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Tumor location and parameter estimation by thermography

J.P. Agnelli, A. A. Barrea and C. V. Turner∗

FaMAF, Universidad Nacional de Ćordoba - CIEM-CONICET. Ćordoba, Argentina.

Abstract

In non-invasive thermal diagnostics, accurate correlations between the thermal image on skin sur-
face and interior human physiology are often desired, whichrequire general solutions for the bioheat
equation. In this study an estimation methodology is presented to determine unknown thermophys-
ical or geometrical parameters of a tumor region using the temperature profile on the skin surface
that may be obtained by infrared thermography. To solve these inverse problems a second order fi-
nite difference scheme was implemented to solve the bioheatPennes equation with mixed boundary
conditions in 2 and 3 dimensions. Then, the Pattern Search algorithm was used to estimate the dif-
ferent parameters by minimizing a fitness function involving the temperature profiles obtained from
simulated or clinical data to those obtained by the finite different scheme.

1 Introduction.

It has long been established that body temperature is an indicator of health. In general the body surface
temperature is controlled by the blood circulation underneath the skin, local metabolism, and the heat
exchange between the skin and its environment [1–3]. Changes in any of these parameters can induce
variations of temperature and heat flux at the skin surface reflecting the physiological state of the human
body. The particular tumor architecture and angiogenesis processes can lead to an abnormal situation.
Inflammation, metabolic rate, interstitial hypertension,abnormal vessel morphology and lack of response
to homeostatic signals are some of the particular features that make tumors to behave differently than
normal tissue in terms of heat production and dissipation. Temperatures at skin above a breast tumor or
a malignant melanoma, a tumor of melanocytes which are foundpredominantly in skin, have been found
to be several degrees higher than that of the surrounding area [4–7]. So, the abnormal temperature at skin
surface can be used in order to predict the location, size andthermal parameters of the tumor region as
well as to study the tumor evolution after a treatment procedure.

Medical infrared thermography is non-invasive, non-contact and functional imaging method that
measure the radiation emitted from the skin surface and provides information about subtle temperature
changes in it. The different patterns of temperature not only depends on physical parameters such as
the tissue sensitivity coefficient, but also in the physiology associated to the homeostatic and metabolic
processes and the structure and dynamics of the vascular, tissular and nervous systems.

Medical applications of infrared thermography are not a recent phenomenon. However, in the past
years their success was rather limited mainly due to the complexity, high cost and poor sensitivity pro-
vided by the generation of infrared cameras that were available at that time. Nowadays, advances in the
infrared technology have again promoted its medical application as a promising non-invasive tool for
imaging the functionality of superficial layers of tissues and the influence of vascular, neurogenic and
metabolic process that affect them. In [7] Santa Cruz et al. have investigated by means of thermogra-
phy the correlation, in patients treated with boron neutroncapture therapy (BNCT), between the spatial
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extension of the acute skin reaction and the superficial dosedistribution, in order to better determine tol-
erance doses and therefore to optimize the BNCT treatment. Also they conclude that given the capacity
of thermography to observe the functional aspects of tissues, the technique can help to locate abnormally
high temperature regions as well as melanoma nodules that are virtually invisible in CT images.

Further aspect of IR imaging techniques of skin cancer and detection methods from infrared images
are describes in detail in a book by Diakides and Bronzino [9].

The objective of this study is the development of a methodology to estimate the depth and size of an
embedded malignant melanoma as well as the estimation of themetabolic heat source intensity inside
the tumor region. To solve these inverse problems we use temperature profiles on the skin surface that
may be obtained by infrared thermography.

Inverse problems are being increasingly used in the development of a lot of applications in different
areas of sciences. Some examples are the design of thermal equipments and heat transfer problems
[10, 11] in engineering, computerized tomography and imagereconstruction [12] in medical imaging and
structured population dynamics [13] in biology among others. For works related with thermal diagnosis
see [3, 14–17].

