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a b s t r a c t

Stochastic marked graphs, a special class of stochastic timed Petri nets, are used for
modelling and analyzing decision-free dynamic systems with uncertainties in timing. The
model allows evaluating the performance of such systems under a cyclic process. Given
the probabilistic characteristics of the transition times, the cycle time of the system can be
determined from the initial marking. In this contribution, we compute an upper bound on
the cycle time of a stochastic marked graph in case the probabilistic characteristics of the
transition times are not fully specified.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Petri nets are an established model to represent and analyze concurrent systems. A Petri net is a collection of directed
arcs connecting places and transitions. These arcs have a default capacity of one unless stated otherwise. Places can contain
tokens, and the assignment of tokens to places is called the state or marking of the net. Arcs can only connect places to
transitions and vice versa. A transition is said to be enabled if the number of tokens in its input places is at least equal to the
arc weight going from the input places to the transition. Once enabled, a transition can fire. When fired, the tokens in the
input places are moved to output places, according to the arc weights and place capacities.
A marked graph is a Petri net in which each place has at most one input transition and one output transition. Marked

graphs constitute a good formalism to model manufacturing systems containing parallel tasks and synchronization or to
order activities like in PERT. They are more general than PERT graphs in the sense that places can contain several tokens.
Marked graphs have been studied extensively either in a deterministic or in a stochastic context. One of themain problems of
timed and stochastic Petri net models for large systems is the explosion of computational complexity algorithms to analyze
performance measures (such as the cycle time) of marked graphs. Campos et al. [4] determine upper and lower bounds on
the steady-state performance ofmarked graphs to evaluate performance in an efficient way. In this paper we develop a tight
upper bound for the cycle time of a stochastic marked graph.
The remainder of this paper is structured as follows. Notations and definitions are introduced in Section 2. A lower bound

on the cycle time of a stochastic marked graph is presented in Section 3. In Section 4 a tighter upper bound than the one
in [4] is developed. Section 5 develops the bound in the case that incomplete information exists regarding the distribution
of the transition firing times.
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2. Notations and definitions

Petri nets are developed to represent and analyze general systems from the viewpoint of causal interconnections among
the elementary system components. There are several types or classes of Petri nets. Some basic classes are: condition/event,
place/transition and predicate/transition nets.
The common conceptual basis for all Petri net classes is a ‘net’. A net is a bipartite digraph together with a weak

interpretation. The interpretation is called ‘weak’ because any use of the net requires further interpretation.
A net is a tripleN = (S, T , F)which represents a systemwith S-elements (S is a finite set ofwhich the elements represent

state elements), with T -elements (T is a finite set of which the elements represent transition elements). The elements S ∪ T
are called the elements of the net. The S-elements are represented by circles; the T -elements by vertical bars or boxes.
The relations between S- and T -elements are combined yielding the flow relation F , F ⊆ (S × T ) ∪ (T × S). F is a finite
set of ordered pairs of two types (S-element, T -element) and (T -element, S-element) representing causal connections. The
elements of F are represented by arcs. S and T are disjoint sets [16, chapter 1].
In a condition/event net (CE-net) the S-elements represent elementary system conditions, while its T -elements represent

elementary system events. A dot (called a token) is put into an S-element if the condition corresponding to this S-element
is met, which implies that every S-element can have either zero or one token. In other nets the S-elements may carry more
than one token. In such nets S-elements are called places, the T -elements are called transitions and weights can be attached
to the arcs. Theweights are natural numbers. Each place has a capacity (maybe infinite), representing themaximumnumber
of tokens a place can hold. This type of net is called a Place/Transition or P/T net.
A Place/Transition (P/T) net is defined as a 3-tuple N = (P, T , F) consisting of a set of places P , a set of transitions T and

directed arcs connecting places to transitions and transitions to places, F ⊆ (P × T ) ∪ (T × P). Let |P| = n (resp. |T | = m)
be the cardinality of the set of places (resp. transitions). Further, assume P ∩ T = ∅ and P ∪ T 6= ∅. The input arcs can be
represented by the pre-incidence function Pre : P × T → N. Post is the post-incidence function representing the output
arcs Post : P × T → N. A P/T net is an ordinary P/T net if its pre- and post-incidence functions take values in {0, 1}.
The pre- and post-incidence functions can be represented as n × m matrices Pre and Post with elements Pre(pi, tj) and

