcos 01X Sin X =	

/ , to (ix) g(w)	

[o, w> 1

We take to = 0.5, 1, 2 for the comparison. Our 19 = g(0.5),	 = g(1), I = g(2). Also as in the

earlier integrals, we choose the limits of integration as [10_to, 100001 for the actual limits [0, cx].

Tables 1 and 2 provide us the MC integration (MCI) value of each of the integrals when pseudo-
random generator Matlab rand, quasi-random generator halton, RSS's pi (it) and golden ratio (92)

are used. Wherever the limit of integration zero causes division by zero in a numerical computation,
zero(0) is taken as 10b0, otherwise zero is kept as such. For the limit of integration x, we have
taken 10000. This is expected to provide four significant digit accuracy which is, in general,
acceptable in most applications. It may be noted in this connection that a measuring device cannot
measure usually an accuracy greater than 0.005% [38]. However, for an intermediate integration
value used for further computation, we should compute the value with higher accuracy/precision so
that the final output to be used in real world implementation has a 0.005% accuracy.

Table 1 Monte Carlo integration (MCI) along with time complexity using random generators rand

and ha lion, random sequence sources pi and phi for the integrals I Jx 2 dx =! and

10000

12 J-dx 1.5707963267949

	

10_b	 X

Integral	 with	 True
Value _________

RSS n

MCI value

Relative Error

Time(sec)

I =03333333333
rand 1000 0.3313420241 0.0059739277 0.421

_________ 10000 0.3331328144 0.0006015569 3.813 ____________________
________ 100000 0.3333133046 0.0000600861 135.948 ___________________
halton 1000 0.3313370970 0.0059887089 0.656 ___________________

________ 10000 0.3331333680 0.0005998961 3.891 __________________
________ 100000 0.3333133335 0.0000599996 132.504 __________________
pi 1000 0.3313377003 0.0059868991 0.438 _________________

10000 0.3331334104 0.0005997687 4.034 ___________________ ________
100000 0.3333133374 0.0000599877 152.418 ___________________

phi 1000 0.3313357881 0.0059926357 0.359

__________________ ________ 10000 0.3331332186 0.0006003443 3.970
________ 100000 0. L3133182 0.0000600453 143.128 _________________

'2
=1.5 707963268 rand 1000 1.6210367932 -0.0319840743 1.494

__________________ ________ 10000 1.5 737041052 -0.0018511492 14.089
___________________ ________ 100000 1.5 705198953 0.0001759818 235.874
__________________ ha/ton 1000 1.5 741008831 -0.0021037459 2.415

________ 10000 1.57083 75869 -0.000262670 14.147 _________________
100000 1.5708984346 -0.0000650039 239.821 __________________ ________

pi 1000 1.558832916 0.0075840738 1.483

________ 10000 1.5704023188 0.0002508333 14.440 ___________________
100000 1.5708585727 -0.0000396270 235.542 __________________ ________

phi 1000 1.5905901066 -0.0126011116 1.498 _________________
_________________ ________ 10000 1.5 723190078 -0.0009693688 14.119
__________________ ________ 100000 1.57105053 71 -0.0001618353 244.999

To conserve space we include in Table 2 Monte Carlo integration values for the following single
integrals 13, 14, 15, '6, Ii, '8, g(0.5), g(1), and g(2) along with relative error in each of rand, halton, pi,

and phi for the number of subintervals n = 10000 only.

Table 2 Monte Carlo integration (MCI) along with time complexity using random generators rand
10000.

g SIILX 2 and Ha/ton, random sequence sources pi and phi for the integrals 13 = J (-) dx -,

	

x	 2

	

10000	 I	 10000

	

I = J	 1 = J xsin--dx0.3785283345, = j cos3xdx_

	

0 l+x 2	 2	 I0lO	 x	 6	
x2 +4	 4e6

	

10000	 .

	

17 - $	 dx	 I = j1nxdx -1, 19 = g(0.5), 11 0 = g(1), I,, = g(2)
1 + x 2 	 2e 0

Integral	 with	 True
Value ________

RSS n MCI value Relative Error Time(sec)

13 =1.5 707963267949 rand

10000

1.5659602830

0.003078 7211

13.704

___________________ ha/ton 10000 1.5709818944 -0.0001181360 14.141
____________________ pi 10000 1.5703525786 0.0002824989 13.954
____________________ phi 10000 1.5722664771 -0.0009359268 13.8 75
14=1.5707963267949 rand 10000 1.5763960089 -0.0035648684 4.797
__________________ ha/ton 10000 1.5707451016 0.0000326110 4.719
___________________ pi 10000 1.5701990990 0.0003802070 4.828
___________________ phi 10000 1.5 721051426 -0.0008332180 4.562
15 =0.3 785283345 rand 10000 0.3 783614909 0.0004407690 1 0.968
(true value is ha/ton 10000 0.3783617259 0.0004401483 11.0 78
unknown, it is found pi 10000 0.3 78361 7763 0.0004400152 1 0.845
with n1 mi/lion) phi 10000 0.3 783616031 0.0004404728 11.813
16=0.00389361481 rand 10000 0.0035024365 -0.7990667613 15.953
(sensitive) ha/ton 10000 0.0019306096 0.0083202139 15.935
__________________ pi 10000 0.001961 7511 -0.0076760232 15.888
___________________ phi 10000 0.0021763239 -0.117893 79 72 15.827
17= 0.577863674895461 rand 10000 0.5777126672 0.0002613207 14.046