After we have introduced the medical facts about the skin cancer and the relation with the temperature
of the body, the plan for the rest of this work is the following. In section 2 we show the mathematical
model proposed to simulate the heat transfer in a human body in 2D and 3D domains. In Section 3
we present a difference scheme method of order two to discretize the continuous model, the bioheat
Pennes equation with the mixed boundary conditions. Also, we show some examples of the solutions
in 2D and 3D. In section 4 we present two different inverse problems, one of them associated with the
localization of the tumor region and the other one related with the metabolic heat rate. The different
results obtained from simulations with and without random noise are exposed. Finally, in section 5 we
give some comments and conclusions.

2 Mathematical model.

A number of bioheat transfer equations for living tissues have been proposed since the landmark paper
by Pennes [18] appeared in 1948. His main theoretical contribution was the suggestion that the rate of
heat transfer between the blood and tissue is proportional to the product of the volumetric perfusion rate
and the difference between the arterial blood temperature and the local tissue temperature.

The equation includes the heat transfer by conduction through the tissue, the volumetric metabolic
heat generation of the tissue and a term including the volumetric perfusion rate and the difference be-
tween the arterial blood temperature and the local tissue temperature, where the arterial temperature is
approximated to the core temperature of the body. The Pennesbioheat transfer equation is widely used
to solve the temperature distribution for thermal therapy [14–16].

In most of the works related with this topic the following steady-state Pennes equation is considered;

λe∇2Te(x)+ke[Tb − Te(x)]+Qme= 0, x ∈ Rn,n = 2,3.

where the subscriptse= 1,2 identify the sub-domains of healthy tissue and tumor respectively (Fig. 1),
λe is the thermal conductivity,ke = Gbecb is the perfusion coefficient (Gbe is the blood perfusion rate,
cb is the volumetric specific heat blood),Qme is the metabolic heat source andTb is the constant blood
temperature.

Figure 1: Three dimensional domain.Ω1 healthy tissue andΩ2 tumor region.

In this work, instead of considering discontinuous physiological coefficients, we consider, in order
to have a more realistic model, smooth coefficients. This wasdone using [19] and is explained below.
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Given the center and the radioR of the tumor we know where the subdomainΩ2 is located, so we
can define a curveγ such that:(i) is contained inΩ1 and(ii) is exterior to∂Ω2 (Fig.2). For simplicity
we considerγ as a circumference with the same center thatΩ2 and radioR+ f (R), where f is a linear
function with positive slope. Then, we define the functionsρe,e= 1,2, with the following properties:

1. ρ1(x) ≡ 0, x ∈ Ω2.

2. ρ1(x) ≡ 1, everywhere onγ and its exterior.

3. ρ1(x) is C∞ x ∈ Ω1 ∪ Ω2.

Similarly,

1. ρ2(x) ≡ 1, x ∈ Ω2.

2. ρ2(x) ≡ 0, everywhere onγ and its exterior.

3. ρ2(x) is C∞ x ∈ Ω1 ∪ Ω2.

Figure 2: (a)SubdomainsΩ1 andΩ2. (b)Functionρ1. (c) Functionρ2.

Then, for example, we define the thermal conductivity coefficient as:

λ(x) = λ1ρ1(x)+ λ2ρ2(x).

Doing the same with the rest of the physiological coefficients we obtain the following differential
equation:

λ(x)∇2T(x)+k(x)[Tb − T(x)]+Qm(x) = 0, x ∈ Rn,n = 2,3. (1)

whereλ(x),k(x) andQm(x) areC∞ in the whole domainΩ = Ω1 ∪ Ω2. The boundary conditions for
this equations are described next.

At the bottom boundaryΓb, a constant core temperatureTb was assumed:

T(x) = Tb, x ∈ Γb.

The lateral boundary conditions were prescribed as follows:

−λ(x)
∂T(x)

∂n
= 0, x ∈ Γl

whereΓl represents the lateral sides forn = 2 and the lateral facets forn = 3. The reason for adopting
the adiabatic condition on these boundaries is due to the assumption that at positions far from the center
of the domain the temperature field is almost not affected by any source located near the center or any
external heating or cooling.