Post(pi, tj) resp. The incidence matrix C of the net is defined by C(pi, tj) = Post(pi, tj)− Pre(pi, tj).
The set of places connected to a transition via a directed arc from the place to the transition is called the pre-set of the

transition (similar for places). The set of places connected to a transition via a directed arc from the transition to the place is
called the post-set of the transition (similar for places). Formally, the pre-set and post-set of a transition t ∈ T are defined
resp. as •t = {p|Pre(p, t) > 0} and t• = {p|Post(p, t) > 0}. The pre-set and post-set of a place p ∈ P are defined resp. as
•p = {t|Post(p, t) > 0} and p• = {t|Pre(p, t) > 0}.
A markingM : P → N assigns tokens to places. It can be represented as a vector, i.e.Mi represents the number of tokens

in place i in markingM . A marked net (N,M0) is a net with an initial markingM0.
A transition is enabled (i.e. can possibly occur) if the number of tokens in its input places is at least equal to the weight of

the arcs going from the input places to the transition. Once enabled, a transition can fire. When fired, the tokens in the input
places are moved to the output places, according to the arc weights. Formally, a transition t ∈ T is enabled at markingM iff
∀p ∈ P : M(p) ≥ Pre(p, t). A transition t enabled atM can fire, yielding a newmarkingM ′ based on the incidence matrix C ,
M ′(p) = M(p)+ C(p, t),∀p ∈ P .
The reachability set R(N,M0) is the set of all markings reachable from the initial markingM0. Liveness considers which

transitions in a net can fire and how often transitions may fire. A transition t ∈ T is live in (N,M0) iff ∀M ∈ R(N,M0) :
∃M ′ ∈ R(N,M) such thatM ′ enables t . A marked net (N,M0) is live iff all its transitions are live.
A P-semiflow (or P-invariant) is a vector Y ∈ Nn such that Y 6= 0 and Y TC = 0. The support of a P-semiflow Y is the set

of places which appear in Y , i.e. whose corresponding components in Y are strictly positive: ‖Y‖ = {p ∈ P|Y (p) > 0}. A
support is a minimal support iff it does not contain another support or invariant but itself and the empty set.
This paper focuses on marked graphs, which are a special case of marked nets. A P/T net is called a marked net iff, for all

s ∈ P : Ks = ∞,Ms ∈ N , and for all f ∈ F ,Wf = 1. This means that all arcs have unit weight and that we do not have
to take capacity into consideration. In a marked graph, places are unbranched, i.e. ∀s ∈ P : | • s| = |s • | = 1. A sequence
w = (s0, . . . , sn) of places is called a path of length n. w is called a cycle or circuit iff w is a path such that •s0 = sn [16,
chapter 7]. A marked graph is said to be strongly connected if there is a directed path joining any node A to any node B of
the net. An elementary circuit in a strongly connected graph is defined as a directed path that goes from one node (place or
transition) back to the same node while any other node is not repeated.
As an illustration, consider Fig. 1, taken from [10], depicting a marked graph with |P| = 14 and |T | = 10. The

marked graph is strongly connected because there is a direct path joining any node to any other node in the graph. The
minimal support P-semiflows of N are its directed elementary circuits. The marked net (N,M0) is live iff all its directed
circuits are marked [12]. As a result, the directed elementary circuits or P-semiflows in Fig. 1 are ‖Y1‖ = {p1, p2, p4},
‖Y2‖ = {p3, p5, p6, p14}, ‖Y3‖ = {p7, p8, p9, p10}, ‖Y4‖ = {p3, p4, p8, p9, p11, p13, p14}, ‖Y5‖ = {p7, p8, p9, p11, p12}. The
marked graph is live if, for example, one token is placed in the places p1, p6, p10, p12, and p13. In this case, each of the
elementary circuits contains exactly one token.
Using and extending Petri nets by adding time features is of high interest in many fields, especially in the field of

performance evaluation. Different choices for the integration of time into the Petri net formalism have been proposed in
the literature. Two basic Petri net models for handling time have been proposed: Time Petri nets and Timed Petri nets.
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Fig. 1. An example of a stochastic marked graph.