ha/ton 10000 0.5778474094 0.0000281477 14.187 ___________________
pi 10000 0.5779883 744 -0.0002157940 13.812 ____________________
phi 10000 0.5 780012634 -0.0002380986 13.687 ___________________

'8= -0.999999997597415 rand 10000 -0.9999905104 0.0000094872 12.798
___________________ ha/ton 10000 -0.9999998752 0.0000001224 12.829
_________________ pi 10000 -0.9999996467 0.0000003509 12.782
__________________ phi 10000 -1 .0000019957 -0.0000019981 13.016
19 = 1.5 707963267949 rand 10000 1.5 725361655 -0.0011076157 21.954

ha/ton 10000 1.5 707490321 0.0000301087 21.938 ____________________
pi 10000 1.5704613149 0.0002132 752 22.0 78 ____________________
phi 10000 1.5 723761285 -0.001005 7330 21.734 ___________________

'Jo = 0.785398/63397448 rand 10000 0.7897715914 -0.0055684215 21.969
___________________ ha/ton 10000 0.7856054911 -0.0002639778 21.563
__________________ pi 10000 0.7850052219 0.0005003087 21.938
__________________ phi 10000 0.7869130037 -0.001928 7546 21.672
I,, =0 rand 10000 0.00023 71015 Inf (since true0) 22.625
____________________ ha/ton 10000 -0.0000065119	 . Inf 22.485
____________________ pi 10000 -0.0005259715 Inf 23.016
___________________ phi 10000 0.0013499859 Inf 22.563

We now extract the relative errors and represent these errors in Table 3 for all the eleven typical
integrals for the sake of ranking the pseudo-random Matlab generator rand, the random sequence
sources pi and phi, and the quasi-random generator ha/ton in a statistical sense.

Table 3 (an extraction of Tables 1 and 2) Ranking of pseudo-random generator rand, random
sequence sources phi and pi, and quasi-random generator halton in terms of relative error for the
integrals considered here.

Integral rand phi pi halton Best
rel.	 error rel.	 error rel. error rel.	 error

I 0.0006015569 0.0006003443 0.0005997687 0.0005998961 pi
12 -0.0018511492 -0.0009693688 0.0002508333 -0.000262670 pi
1 3 0.0030787211 -0.0009359268 0.0002824989 -0.0001181360 halton
1 4 -0.0035648684 -0.0008332180 0.0003802070 0.0000326110 halton
1 5 0.0004407690 0.0004404728 0.0004400152 0.0004401483 pi

I f, -0.7990667613 -0.1178937972 -0.0076760232 0.0083202139 pi
1 7 0.0002613207 -0.0002380986 -0.0002157940 0.0000281477 halton
I 0.0000094872 -0.000001998 0.0000003509 0.0000001224 halton
1 9 -0.0011076157 -0.0010057330 0.0002132752 0.0000301087 halton

110 -0.0055684215 -0.0019287546 0.0005003087 -0.0002639778 halton

Ill infinity infinity infinity infinity halton

Since the true value in integral I is zero (Table 2), the concerned relative error defined as [(true
value - computed value)/true value] will be evidently infinity as shown in both Tables 2 and 3.
However, in the absolute sense, the best result was produced by the halton random generator (see
Table 2).

From the foregoing result (Table 3), it is clear that the performance of pi as an RSS is consistently
always better than phi (the golden ratio) without any exception. The transcendental number pi

(sr) is even comparable to the quasi-random generator halton in terms of uniformity. A quasi-
random generator is known to produce more uniformly distributed random numbers (with less
discrepancy) than those produced by a pseudo-random generator such as the generator rand. As a
matter of fact, the digits of pi are more uniformly distributed than those of phi as depicted by the test

statistic 2, viz., the value of tsc (Table 4) and are nearly as uniform as those produced by halton.

When we consider larger number (more than 10000) of digits, the test statistic 2 (tsc) is expected to

be better (smaller) for r than that for ço. Of course, digits fewer than 7500 (say, 2500, 5000) may

not be sufficient to compare uniformity of digits of these two numbers q and r.

In the ranking for the purpose of uniform (at least) one dimensional scanning and producing good
accuracy, we have halton (rank 1), pi (rank 2), phi (rank 3), and rand (rank 4). It can be observed that
pi has performed significantly better than both phi and rand in all the foregoing typical examples; it
has even performed better than halton (and hence others) in about 40% of the problems considered
here.