Finally, at skin surface, the following convection condition was imposed:

−λ(x)
∂T(x)

∂n
= α[T(x) − Ta] x ∈ Γt ,

whereα is a heat transfer coefficient andTa is the ambient temperature andt = 4 in the 2 dimensional
case andt = 6 in the 3 dimensional.

It is possible to consider the evaporation on the skin surface, in that case we have to consider an
evolution in time for the heat equation, since the humidity coefficient depends on time.
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3 Numerical Method - Direct Problem

To solve the problem presented in the previous section we used a finite difference method (FDM). For
simplicity we show how we proceeded in the 2-dimensional case. We considered an equispaced grid on
thex andy directions and we approximated the Laplacian by a second order scheme.

To be clear, assume that∆x= ∆y= h, in the x-directioni = 1, ...,nx and in the y-directionj = 1, ...,ny,
so we have:

(
∂2T
∂x2 +

∂2T
∂y2 ) |i, j=

Ti+1, j − 2Ti, j +Ti−1, j

h2 +
Ti, j+1 − 2Ti, j +Ti, j −1

h2 ,

then the equation can be rewritten as

λi, j(
Ti+1, j − 2Ti, j +Ti−1, j

h2 +
Ti, j+1 − 2Ti, j +Ti, j −1

h2 )+ki, j [Tb − Ti, j ]+Qi, j = 0,

and doing some algebraic operations we obtain

Ti, j =
λi, j

4λi, j +h2ki, j
(Ti+1, j +Ti−1, j +Ti, j+1+Ti, j −1)+

h2

4λi, j +h2ki, j
(ki, j Tb +Qi, j). (2)

Because the partial derivatives in the Laplacian equation were approximated by a second order finite
difference scheme, the partial derivatives at the boundaries were also approximated by a second order
difference. We accomplished this by considering fictitiousgrid points outside the domain and then we
replaced these fictitious points in the main equation. Here we describe each boundary condition.

At the left lateral boundary we have:

∂T
∂x

|1, j=
T2, j − T0, j

2h
= 0,

thereforeT0, j = T2, j and replacing this into equation (2) and denotingβi, j = 4λi, j +h2ki, j we obtain:

T1, j =
λ1, j

β1, j
(T1, j+1+2T2, j +T1, j −1)+

h2

β1, j
(k1, jTb +Q1, j) j = 2, ...,ny − 1. (3)

In the same way, at the right lateral flux:

Tnx, j =
λnx, j

βnx, j
(Tnx, j+1 +2Tnx−1, j +Tnx, j −1)+

h2

βnx, j
(knx, jTb +Qnx, j) j = 2, ...,ny − 1. (4)

At the top convective boundary:

Ti,ny =
λi,ny

βi,ny +2hα
(2Ti,ny−1 +Ti+1,ny +Ti−1,ny +

2hαTa

λi,ny

)+
h2

βi,ny +2hα
(ki,nyTb +Qi,ny), i = 2, ...,nx − 1. (5)

Finally, the bottom boundary condition is:

Ti,1 = Tb i = 2, ...,nx − 1. (6)

We define the sequenceTn+1
i, j = F(Tn

i, j), whereF stands for the right hand sides corresponding to the

equations (2-6). Given an initial valueT0
i, j , we compute the values ofTn+1

i, j through the whole domain

4
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until maxi, je(i, j) < ε, wheree(i, j) is the relative error at(i, j) defined ase(i, j) =
|Tn+1

i, j −Tn
i, j |

Tn
i, j

andε the

desired tolerance error.
To show how the proposed numerical method works, we present some solutions of equation (1)

and the respective boundary conditions. In all cases the following thermal physiological parameters have
been assumed [14–16]:λ1 = 0.5[W/mK], λ2 = 0.75[W/mK], k1 = 1998.1[W/m3K], k2 = 7992.4[W/m3K],
Qm1 = 4200[W/m3], Qm2 = 42000[W/m3], Tb = 37◦C, Ta = 25◦C, α = 10[W/m2K] and a steph =
6 ∗ 10−4[m].