Timed Petri nets are derived from Petri nets by associating a finite firing durationwith each transition of the net [15] or with
each place of the net [18]. Time Petri nets [11] are more general. Two real numbers, a and b, with a ≤ b, are associated with
each transition where a is the minimal time that must elapse, starting from the time at which a transition is enabled, until
this transition can fire, and b denotes the maximum time during which the transition can be enabled without being fired.
Timed marked graphs are timed Petri nets whose logical structure is that of a marked graph. Regarding the introduction of
time in this paper, we associate firing times with transitions.
In this paper we consider the performance evaluation of stochastic timed transition marked graphs. For a large net the

computational complexity of the analysis algorithms is a problem. If the firing time distributions are assumed to follow
exponential distributions, the equivalence between stochastic Petri nets and homogeneous Markov processes has been
established. In this situation performance measures can be derived using Markovian analysis techniques. In the case of
general distributions, the calculation of performance measures becomes intractable. In such a case upper and lower bounds
on performance measures offer some information, see e.g. [4]. If information regarding the firing time distributions is
incomplete, e.g. limited to somemoments, these bounds are the only means to provide useful information.We derive upper
and lower bounds for themean cycle time of a stochasticmarked graph using the knowledge of the first and secondmoments
of the distribution only.
Even in the case the transition firing times follow exponential distributions, as with any other stochastic Petri net, the

numerical analysis of the continuous time Markov chain (CTMC) underlying the SMG suffers from the state space explosion
problem, which excludes applicability for large models. Approximate analysis techniques have been used either to derive
results where exact techniques are too costly or not applicable at all, or to derive a good initial distribution for exact iterative
techniques [3].
As another way to cope with state explosion, fluid approximation has been introduced to reduce the number of states. In

a fluid/event graph, places hold fluids instead of discrete tokens. Transitions fire continuously, drawing fluids out of its input
places and injecting fluids into its output places. Sometimes to these models discrete-event components characterized by
failures and repair of transitions are added [5]. Only in very specific cases analytical solutions for the performance evaluation
can be obtained. Mostly a simulation-based approach is being used [19].
Denote the random variable generating the time required for the kth firing of transition t by Yt(k) ∈ R+ and the instant

of the kth firing initiation of transition t by St(k). Assume further that no transition can be fired by more than one token at
any given time.We further assume that, when a transition fires, the related tokens remain in the input places until the firing
process ends. Immediately after the firing, these tokens disappear and the appropriate number of tokens is added to each
output place of the transition.
We assume that the sequences of transition firing times {Yt(k)}αk=1 for t ∈ T are mutually independent sequences of

independent identically distributed (i.i.d.) random variables. Since {Yt(k)} are sequences of i.i.d. random variables, the index
k is often abandoned. Furthermore, we denotemt = E [Yt ], and σ 2t = E

[
(Yt −mt)2

]
.