Visualization of the integrands The integrands of some of the integrals considered here are
interesting and can be visualized so as to appreciate the numerical integration using the Monte Carlo
methods. We present the graph of these integrands along with the respective Matlab commands.

Integral '2: Visualization of the integrand of '2' viz.,j IL dx = = 1.5707963267949 is
o x	 2

achieved through the Matlab command >>fplot('sin(x)/x', [l0'-10, 100]) as in Fig. 2.

1-

).8

).2

0

sin x
Fig. 2 Graph of	 , Limits : [100,100]

x

Integral 14 Visualization of the integrand of 14 , viz., (a)	
1

2 dx =	 True value=
0 1+x	 2

1.5707963267949 is performed by the Matlab command >>fk1ot('1/(1+x'2)', [0,100]) as in Fig. 3.

0.9

0.8

0.7

0.8

0.5

0.4

1

Fig. 3 Graph of 1
2

Limits : [0,100]

1+x

Integral 14 Visualization of the integrand of 14 , viz., (b)
f

1	
=	 near origin is done using

0 1+x	 2

the command >>flot('1/(1+x'2)', [0,5]) as in Fig. 4.

0.5	 1	 1.5	 2	 2.5	 3	 3.5	 4	 4S

Fig. 4 Graph of 1
2

Limits : [0,5]

1+x

Integrand of 15 The graph of the integrand (a) xsin(!), Limits : [0,1] is produced by the command

>>f1ot('x*sin(1/x)', [0,1]) as in Fig. 5.

0.8

0.6

0.4

0.2

0

-0.2

-0.4
0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9

Fig. 5 Graph of xsin(1), Limits : [0,1]

Integrand of J The integrand (b) x sin(!), Limits : [0,0.1], when expanded near the origin using

the command>> f1ot(?x*sin(1/x)', [10'-10,.1]) outputs the graph as in Fig. 6.

0.01 0.02 0.03 0.04 0.05 0.06 007 0.08 0.09 0.1

D

Fig. 6 Graph of xsin(1), Limits [0,0.1]

Integrand ofI6 The integrand (a) cos 3x Limits : [—cxD,co]; (Integration value =	 Even

	

x+4	 2e
integrand; True numerical value= 0.00389361481414237) has the graphical representation as in
Fig. 7 produced by the command filot('cos(3*x)/(x\2+4)', [-100,100]) is

0.25

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

0 . 2 1	 I	 I
-100 -80	 -60	 -40	 -20	 0	 20	 40	 60	 80	 100

cos 3x
Fig. 7 Graph of

	

	 Limits : [-100,100]

x 2 + 4'

cos3x	 .
Integrand of 6 The graph of the integrand (b) 2	 Limits : [—cc, cc] expanded near the origin

x +4
and produced by the command >>tlot(!cos(3*x)/(xI\2+4), [-10,10]) is shown in Fig. 8.

cos 3x
Fig. 8 Graph of	 Limits : [-10,10]

x 2 ^4'

xsmx	 it
Integral 17 The mtegrand of the integral 17 , viz., (a) J	 2 dx = -, (Even integrand; True

1+x	 e
value= 1.15572734979092) is visualized as in Fig. 9 using the command
>>fplot(x*sin(l/x)/(1 +x"2)', [-100,100])

0.6

0.5

0.4

0.3

0.2

0.1

0

-100 -80	 -60	 -40	 -20	 0	 20	 40	 60	 80	 100

xsin x
Fig. 9 Graph of	 ,Limits [-100,100]

1+ x2

U,
X51flX	 it

Integral 17 The integrand of the integral I, i.e., (b) J	 2 dx = -, (Even integrand) in
l+x	 e

expanded form near the origin when plotted by the command >>fplot(Ix*sin(1/x)/(1+x/\2)t, [-
0.1,0.11) would appear as in Fig. 10.

-0.1 -0.08 -0.06 -0.04 -0.02	 0	 0.02 0.04 0.06 0.08	 0.1

xsm x
Fig. 10 Graph of	 2 ,Limits : [-0.1,0.1]

l+x

Integral '8 The integrand of 18, viz., fin x dx = x in x - x = in 1-1-0.01 In 0.01 + 0.01 =
0.01

—0.943948298140119 has the graph produced by the command >>f1ot('1og(x)', [0.01, 1]) as in Fig.
11.

.1O2O3O!4O5O6O!7O8O9

Fig. 11 Graph of mx, Limits : [0.01,1]

2, 0< cv < 1
cosan:sinx

	

Integrals I9 '10' and I The integrands of the integrals g(cv) = J	 dx = r / 4, cv = 1

	

0	 0,w>1

Have the graphs shown in Figs. 12, 13, 14. The command >>fplot('cos(.5*x)*sin(x)/x', [10"-lO,lOO})
for cv = 0.5 for 19 depicts the graph as in Fig. 12.