For the 2 dimensional examples the dimensions of the domain were 0.09 x 0.03[m] and in this partic-
ular first example, the center of the tumor was assumed at(0.045,0.020) and the radius was 0.005[m]. In
figure 3a we can see the temperature distribution over the whole domain, it starts at 37◦C at the bottom
and decreases, due to the convective condition at the skin surface, but it has an important increase in the
region where the tumor is located. Figure 3b shows the temperature profile on the skin surface, we see
a difference in temperature of almost 1◦C degree between the region that is above the tumor and regions
that are away from it. This agrees with the idea that the presence of a highly vascularized tumor can lead
to the increase of temperature at skin surface.

Figure 3: (a)Temperature distribution. (a)Temperature profile on the skin surface.

In figure 4 we present another 2 dimensional example. Here thecenter of the tumor was assumed
at (0.030,0.022) and the radius is equal to 0.004[m]. Figure 4a shows the temperature profile over the
whole domain and figure 4b the temperature profile on the skin surface. Again, we can seethere is a
difference of almost 1◦C between the area located above the tumor and areas that are further away.

Figure 4: (a)Temperature distribution. (b)Temperature profile on the skin surface.
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For the 3 dimensional case, we present two examples showing the proposed methodology. In both
examples we assumed a domain of dimension 0.09 x 0.09 x 0.03[m]. In the first example the location
center was assumed at(0.045,0.045,0.002) and the radius is equal to 0.06[m]. In figure 5 we see the
temperature profile on the skin surface. This figure reveals adifference of 0.5◦C between areas above the
tumor and areas above healthy tissue.

Figure 5: Temperature profile on the skin surface.

Figure 6 shows another 3 dimensional example. In this case the tumor center was assumed at
(0.06,0.06,0.02) and the radius is equal to 0.006[m].

Figure 6: Temperature profile on the skin surface.

4 Inverse Problem and Results

According to [4, 5, 8], the presence of a highly vascularizedtumor can lead to the increase of local blood
perfusion and the capacity of metabolic heat source and therefore this causes an increase of temperature
at the skin surface. Then, the idea is to use the abnormal temperature at skin surface in order to predict the
location, size and thermal parameters of the tumor, this hasbeen done considering two different inverse
problems. The first problem concerns in the localization; depth, width and size of the tumor, assuming
that all others parameters are known. The second one, is related with the estimation of the metabolic
heat source intensity inside the tumor region being known the location of the center and the radius of the
tumor.

In both cases we used the same methodology. Given temperature profiles obtained from the simula-
tions, these were used as the clinical data. Then the PatternSearch method [20–23], was used to estimate
the tumor parameters by minimizing a fitness function. The fitness function relates the given data to the
temperature profile for a given set of estimated parameters.For the first problem it was defined as:

E = ‖Tobs− Tnum(x,y,R)‖2,

whereTobs is the observed temperature andTnum is the estimated skin temperature obtained with the
FDM using the parameters(x,y,R). For the second problem the fitness function was defined in a similar
way. In both problems some linear constraints were considered during the minimization process. These
constraints are related with the geometry of the tumor and with the physiological parameters values.

Here we present some results we have obtained. These resultsshow that for the 2 dimensional case,
as well as for the 3 dimensional case, it is possible to determine the required parameters from the surface
temperature data. Moreover when 5% and 10% of random noise was added to the input data the results
obtained were very good. In the case when the input data were contaminated with 15% of random
noise the results obtained were good enough. In all cases thevalues of the known parameters and the
dimensions of the domain were the same as in section (3). We emphasize we have run the algorithm
several times using different initial random conditions and in all cases the results were similar.

Table 1 shows the results for the inverse problem related with the tumor location in 2 dimensions.
Here, we see that using the proposed methodology it is possible to determine the location and radius of
the tumor with a good accuracy.