Under the foregoing assumptions, it is proven [1] that there exists a positive constant π(M0) such that

lim
k→∞

St(k)
k
= lim
k→∞

E [St(k)]
k

= π(M0) ∀t ∈ T (1)

where π(M0) is called the cycle time of the marked graph.
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Table 1
Transitions and deterministic firing times for Fig. 1

Transition Firing time Transition Firing time

t1 9.10 t6 4.60
t2 8.20 t7 3.70
t3 7.30 t8 2.80
t4 6.40 t9 1.90
t5 5.50 t10 1.45

Table 2
Circuits and circuit times for Fig. 1

Circuit Transitions in circuit Circuit time

Y1 t1, t4, t5 21.00
Y2 t1, t2, t6, t7 25.60
Y3 t2, t3, t8, t9 20.20
Y4 t1, t2, t3, t4, t6, t8, t10 39.85
Y5 t2, t3, t8, t9, t10 21.65

The cycle time of a deterministic marked graph (N,M0, {Yt}) is denoted by πD(M0) and is equal to [14, p. 443]:

πD(M0) = lim
k→∞

St(k)
k
= max

γ∈Γ

∑
t∈γ
mt

M0(γ )
(2)

where Γ is the set of all circuits in the graph.
The cycle time for a deterministic marked graph is themaximum cycle time over all elementary circuits γ ∈ Γ . The cycle

time of an individual elementary circuit γ is defined as the sum over the firing times of each transition in the circuit divided
by the circuit’s initial markingM0(γ ).
Since π(M0) ≥ πD(M0), πD(M0) is a lower bound on π(M0).

3. A lower bound on the cycle time of a stochastic marked graph

Prior to determining the lower bound for a stochastic marked graph, the bound is determined for its deterministic
counterpart. In a deterministic marked graph a firing function T : T → Q+ is defined where Q+ is the set of non-negative
rational numbers. It has been proven that the minimum cycle time of a deterministic timed marked graph is given by [14]

πD(M0) = max
γ∈Γ

∑
t∈γ
mt

M0(γ )
(3)

wheremt is the deterministic firing time of transition t , andM0(γ ) is the number of tokens in the places in circuit γ in the
initial marking.
Determining the minimal cycle time has been formulated as a linear programming problem [9] which uses the following

relation: the termination time of the nth firing of transition ti ≤ the initiation time of the (n+M0(pk))th firing of transition
tj if ti is the input transition and tj is the output transition of place pk.
This means that, for any cycle time CT ,

Sti(n)+mti ≤ Stj(n+M0(pk)) (4)

or

mti ≤ Stj(1)− Sti(1)+M0(pk).CT (5)

By this, the linear program (LP) can be formulated as:

min CT
s.t. mti ≤ Stj(1)− Sti(1)+M0(pk).CT ∀pk ∈ P and CT ≥ 0 (6)

where St1(1), St2(1), . . . , St|T |(1) and CT are the decision variables of the optimization problem. The solution of this linear
program using the deterministic transition times from Fig. 1 as shown in Table 1 results in the optimal value of the objective
function CT = 39.85.
In Section 1 five elementary circuits have been detected in Fig. 1. According to [14] the circuit times, i.e. the sum of the

firing times of the transitions in a circuit, have to be inspected for their maximum value. Detailed information on the circuit
times is given in Table 2.
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Following [9] the minimal cycle time can be found as the solution to the linear program (LP1) stated as:

min CT
s.t. St5(1)− St1(1)+ CT ≥ 9.10

St4(1)− St5(1) ≥ 5.50
St6(1)− St1(1) ≥ 9.10
St1(1)− St4(1) ≥ 6.40
St2(1)− St7(1) ≥ 3.70
St7(1)− St2(1)+ CT ≥ 8.20
St2(1)− St9(1) ≥ 1.90
St8(1)− St2(1) ≥ 8.20
St3(1)− St8(1) ≥ 2.80
St9(1)− St3(1)+ CT ≥ 2.80
St10(1)− St3(1) ≥ 7.30
St9(1)− St10(1)+ CT ≥ 7.30
St4(1)− St10(1)+ CT ≥ 1.45

St2(1)− St6(1) ≥ 4.60 (7)

which gives an optimal objective function value CT = 39.85.
When switching from deterministic marked graphs towards stochastic marked graphs a similar linear optimization

program has been formulated by [4, p. 390]. A lower bound for the mean cycle time for live strongly connected marked
graphs can be obtained by solving the following linear program:

π(M0) = max Y T .Pre.θ
s.t. Y T .C = 0

Y T .M0 = 1
Y ≥ 0 (8)

with
Y = a P-semiflow or P-invariant
θ = a vector with components θt = E(Yt), t ∈ T
C = the incidence matrix
M0 = the initial marking of the graph.