10	 20	 30	 40	 50	 60	 70	 80	 90	 100

cos 0.5x sin x

	

Fig. 12 Graph of	 , Limits {10'°,lOO]
x

The command >>fplot('cos(x)*sin(x)/x', {10'-10,l00]) for cv = 1 for 110 produces the graph as in

Fig. 13.

).8

0

3.2

10	 20	 30	 40	 50	 60	 70	 80	 90	 100

cosxslnx
Fig. 13 Graph of	 , Limits : [1O_b0,100]

x

The command >>fplot(12*cos(x)*sin(x)/x', [lO"-lO,lOO]) for w = 2 for I generates the graph

shown in Fig. 14.

10	 20	 30	 40	 50	 60	 70	 80	 90	 100

cos 2x sin x

	

Fig. 14 Graph of	 , Limits : [10'°,lOO]
x

Table 4 Distribution of digits of p and r with test statistic 2 (tsc), critical value of	 (cvc=

14.6840) at 10% significance level and expected frequency (ef) of each digit

_______________ (number of leftmost digits) ir (number of leftmost digits)

7500 10000 7500 10000 _____________
0 758 1020 701 968
1 795 1062 782 1026
2 775 994 741 1021
3 784 1039 744 975

4 736 976 761 1013
5 741 988 784 1046
6 672 918 762 1021
7 760 1025 745 969
8 733 987 719 947
9 746 991 761 1014

_______________ tsc=14.1813 tsc=14.12 tsc=8.0933 tsc=9.4580
______________ ef=750 ef=1000 ef750 ef1000

4. Conclusions

Study of transcendental and algebraic numbers for random sequence sources for randomized
algorithms Our numerical experiment shows that pi (sr) has always scored over phi (the golden ratio)
in one dimensional Monte Carlo integration. This implies that other transcendental numbers as well as
algebraic numbers could also be investigated to determine the uniformity/discrepancy of distribution
of random numbers generated out of them. This has not only academic interest but also possibly
significant real world applications. However, while quasi-random sequences are better suited for
uniform scanning of a space such as that required in Monte Carlo integration, these need not fare
better than the pseudo-random sequences for other kinds of problems such as the traveling salesman
problem (TSP) [2]. These are because pseudo-random numbers are a bit too random unlike quasi-
random numbers. Quasi-random numbers, on the other hand, are more uniformly distributed (with less
discrepancy) than pseudo-random numbers.

Ready generation of random numbers versus storage-and-retrieval of random numbers Our time
complexity experiment in Monte Carlo integration demonstrates that unless we have a more efficient
storage and retrieval system, there is no appreciable advantage of storage and retrieval over the instant
generation of random numbers. Although storing all the random numbers before the execution of an
algorithm needs considerable storage space, it may be considered as not an important issue since (i) we
have sufficient disk space available to us now and (ii) the problem space may be appropriately divided
into subspaces so that we can always use fixed number (rather small set of) of random numbers for
each subspace. However, we have experienced significant improvement in time complexity by pre-
storage and retrieval of random numbers over certain random number generators while solving the
TSP.

Use of Pi and Phi in Multiple integration Does pi fare better than phi for double, triple, and higher
dimensional integrations? Although it might appear that pi should fare better than phi in higher
dimensional integration as it has done for single integration, we are yet to explore this aspect. This

involves significant research mainly on the method of using the random sequence as well as the
technique of implementation. A detailed study on this will appear elsewhere.

Connection ofpi with Monte Carlo method in history Buffon posed and solved the following problem
in 1777. Suppose a needle of length L is thrown randomly onto a horizontal plane marked with equi-
spaced parallel straight lines having a distance d > L between any two consecutive lines. If the
distance of the center of the needle from the nearest line is x and the angle that its orientation makes
with the line (or for that matter with any other line) is a, then the needle will intersect a line if and
only if x < 0.5Lsina. What is the probability P(x <0.5L sin a) that the needle will intersect a line

[39]? Buffon derived the probability of intersection as

2L	 2L
P=LJsinada)/(2rd)=_= ;T =-

ird	 dP 0

This was an entirely new method of computing ir in 1777. Here to calculate the probability P, the
needle needs to be thrown onto the ruled plane for a large number (H) of times and the number (h) of

times it intersects a line. The probability P = h / H is then computed.. However, during those days
when today's modem computer was not even possibly imagined, determining ir even to two decimal
places in this way was not at all attractive; it had definitely an academic interest though. Today with
the advent of super-high speed computers (over one billion floating point operations per second), such
a calculation of probability to an acceptable accuracy is not unrealistic. Similar historical relation
between the golden ratio and the Monte Carlo method is not known to us.

Deterministic mathematicallydirec methods versus Monte Carlo methods for integration Can the
deterministic methods such as the closed quadrature formula Trapezoidal rule/Simpson's 1/3 rule and
the Gauss-Legendre open quadrature always excel the Monte Carlo methods? The answer is usually
'yes' from both accuracy and computational complexity point of view. The MC procedure is
sometimes preferred over a numerical quadrature when the integrand is violently fluctuating and/or
involves long trigonometric/special functions. However, our focus is on the comparison of pi and phi
- which one is a better source for a random sequence for MC integration/for a uniform scanning of
given a domain.

