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Abstract

This paper uses a multi-agent approach as a quick and easy tool for the
interpretation and analysis of the characteristics of Water Supply System
(WSS) components when working on a collection of Ground Penetrating
Radar (GPR) survey files. The multi-agent algorithm proposed in this paper
has been developed in Matlab and is based on Game Theory. The input
is the result of the GPR radargram survey and the output consists of the
agent scores in the game proposed in this paper. Useful information can be
gained by interpreting the columns of the output matrix that describe the
agents’ movements, together with the associated racing times. In effect, this
analysis enables a simple determination of the electromagnetic properties
of the underground system and provides an accurate classification of these
properties. The results of this agent racing algorithm are promising, since it
groups, and consequently, decreases the number of points that make up the
initial radargrams; while at the same time preserving its main properties, and
enabling clearer views of pipes and a better identification of the components
in WSS.
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1. Introduction1

Ground penetrating radar (GPR) has been extensively used as a non-2

destructive methodology to analyze components and anomalies in water sup-3

ply systems (WSS). The components most frequently analyzed are pipes;4

while only a few incipient attempts have been made regarding leaks. Infor-5

mation about components, changes undergone, and anomalies is necessary6

for the productive control and management of a WSS [1]. The following in-7

formation is crucial for achieving the goals of WSS technical management:8

identification of illegal connections, planning of supply systems, simulation9

and operation of networks, correct operation of plumbing systems, mainte-10

nance, rehabilitation and renewal of components, detection and control of11

leaks, application of Graphical Information Systems (GIS), and evolution of12

pollutants in the networks, among others. Recent studies, such as those per-13

formed by the US Environmental Protection Agency (USEPA), underline the14

use of non-destructive tools such as methodologies favoring technical man-15

agement of WSS - instead of destructive testing tools [2]. However, even16

though information retrieval by non-destructive methods is worthwhile, in-17

terpreting the huge volume of generated information usually requires high18

levels of skill and experience.19

Many GPR-based works have been developed that attempt to locate and20

detect components and anomalies in WSS. For example, some works apply21

methodologies borrowed from other non-destructive methods such as back-22

ground removal and migration [3], and other works aim to clean images of23

metallic pipes taken in GPR surveys. In addition, works related to leak-24

age make use of Hilbert and Fourier transforms [4]. The Hough transform25

has also been used in pattern, mainly hyperbolae, identification [5], and for26

segmenting and cleaning buried pipes [6], and in works devoted to optimal27

visualization of buried pipes [7]. Other works have focused on intelligent28

systems to automatically detect pipes in GPR images. Among these, it is29

worthwhile quoting: the use of neural networks [8], studies based on support30

vector machines [9], the application of fuzzy logic for the identification of31

patterns in the processing of GPR images [10, 11], or the location of plastic32

pipes using multi-agent techniques [12]. The success of these methodologies33

hinges mainly on the cleanliness of the images obtained when using classifi-34

cation pre-processing. In most cases, the objective is the identification of the35
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typical hyperbolae that identify the objects of interest in the image under36

study.37

The multi-agent paradigm is used in this paper to evaluate components38

of WSS from GPR radargrams. The aim of this work is to provide non-39

highly qualified technicians with non-destructive, easy, and computationally40

efficient procedures for interpreting GPR survey files. These procedures en-41

able technicians to gain insight into the layouts of the systems, and uncover42

various concealed characteristics of WSS components. Following the same43

line of research on GPR image processing discussed in a previous work by44

the authors [7], this paper takes the matter further by presenting a new45

multi-agent algorithm.46

The remainder of this paper is organized as follow. In the first section, a47

brief introduction to the work and GPR methodology is presented. The fol-48

lowing section introduces and develops the principles for the proposed multi-49

agent methodology. An experimental case in which the proposed methodol-50

ogy has been applied is shown in Section 3. A conclusions section closes the51

paper.52

2. Proposed method53

In this section, we explain the principles of ‘racing’ as a multi-agent ac-54

tivity and describe aspects of multi-agent behavior programming. Agent55

racing provides an interpretation and a grouping method for data from GPR56

radargrams.57

A multi-agent system consists of a population of autonomous entities58

(agents) situated in a shared structured framework (environment) [13]. Sig-59

nificant contributions of multi-agent systems to WSS may be found in the60

works of Gianetti et al. [14] and Izquierdo et al. [15, 16]. In a system repre-61

senting some reality (a radargram in our case) agents may be either exogenous62

or internal factors in the system. The multi-agent system is based on such63

tools as game theory and the agents are disseminated within the system to64

assess their immediate environments and make decisions about themselves,65

or their neighboring agents, or their environment. It is a system composed66

of subsystems at arbitrary nesting depths and different levels of abstraction.67

Given a fixed level, the individual components will be the agents that de-68

compose the whole system into different parts, and these are examined in a69

decentralised manner. This is more often efficient than working directly in70

some global approach. Agents operate independently (in our case) but they71
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can also interact with their environment and coordinate with other agents72