As deterministic timed graphs are a special case of stochasticmarked graphswith themean transition firing time equal to
the deterministic firing times, both LPs give the same solution in the case of deterministic marked graphs [4, pp. 391–392].
Furthermore, Campos et al. [4] prove that for strongly connected marked graphs with arbitrary values of mean and variance
for transition firing times, the lower bound for the mean cycle time obtained in the above LP cannot be improved (their
theorem 3.3).
If both mean and variance of the firing time of each transition are known, the lower bound as obtained by the LP cannot

be reached (unless all variances are equal to zero). This lower bound is, however, not our main interest. The next section
focuses on the upper bound for the mean cycle time. For its calculation we require the value of the lower bound in the case
of deterministic firing times.

4. An upper bound on the cycle time of a stochastic marked graph with complete information on the stochastic
transition times

In the previous section a lower bound of the average cycle time has been derived and it is shown that the P-invariant
criterion reaches itsminimumvaluewhen the firing times become deterministic. In this section upper bounds of the average
cycle time are derived making use of superposition properties.
Sauer and Xie [17] prove that the following bound holds:

π(M0) ≤ πD(M0)+ inf
z∈E

{∑
t∈T

E
[
(Xt − zt)+

]}
(9)

where the infimum needs to be found in the set E defined as:

E =

{
z|zt ≥ mt ,∀t ∈ T and

∑
t∈γ

zt ≤ πD(M0).M0(γ ),∀γ ∈ Γ

}
, z = [z1, z2, . . . , zm]. (10)



568 G.K. Janssens et al. / Mathematical and Computer Modelling 49 (2009) 563–572

Using the first two moments of the random variables representing the transition firing times, Theorem 1 shows that the
upper bound obtained by Sauer and Xie [17]

π(M0) ≤ πD(M0)+
∑
t∈T

σt (11)

can be improved.

Theorem 1.

π(M0) ≤ πD(M0)+
∑
t∈T

σt

2
.

Proof. It always holds that

inf
z∈E

{∑
E
[
(Xt − zt)+

]}
≤

∑
t∈T

E
[
(Xt −mt)+

]
. (12)

Moreover, the following equality holds for any t:

E
[
(Xt − t)+

]
=
E [|Xt − t|]+ E [Xt ]− t

2
. (13)

So by putting in equality (13) t = mt and because E [Xt ] = mt

E
[
(Xt −mt)+

]
=
E [|Xt −mt |]

2
. (14)

By this, inequality (12) can be rewritten as

inf
z∈E

{∑
E
[
(Xt − zt)+

]}
≤
1
2

∑
t∈T

E [|Xt −mt |]

≤
1
2

∑
t∈T

√
E [Xt −mt ]2

≤

∑
t∈T

σt

2
. � (15)

In order to assess the evolution of the right-hand sides from E
[
(Xt −mt)+

]
in inequality (12) to σt2 in inequality (15), we

illustrate the procedure in the case where Xt follows a triangular distribution.
Let ft(x) be the density function of a triangular distribution of the firing times of a transition t defined on the finite interval

[at , bt ]with mode located at ct :

ft(x) =


f1t(x) =

2(x− at)
(ct − at)(bt − at)

if at ≤ x ≤ ct

f2t(x) =
2(bt − x)

(bt − ct)(bt − at)
if ct ≤ x ≤ bt .

(16)

The mean, respectively the variance of this distribution are:

mt =
at + ct + bt

3
(17)

σ 2t =
a2t + b

2
t + c

2
t − atbt − atct − btct
18

. (18)

The illustration is applied to the stochastic marked graph of Fig. 1. Table 3 shows the parameters of the triangular
transition time distribution for each transition. The mean values of the distributions correspond to the deterministic values
which were used earlier (see Table 1).
If Xt is distributed according to a triangular distribution, we are able to calculate the right-hand side in inequality (12).