Complexity Issues For most real world applications where the mathematical model consists of a single
integral, computational/time complexity is often not an important issue since the time of computation
for four significant digit (0.005%) accuracy is often of the order of seconds. It may be noted that the
present day (2007) computer can execute over a billion floating operations per second and both Monte
Carlo and quadrature methods are polynomial-time. From Tables 2 and 3, it appears that there are no
significant differences in time complexities among the Monte Carlo integrations using any of the four
RSS's, viz., rand, halton, pi,and phi. However, for multiple integration, complexity could become an
issue. We will explore this in our future work.

Parallel implementation For the MC integration where we divide the region of integration into sub-
regions, parallel implementation is straightforward since integration for each sub-region can be carried
out independently and parallely/simultaneously using available processors in a multiprocessor system.
The outputs are then added in a parallel mode to get the required integration value.

Appendix

The following Matlab program mclintegrationrhpiphi stored in the file named
"mci integrationrhpiphi" is the Monte Carlo one dimensional integration for all the integrals
presented in section 3. This program uses another Matlab program ha/ton stored in a separate file. It
computes the value of an integral for varied number of subintervals with a fixed number N (5O00)
of random numbers used in each subintervals. It includes the four random number sources, viz.,
rand, halton, pi, and phi and is self-explanatory. Observe that there are four appropriate lines of code
from which the percentage symbol "%" need to be removed for the execution of the program. To
conserve space we reproduce, in the Matlab program mclintegrationrhpiphi, r denoted by piO as
well as	 denoted phi partially. We have removed the decimal point immediately after the first

digits 3 and 1 in piO and phi as this is of no concern to us in this random sequence source (SSR)
context. However, in the actual Matlab program piO and phi must be completely included. We have
demonstrated later how all the 50000 digits used here for each of pi0 and phi could be generated
using the Matlab command vpa and the Matlab program insert blanks.

%mclintegrationrhpiphi
function (true, I, compaccuracy]mc1integrationrhpiphi (fun)
%50000 digits of pi is in the following location pio; each row has 10 elements.
%Middle two elements are not included so as not to exceed the line length.
pi0(314l592653 5897932384 6264338327 9502884197 . . . 4592307816 4062862089 9862803482 5342117067
9821480865 1328230664 7093844609 5505822317 . . . 2841027019 3852110555 9644622948 9549303819
6442881097 5665933446 1284756482 3378678316 . . . 2346034861 0454326648 2133936072 6024914127
3724587006 6063155881 7488152092 0962829254 . . . 0011330530 5488204665 2138414695 1941511609

8788053304 2714630119 4158989632 8792678327 . . . 0466587100 5000832851 7731177648 9735230926
6612345888 7310288351 5626446023 6719966445 . . . 1511493409 3934475007 3025855814 7561908813
9875235781 2331342279 8665035227 2536717123 . . . 6007956982 7626392344 1071465848 9578024140
8158405229 5369374997 1066559489 4459246286 . . . 5339439142 1112718106 9105229002 4657423604);

phi(1618033988 7498948482 0458683436 5638117720 . . . 8622705260 4628189024 4970720720 4189391137
4847540880 7538689175 2126633862 2235369317 . . . 3890865959 3958290563 8322661319 9282902678
8067520876 6892501711 6962070322 2104321626 . . . 4975870122 0340805887 9544547492 4618569536
4864449241 0443207713 4494704956 5846788509 . . . 6478091588 4607499887 1240076521 7057517978

9670572589 3974080648 3175935357 8603833221 . . . 6229114328 2590723291 9935637853 2927911544
0043613420 1605741421 0103382425 7773560259 . . . 2438503757 7755389867 5571298529 3795171358
9130860163 5581160937 2610924981 1785171527 	 . 9680890339 9517122420 3675938612 4862023009
5411334656 3608193864 3097371691 1136979496 	 . . 4373853556 2868657173 5845963512 3774246170];

tO=clock;
** ***** ********	 ***** * * ****** **	 *** ****** * ***

%E'IRST CHANGE: Supply values for alpha, beta, n
%alpha and beta are lower and upper limits of integration.
%alpha=0.000005;beta=.01; n =1000; a(1)=alpha;
alpha=10-10; beta =l0000;n=10000; a(1)=alpha; %Interval (beta-alpha) is divided into n subintervals
%alpha=10-10; beta=1; n=10000; a(1)=alpha; %Interval (beta-alpha) is divided into n subintervals.
%alpha=0; beta =1;n=10000; a(1)=alpha; %Interval (beta-alpha) is divided into
%n subintervals. This is for integral x2 from 0 to 1.
%alpha=0.000005;beta1; n=100000; a(1)=alpha; %Interval (beta-alpha) is divided into n subintervals.
%alpha=0;beta=10000; n =10000; a(1)=alpha; %Interval (beta-alpha) is divided into n subintervals.
%alpha=0; beta=200; a(1)=alpha; n =l0000; %Interval (beta-alpha) is divided into n subintervals.