The results obtained for the estimation of the metabolic heat source intensity in the two dimensional
problem are shown in table 2. Again, we see a good agreement between actual and predicted parameter.
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Original data without noise 10% noise 15% noise
x y R x y R x y R x y R

0.040 0.020 0.003 0.0400 0.0209 0.0003 0.0403 0.0203 0.0029 0.0399 0.0215 0.0028
0.020 0.015 0.004 0.0206 0.0158 0.0039 0.0199 0.0162 0.0038 0.0195 0.0168 0.0045
0.029 0.020 0.005 0.0289 0.0204 0.0050 0.2900 0.0193 0.0051 0.0286 0.0204 0.0048

Table 1: Estimation of the center and the radius of the tumor in 2D. The different columns show the
results obtained considering data without random noise anddata with random noise of 10% and 15%
respectively.

Original Data without noise 10% noise 15% noise
Q2 42000 42000 41881.17 42537.18
Q2 37000 37000 37177.50 37632.90
Q2 25000 25000 24891.71 25716.82

Table 2: Estimation of the metabolic heat source intensity in 2D. In all cases the center was assumed at
(0.045,0.02) and the radius equal to 0.005.

Table 3 shows the results related with the first inverse problem but in this case in 3 dimensions. It
should be noted that in this case the algorithm is time consuming.

Finally, table 4 shows the results obtained for the estimation of the metabolic heat source intensity
inside the tumor region. This problem is of our interest because the estimation of thermophysical pa-
rameters related with a tumor could be useful and important to study the tumor evolution after a cancer
treatment like the BNCT [7]. Comparison of the heat source intensityQ2 inside the tumor, before and
after the treatment, could be used as a measure to evaluate the effectiveness of the cancer treatment.

Remark : It’s worth noting that the good results obtained are largelydue to the strong restrictions
imposed to the class of functions allowed for the thermal coefficients and the metabolic heat source. This
can be taken in the sense of regularization by discretization [24]. The restriction imposed on the family
of functions implies a reduction in the dimension of the space of solutions.

5 Conclusions and future work

A simple methodology was developed for the estimation of thermophysical or geometrical parameters
of a tumor region using the temperature profile on the skin surface that may be obtained by infrared
thermography. These inverse problems have been solved using a second order finite difference scheme
coupled with the Pattern Search algorithm. The presented results demonstrate the feasibility of the pro-

Original Data without noise noise 10% noise 15% Original Data without noise noise 10% noise 15%
x 0.030 0.0301 0.0304 0.2989 x 0.020 0.0201 0.0198 0.0191
y 0.030 0.0300 0.0298 0.0303 y 0.015 0.0155 0.0156 0.0159
z 0.022 0.0221 0.0223 0.0231 z 0.019 0.0189 0.0179 0.0160
R 0.005 0.0050 0.0049 0.0048 R 0.006 0.0059 0.0063 0.0069

Table 3: Estimation of the center and the radius of the tumor in 3D. The different columns show the
results obtained considering data without random noise anddata with random noise of 10% and 15%
respectively.
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Original Data without noise 10% noise 15%noise
Q2 42000 42000 41690.09 40741.71
Q2 37000 37000 37957.31 36675.37
Q2 25000 25000 24609.03 26307.50

Table 4: Estimation of the metabolic heat source intensity 3D. In all cases the center was assumed at
(0.045,0.045,0.015) and the radius equal to 0.005.

posed methodology. Even in the case when 5% and 10% of noise was added to the input data the
methodology estimates the different parameters with very good accuracy for the 2D case as well as for
the 3D case.

The good results obtained are largely due to the strong restrictions imposed to class of functions
allowed for the thermal coefficients and the metabolic heat source.

According to the results, this methodology can help to locate tumor regions, like melanoma nodules,
as well as to estimate parameters related with them that could be useful and important to study the tumor
evolution after a treatment procedure.

As future work we plan to focus on the regularization of the problem considering different regular-
ization methods and iterative algorithms. In order to solvethe optimization problem, we will use an
algorithm that take in account the derivative of the functional like the conjugate gradient method.
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Figure2 (b)
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Figure2 (c)
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