The value of πD(M) is independent of the knowledge of the distribution. Therefore, to assess the difference between the
bound with incomplete information and the one with complete information, only the right part of inequality (12) needs to
be calculated.
The right-hand side of inequality (12) is computed as

E
[
(Xt −mt)+

]
=

∫ bt

mt
(x−mt).f (x)dx (19)
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Table 3
Data for the triangular distributions of the example in Fig. 1

Transition at ct bt Mean Variance St. Dev.

t1 1 12.3 14 9.1 8.322 2.885
t2 1 10.6 13 8.2 6.720 2.592
t3 1 8.9 12 7.3 5.362 2.316
t4 1 7.2 11 6.4 4.247 2.061
t5 1 5.5 10 5.5 3.375 1.837
t6 1 3.8 9 4.6 2.747 1.657
t7 1 2.6 7.5 3.7 1.912 1.383
t8 1 1.4 6 2.8 1.287 1.134
t9 1 0.7 4 1.9 0.555 0.745
t10 1 0.35 3 1.45 0.318 0.564

Table 4
Bounds for the example in Fig. 1

at ct bt Mean Variance Exact Bound RelDiff

1 12.3 14 9.100 8.322 1.206 1.442 0.196
1 10.6 13 8.200 6.720 1.080 1.296 0.200
1 8.9 12 7.300 5.362 0.959 1.158 0.207
1 7.2 11 6.400 4.247 0.847 1.030 0.217
1 5.5 10 5.500 3.375 0.750 0.919 0.225
1 3.8 9 4.600 2.747 0.683 0.829 0.214
1 2.6 7.5 3.700 1.912 0.574 0.691 0.204
1 1.4 6 2.800 1.287 0.475 0.567 0.194
1 0.7 4 1.900 0.555 0.312 0.372 0.195
1 0.35 3 1.450 0.318 0.234 0.282 0.204

or ∫ ct

mt
(x−mt).f1t(x)dx+

∫ bt

ct
(x−mt).f2t(x)dx ifmt < ct (20a)∫ bt

mt
(x−mt).f2t(x)dx ifmt ≥ ct . (20b)

Eq. (20a) reduces to

[(bt − at)+ (ct − at)]3

81(bt − at)(ct − at)
ifmt < ct . (21)

Eq. (20b) reduces to

[(bt − at)+ (bt − ct)]3

81(bt − at)(bt − ct)
ifmt ≥ ct . � (22)

Table 4 shows in column Exact the first bound on the right-hand side of Eq. (15) in case all parameters of the triangular
distributions are known, calculated through Eqs. (21) and (22). The column Bound shows the last bound on the right-hand
side of Eq. (15). This bound is around 20% higher than the bound obtained in the Exact column. The sum of the bounds in the
Exact column equals 7.119 and the sum in the Bound column equals 8.587. The column RelDiff shows the relative difference
calculated as (Bound− Exact)/Exact . The procedure can be applied to other, than the triangular, distributions, as long as the
integral in Eq. (19) can be expressed in an analytical way, which is true for the exponential or uniform distributions, but not
for the normal and most of the Gamma or Beta distributions. In the latter cases either approximations for the distributions
have to be used or bounds computed based on incomplete information (for example based on first or secondmoments only).
This case is elaborated in Section 5. In the next section it is investigated whether even a better bound can be obtained than
the one in the Exact column.

5. An upper bound on the cycle time in the case of incomplete information

In this section some formulas concerning bounds on the expected value of a randomvariable are presentedwhen the only
knowledge available about the random variable is the bounds of the finite interval and certain integral constraints such as
the first and secondmoments. This section aims to obtain upper bounds for themeasure under study through an alternative
theoretical basis.
The practical elaboration goes through the use of the following corollary, proven by Brockett and Cox Jr. [2].