for i=2:n-1, a(i)=a(i-l)+(beta-alpha)/n; end;
%
N=5000;S1=0;
% ***

%SECOND CHANGE: Remove %" from one of rand, halton, pio, and phi
%x=rand(1, 5000); fprintf('Matlab rand used as random number source\n') %Matlab rand

%x=halton(1,N); fprintf('halton used as random number source\n') %halton

%reshape(pi0,l,5000);x=10_10*pi0;;fprintf(pi used as random number source\n') %pi

reshape(phi,1,5000);x=10_l0*phi; fprintf('phi used as random number source\n') %phi
% ***

fprintf('	 # of subintervals n # of random nos. N TrueValue	 IntegrationValue
	

RelativeError
Time in sec\n')

for i=2:n-1, S=0;for j=1:N,
t=x(j);
% **

p=a(i)-a(i-1);qa(i-1); xip*t+q;
%THIRD CHANGE: Write fun = p*(integrand in terms of xl)
%fun=p*x12; %Integrand is x2
%fun=p*sin(xl)/xl; %Integrand is sin x/x
%fun=p*(sin(x1)/x1)2; %Integrand is (sin x /x)2
%fun=p*(1/(1+x12)); %Integrand is 1/(1+x2)
%fun=p*xl*sin(1/xl); % Integrand is x sin(1/x)
%fun=p*cos(3*x1)/(x12+4); %Integrand is cos 3x /(x2+4)
%fun=p*x1*sin(x1)/(1+x12); %Integrand is x sin x/(1+x2)
%fun=p*iog(xl); %Integrand is in x
%fun=p*cos(0.5*xl)*sin(xl)/xl; %Integrand is (cos 0.5x sin x)/x
%fun=p*cos(xl)*sin(xl)/xl; %Integrand is (cos x sin x)/x
fun=p*cos(2*xl)*sin(xl)/xl; %Integrand is (cos 2x sin x)/x
**

S=S+ fun;
%S=S+(a(i)_a(i_1))*((a(i)_a(i_1))*t+a(i_lfl* sin(1/((a(i)_a(i_1))*t+a(i_1)));
end;
S=S/N; S1=Si+S;I=Si;
end;
% **

%FOURTH CHANGE: Write true (True integration vaiue)
%true	 1/3; %True value of integrai x2 from 0 to 1
%true= 0.3785283345; % Probably true value of integral x sin (1/x) from 10-10 to 1
%true=pi/2; %True value of integral 1/(1+x2)or sin x/x or (sin x/x)"2 from 0 to inf.
%true=-. 943948298140119; %True value of integral in x from .01 to 1
%true=pi/(4*exp(6)); %True value of integral cos 3x/(x2+4) from 0 to inf.
%true=pi/(2*exp(1)); %True value of integral x sin x/(1+x2) from 0 to inf.
%true=1*iog(1)_l_10_i0*log(l0_l0)+l0_10;%True value of integral in x from 10-10 to 1.
%true=pi/2; %True value of the integral cos(0.5x)sin x/x from 10-10 to inf.
%true=pi/4; %True value of integral cos x sin x / x from 0 to jnf.
true=0; %True value of integral cos 2x sin x I x from 0 to inf.

comp accuracy =(true - fl/true; format long g;
fprintf('%161 %20i %17.lOf %17.lOf %17.iof %13.6f \n', i+1, N, true, I, compaccuracy, etime(clock,
tO))

The Matlab program "halton" presented below needs to be saved in the Matlab file called halton - a
file different from the file "mci integrationrhpiphi".

function r = halton(p,q) % where p = 1 and q = n = # of RNs
dim = 2; persistent seed seed2 base
if isempty(seed2) ,prm numbers=primes (300) ;base=prm numbers (dim) ;seed2=base"4-1;
end
if nargin < 1, p	 1; end, if nargin < 2, q = 1; end
r = zeros(p,q); seed = seed2;
for k = 1:p*q, x	 0.0; base mv = 1.0/base;
while C any C seed == 0
digit	 mod C seed, base); x = x + digit * base_mv;
base mv = base mv I base; seed = floor (seed / base);
end
r(k) = x; seed2 = seed2 + 1; seed = seed2;
end

Inserting b/an/cs in a string of blankless digits/characters We have used the Matlab program
insert blanks to convert a .txt file containing consecutive characters/digits without any blank
anywhere. Consider, for instance, the first 50000 digits of pi or those of phi produced by the Matlab
variable precision arithmetic command vpa described later in this appendix. The output, viz., the
string of 50000 digits will be obtained/shown on the Matlab command window in a single line
without any blank in the string. The insertblanks program takes this string in the form of a .txt file as
its input and then outputs the string in a matrix with desired number of columns and with desired
blanks after each fixed-sized block of, say, 10 digits. Insertion of such blanks is necessary to make

use of the consecutive blocks as random numbers. The program which is self-explanatory is as
follows.