570 G.K. Janssens et al. / Mathematical and Computer Modelling 49 (2009) 563–572

Corollary 1. If the mean µ and variance σ 2 are given, then for any function h with h(3)(x) ≥ 0 and any random variable X on
[a, b] with mean µ and variance σ 2, the following bound is tight

h(a)p+ h(ξ1)(1− p) ≤ E[h(x)] ≤ h(ξ2)q+ h(b)(1− q) (23)

where

p =
σ 2

σ 2 + (a− µ)2
, ξ1 = µ+

σ 2

µ− a
, ξ2 = µ−

σ 2

b− µ
, and q =

(b− µ)2

σ 2 + (b− µ)2
.

Using this information, the following corollary can be proven:

Corollary 2. If the mean mt and variance σ 2t are given, then for a function E
[
(Xt − zt)+

]
and any random variable Xt on [at , bt ]

with mean mt and variance σ 2t and zt ≤ bt , the following bound is tight

E
[
(Xt − zt)+

]
≤ Bt (24)

where

Bt =


(bt − zt)

σ 2t

σ 2t + (bt −mt)2
if zt ≥ mt −

σ 2t

bt −mt

mt − zt if zt ≤ mt −
σ 2t

bt −mt
.

(25)

Proof. Using the second part of (23) and putting h(x) = (Xt − zt)+, we get that

E
[
(Xt − zt)+

]
≤ (ξ2 − zt)+qt + (bt − zt)+(1− qt). (26)

If zt ≤ bt , this reduces to

E
[
(Xt − zt)+

]
≤ (ξ2 − zt)+qt + (bt − zt)(1− qt). (27)

This equation splits into two cases depending on whether zt is greater or smaller than ξ2.
If zt ≥ ξ2, then (ξ2 − zt)+ = 0. In that case

E
[
(Xt − zt)+

]
≤ (bt − zt)

(
1−

(bt −mt)2

σ 2t + (bt −mt)2

)
(28)

= (bt − zt)
σ 2t

σ 2t + (bt −mt)2
. (29)

If zt < ξ2, then (ξ2 − zt)+ = (ξ2 − zt). Therefore

E
[
(Xt − zt)+

]
≤

(
mt −

σ 2t

bt −mt
− zt

)
(bt −mt)2

σ 2t + (bt −mt)2
+ (bt − zt)

σ 2t

σ 2t + (bt −mt)2
(30)

=
1

σ 2t + (bt −mt)2

[(
mt −

σ 2t

bt −mt

)
(bt −mt)2 (31)

+ btσ 2t − zt
[
(bt −mt)2 + σ 2t

] ]
(32)

=
1

σ 2t + (bt −mt)2
[
mtb2t − 2m

2
t bt + µ

3
t +mtσ

2
t − zt

[
(bt −mt)2 + σ 2t

]]
(33)

=
1

σ 2t + (bt −mt)2
[
mt
[
(bt −mt)2 + σ 2t

]
− zt

[
(bt −mt)2 + σ 2t

]]
(34)

= mt − zt . (35)

If we define Bt according to the definition in Eq. (25), the corollary has been proven. �
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From this, it is easy to prove the following.

Corollary 3. If mean mt and variance σ 2t are given for each transition t ∈ T , then the following bound is tight and therefore
cannot be improved.

π(M0) ≤ πD(M0)+ inf
z∈E

∑
t

(bt − zt)
σ 2t

σ 2t + (bt −mt)2
(36)

where

E =

{
z|zt ≥ mt ,∀t ∈ T and

∑
t∈γ

zt ≤ πD(M0).M0(γ ),∀γ ∈ Γ

}
. (37)

Proof. According to Eq. (37), zt ≥ mt . Also, bt ≥ mt and σ 2t ≥ 0. From this, it is clear that zt ≥ mt −
σ 2t
bt−mt

, taking into
consideration (25) inequality (36) turns into

π(M0) ≤ πD(M0)+ inf
z∈E

{∑
t∈T

Bt

}
s.t. z ∈ E (38)

π(M0) ≤ πD(M0)+ inf
z∈E

{∑
t∈T

(bt − zt)
σ 2t

σ 2t + (bt −mt)2

}
s.t. z ∈ E. � (39)

Finally it is recognized that the second term of (36) is a linear objective function and the constraints in (37) are all of the
linear type, so it might be interesting to solve the linear program rather than use the bounds in the previous section.
It can be seen that the second term of (36) can be written as a constant and a sum of terms with variables zt . The linear

program is formulated for the stochastic marked graph of Fig. 1.
min 15.61233− 0.257384z1 − 0.225806z2 − 0.195313z3 − 0.167148z4 − 0.142857z5
−0.124246z6 − 0.116910z7 − 0.111625z8 − 0.111782z9 − 0.116863z10

s.t. z1 ≥ 9.10
z2 ≥ 8.20
z3 ≥ 7.30
z4 ≥ 6.40
z5 ≥ 5.50
z6 ≥ 4.60
z7 ≥ 3.70
z8 ≥ 2.80
z9 ≥ 1.90
z10 ≥ 1.45
z1 ≤ 14.00
z2 ≤ 13.00
z3 ≤ 12.00
z4 ≤ 11.00
z5 ≤ 10.00
z6 ≤ 9.00
z7 ≤ 7.50
z8 ≤ 6.00
z9 ≤ 4.00
z10 ≤ 3.00
z1 + z4 + z5 ≤ 39.85
z1 + z2 + z6 + z7 ≤ 39.85
z2 + z3 + z8 + z9 ≤ 39.85
z1 + z2 + z3 + z4 + z6 + z8 + z10 ≤ 39.85
z2 + z3 + z8 + z9 + z10 ≤ 39.85. (40)
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The optimization of the model leads to the following values of the decision variables: z1 = 9.1, z2 = 8.2, z3 = 7.3,
z4 = 6.4, z5 = 10.0, z6 = 4.6, z7 = 7.5, z8 = 2.8, z9 = 4.0 and z10 = 1.45. This solution leads to an objective function
value of 5.1169, which is around 40% less than the bound based on only two moments earlier, and around 30% less than the
bound with full information on the triangular distribution. Even if this development is based only on a single example, it
looks interesting to take some effort in solving a linear program to obtain superior results.
The bounds, as calculated in this section, are applicable in dynamic systems,which canbemodelled as a stochasticmarked

graph and in which the exact calculation of the bound on the cycle time cannot be expressed due to problems in analytical
calculations or simply due to lack of information. A project network (without consideration of resources) can serve as an
example. Random times of activity durations are based on an optimistic, a most likely and a pessimistic estimate. Even if
the literature assumes a Beta distribution behind this, in fact, only the range and maybe the first and second moments are
known. The same might be true for scheduling models with random times. Stochastic marked graphs have been used to
model ratio-drivenmanufacturing systems [13] and in cyclic flow lines where identical sets of jobs are repeatedly produced
in the same loading and processing sequence [8]. Links have been made between functional models like the IDEF families
and Petri nets to model more complex manufacturing systems [6,7]. As long as these models fit into the stochastic marked
graph framework the above bounds may help in evaluating uncertainties in performance.

6. Conclusion

Marked graphs are a special type of Petri nets used inmodelling dynamic systems inwhich no choice is allowed from one
system state to another. With respect to performance modelling of such systems, times of state transitions can be described
by random variables. If the marked graph is cyclic, the expected value of the cycle time is the main measure of interest. Due
to computational difficulties only upper bounds on this measure of interest can be obtained. In this study the upper bound,
formulated as a linear programwith limited information on the probability distribution of the transition times, is compared
with an upper bound based on classical inequalities in probability theory. In the example, which is used throughout the
paper, the approach with the linear program is shown to be much superior. It can be concluded that it is worthwhile to take
some effort in solving the linear program in order to obtain better bounds for the performance measure of interest.
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