%lnserting blanks in .txt file: Blanks are inserted among fixed blocks of (alphanumeric) characters.
function f = insertblanks()
dc;
% show .txt files
system(dir *j•);
% system(dir *.asv•); % system(dir *.*);

disp(sprintf('th'));
inputfile=input(Enter input file name: ,'s); %lnput file has extension .txt
disp(sprintf("tnn));
outputfile=input(Enter output file name: vs);
disp(sprintf('tn));
columns=input('Enter no. of columns for display matrix:);
disp(sprinff('!n\nW));
elementsize=input(Enter no. of digits in each element:);

fidi = fopen(inputfile);
fid2 = fopen(outputhle,w);

St = fscanf(fidl ,%s); loopCount length(St)/ elementsize;
Slength(St); initial=1; final=elementsize; Columns = 0; Line =

for i=1 :elementsize:S
TempSt(1,initial:final); initial = initial+elementsize; final = final+elementsize;
if final > S % last number is not K-digits

final = S;
end

Columns = Columns +1; Line = strcat(Line, sprintf(%s, Temp));

if Columns == columns
disp(sprintf(%sn,Line)); fprintf(fid2,%sn,Line);

Columns = 0; % Reset column counter
Line=;

end
end

disp(sprintf(%s\n,Line)); % Display left-over
fprintf(fid2,'%sn',Line); % Store left-over in file

fclose(fidl);
fclose(fid2);

disp(sprintf('\nlnput File Name: %s,inputfile));
disp(sprintf('nOutput File Name: %s,outputfile));

disp(sprintf(nNumber of coulumns of display matrix: %d,columns));
disp(sprintf(nNumber of digits in an element: %d, elementsize));

To generate, say, 50000 digits of golden ratio as well as those of pi, one may use the Matlab
variable precision arithmetic command vpa as follows.

>>vpa((sqrt(5)+ 1)12,50000), >> vpa(2 *in(1), 50000)

These will produce 50000 digits each of golden ratio and pi in the Matlab command window. The
50000 digits will be displayed in one line without any blank anywhere. The blanks are then required
to be appropriately inserted between fixed blocks of digits. Inserting blanks is achieved by the
Matlab program insertblanks. Each block will be used as a random number. It is often mapped onto
an interval, say, [0, 1] in most applications.
Creating digits and inserting blanks If we, for instance, want to insert a blank after each block of 10
digits of 50000-digit r, then the procedure could be written as

S.! Execute in Matlab command window the command >>piS0000vpa('2*asin(1)', 50000)
S.2 Copy from the Matlab command window the 50000 digits by clicking "Edit" and then "Copy".

S. 3 Open a new M-file and paste these 50000 digits. Remove the decimal point '.'
S. 4 Click on "File" situated at the left top corner. Go to "Save as", click and save in piS0000.txt.
S.5 Now go to Matlab command window and execute the command >>insertblanks. At the
following four prompts provide the requisite file names, number of columns in each line, and
number of digit in each element of a column. If we want 10 columns in each line and 10 digits in
each element in a column, and the output file name as pi50000outcollOblocklO, then the required
inputs will be provided as follows.

Prompt	 Input
Enter input file name:	 piS0000.txt
Enter output file name:	 pi50000outcollOblocklO
Enter number of columns for display matrix:	 10
Enter number of digits in each element:	 10

Thus we obtain the required output which must be plugged in the program mclintegrationrhpiphi
before we use pi as an RSS.

References

[1] S.K. Sen and R.P. Agarwal, Golden ratio in science, as random sequence source, its computation,
and beyond, to appear in Computers and Mathematics with Applications.
[2] T. Samanta and S.K. Sen, Pseudo- versus Quasi-random Generators in Heuristics for Traveling
Salesman Problem, to appear.
[3] T. Samanta, Random Number Generators: MC Integration and TSP-solving using Simulated
Annealing, Genetic and Ant System Approaches, Ph.D. Thesis, Department of Mathematical
Sciences, Florida Institute of Technology (2006).
[4]H. J. Karloff and P. Raghavan, Randomized algorithms and pseudorandom numbers, Journal of
the ACM, 40, No.3, 454-476, (1993).18.
[5] M. M. Meysenburg and J.A. Foster, The quality of pseudorandom number generators and simple
genetic algorithm performance, In Proceedings of the Seventh International
Conference on Genetic Algorithms, Morgan Kaufmann, 276-28 1, (1997).
[6] M. M. Meysenburg and J.A. Foster, Randomness and ga performance, revisited, Pro-
ceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann,
(1999).
[7] E. Cantu-Paz, On Random Numbers and the Performance of Genetic Algorithms, In
Proc. of Genetic and Evolutionary Computation Conference (GECCO) 2002, 754-761,
(2002).
[8] 5. Kimura and K. Matsumura, Genetic Algorithms using Low Discrepancy Sequences,
Proceedings of the 2005 conference on Genetic and evolutionary computation, Washington
DC, USA, 134 1-1346, (2005).
[9] The TSP Symmetric Traveling Salesman Problem Instances,
http://elib.zib.de/pub/Packages/mp-testdataltsp/tsplib/tsp/
[10] 5. Galanti, and A. Jung, Low-Discrepancy Sequences: Monte Carlo Simulation of Option
Prices, The Journal of Derivatives, 5, 63-83, (1997).
[11] S.K. Sen, T. Samanta and A. Reese, Quasi- Versus Pseudo-Random Generators: Dis-
crepancy, Complexity and Integration-Error based Comparison, International Journal of
Innovative Computing, Information and Control, 2, No. 3, (2006).
[12] D. E. Knuth, The Art of Computer Programming; Volume 2: Seminumerical Algorithms;
Addison-Wesley; Reading, MA, 2nd Edition, (1981).
[13] P. L'Ecuyer, Software for uniform random number generation: distinguishing the good

and the bad, Winter Simulation Conference, Proceedings of the 33nd conference on Win-
ter simulation, Arlington, Virginia, 95 - 105, (2001).
[14] V. Lakshmikantham, S.K. Sen, and T. Samanta, Comparing Random Number Gener-
ators Using Monte Carlo Integration, International Journal of Innovative Computing,
Information and Control, 1, No. 2, 143-165, (2005).
[151 M.Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Sim-
ulations, 8, No. 1, 3-30, (1998).
[16] J. H. Halton, and G. B. Smith, Algorithm 247: Radical-Inverse Quasi-Random Point
Sequence, Communications of the ACM, 7, 701-702, (1964).
[17] I. M. Sobol, On the Distribution of Points in a Cube and the Approximate Evaluation
of Integrals, U.S.S.R. Computational Mathematics and Mathematical Physics, 7, 86-1 12,
(1967).
[18] H. Faure, Discrepance de suites associees a un systeme de numeration (en dimension s),
Acta Arithmetica XLZ, 337-35 1, (1982).
[19] H. Niederreiter, Low Discrepancy and Low-Dispersion Sequences, Journal of Number
Theory, 30, 5 1-70, (1988).
[20] J. 0. Van der Corput, Verteilungsfunktionen I, II, Nederl. Akad. Wetensch. Proc. Ser.
B, 38, 813-821 and 1058-1066, (1935).
[21] M. Junger, G. Reinelt, and G. Rinaldi, The Traveling Salesman Problem, Operations
Research and Management Sciences, 7, 225-330, 1995.
19
[22] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The Traveling
Salesman Problem-A Guided Tour of Combinatorial Optimization, JohnWiley and Sons,
(1985).
[23] G. Reinelt, The Travelling Salesman: Computational Solutions for TSP Applications,
Springer-Verlag, (1994).
[24] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of State
Calculations by Fast Computing Machines, J. Chem. Phys., 21, 6, 1087-1092, (1953).
[25] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing,
Science, 220, 4598, 67 1-680, (1983).
[26] V. Cerny, A thermodynamical approach to the travelling salesman problem: an effi-
cient simulation algorithm, Journal of Optimization Theory and Applications, 45, 41-5 1,
(1985).
[27] C. C. Skicism and B. L. Golden, Solving k-shortest and constrained shortest path prob-
lems efficiently, Ann. Operations Research, 20, 249-282, (1989).
[28] R. W. Eglese, Simulated Annealing: A Tool for Operational Research, European Journal
of Operational Research, 46, 271-281, (1990).
[29] M. Fleischer, Simulated Annealing: Present, Past and Future, Proceedings of Winter
Simulation Conference, (1995).
[30] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applica-
tions, Kluwer Academic Publishers: Norwell MA, USA, (1987).
[31] E. H. L. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines : A Stochas-
tic Approach to Combinatorial Optimization and Neural Computing, Wiley: Chichester
[England], New York, (1989).
[32] E. H. L. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization, Wiley:
Chichester [England] ; New York, (1997).
[33] M. M. Flood, The Traveling—Salesman Problem, Operations Research, 4, 61-75, (1956).
[34] A. Croes, A Method for Solving Traveling Salesman Problems, Operations Research, 5,
791-812, (1958).

[35] S. Lin and B. W. Kernighan, An effective heuristic algorithm for the traveling salesman
problem, Operations Research, 21, 498-516, (1973).
[36] Z. Michalewisz and D. B. Fogel, How to Solve It: Modern Heuristics, Springer-Verlag,
Berlin, Germany, (2000).
[37] E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in Science and
Engineering, Affiliated East-West Press, New Delhi,(2001).
[38] V. Lakshmikantham and S.K. Sen, Computational Error and Complexity in Science and
Engineering, Elsevier, Amsterdam, (2005).
[39] P. Beckmann, A History of r(Pi), Barnes and Noble Books, New York, (1971).

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