[17].73

The agent racing algorithm we propose has been developed in MatLab74

and is based on game theory. Game theory uses models to study formalized75

interactions between incentive structures (games) and carry out the decision76

process. Thus, the optimal strategies, and the expected and observed behav-77

ior for the agents (players) are studied. For a game to be in normal form [18]78

(such as the game we propose), the following requirements must be fulfilled:79

1. There is a finite set P of agents, which we label {1, 2, . . . , n}.80

2. Each agent s in P has a finite number of strategies, making up a strat-81

egy profile set, Σ.82

3. A payoff function is a function F : Σ→ R, whose intended interpreta-83

tion is the award given to a single agent at the outcome of the game.84

Accordingly, to completely specify a game, the payoff function has to be85

specified for each player in the agent set P = {1, 2, . . . , n}. So, the game is86

a function π :
∏
s∈P

Σs → Rn, [19]. Following the description of agent racing87

principles, we describe the proposed algorithm.88

The input of the agent racing algorithm is the radargram, which is the89

result of the GPR survey, a matrix of size m × n. The dimension m is the90

volume of signal data each trace records, which depends on the characteristics91

of the equipment used. The sample is an equipment parameter, commercial92

equipment being general sets of 512, 1024, and 2048 samples/trace. The n93

traces generated by the GPR survey are used as pseudo-parallel tracks for94

the n agents to compete. During the race, each agent s in P builds its vector95

of strategies ks, whose i− th coordinate is the strategy taken by the agent at96

time i. To build these successive strategies the agent examines its associated97

column, its track, which we call b, in the prospection matrix, as explained98

in the following paragraphs. The agents’ competition evolves in time from99

i = 1 until i = m. In the competition each agent s in P has four properties:100

a) interpretation, b) decision to move, c) movement time, and d) the race101

phases.102

2.1. Interpretation103

For each time during the race, an agent takes one value of the trace (bi);104

and then this value is compared with two more signal values, the before-value105

bi−1 and the next-value bi+1; and a binary value is generated as a result.106
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bini =


1, if i = 1
1, if bi−1 < bi < bi+1 ∨ bi−1 > bi > bi+1

0, if bi−1 > bi < bi+1 ∨ bi−1 < bi > bi+1

0, if i = m

(1)

2.1.1. Interpretation exceptions107

The exceptions for the interpretation property are related to the equalities108

between the current value and the contrast values (before and next values).109

Thus, one or both contrast values can equal the value of the current time.110

The equalities can be due to causes such as: a) wave amplitude values being111

too small to be differentiated among themselves; b) application of filters; c)112

failure to emit antenna signal because of internal faults; d) highly reflective113

soils; and e) others.114

The agent will look back and forward in search of times, for which the115

contrast values (before and next, respectively) are different to the current116

time value. These searches enable an agent to interpret the bin = 0 position.117

This value is compared with the current position and as a result the binary118

value for the current position is generated. The exception interpretation119

pseudo-code is shown in Table 1.120

Table 1: Looking for the bin = 0 position. Interpretation exceptions pseudo-code.

. . . looking back
i1=1
while (bi−i1 = bi ∨ i1 ≤ i− 2); do i1 = i1 + 1; end

. . . looking forward
i2=1
while (bi = bi+i2 ∨ i2 ≤ m− i− 1); do i2 = i2 + 1; end

. . . searching the bini3 = 0 position
i3 = round ((2 · i− i1 + i2) /2)

where i1: is the number of before times the agent looks back to get a value121

different from the value for the current time. i2 is the number of next times122

the agent looks forward to obtain a value different from the value for the123

current time. i3 is the time when the agent assumed that the binary value124

is zero.125
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After time i3 obtained, the interpretation rule for exceptions is deter-126

mined by Equation 2.127

bini =

{
0, if i3 = i
1, otherwise

(2)

2.2. Decision to move128

An agent’s decision to move is based on the binary value variation. Ac-129

cording to this variation, a property called stamina varies positively (variable130

StaIni, Equation 3) or negatively (variable StaEnd, Equation 4).131

StaIni =


1, if i = 1

StaIni+ 1, if bini−1 = 0 ∧ bini = 1
StaIni, otherwise

(3)

StaEnd =


0, if i = 1

StaEnd+ 1, if bini−1 = 1 ∧ bini = 0
StaEnd, otherwise

(4)

When the total stamina is zero, that is StaIni equals StaEnd, the agent132

receives its payoff for the effort performed. This is accomplished by the133

variable AgeMov. As explained in subsection 2.4, this is applied during the134

‘official’ race, just after the warming-up.135

AgeMov =


0, if i = 1

AgeMov + 1, if StaIni = StaEnd ∧ tw 6= 0
AgeMov, otherwise

(5)

2.3. Movement time136

Each effort developed by an agent happens between a start time and137

end time. These values, associated with the agent movement (AgeMov) are138

stored in two agent personal vectors, namely, StaT iIni (Equation 6) and139

StaT iEnd (Equation 7), respectively.140

StaT iIniAgeMov+1 =

{
1, if i = 1
i, if bini−1 = 0 ∧ bini = 1

(6)

StaT iEndAgeMov =

{
1, if i = 1
i, if bini−1 = 1 ∧ bini = 0

(7)
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Moreover, every agent movement (AgeMov) has one associated MovTi141

movement time that we define as the average time between the stamina’s time142

start (StaT iIni), and the stamina’s time end (StaT iEnd). A component of143

MovTi is defined every time the difference between these stamina values is144

0:145

MovTiAgeMov =
StaT iIniAgeMov + StaT iEndAgeMov

2
(8)

2.4. The race phases146

The race comprises two phases: a) warming-up, and b) racing. The phases147

are characterized by two times: a warming-up time (tw, Equation 11), and a148

racing time (tr), totaling a time t = tw + tr, where the tw time corresponds to149

the time for the agent to overcome the end wave amplitude value (AmplEnd,150

Equation 9) in some percentage of the average wave amplitude value for the151

before-values for the current time (AmplProm, Equation 10).152

AmplEnd =


1, if i = 1
bi, if StaIni = StaEnd

AmplEnd, otherwise
(9)

AmplProm =


bi, if i = 1

i−1∑
j=1

bj
(i− 1)

, otherwise
(10)

tw =


0, if i = 1

MovTiAgeMov, if |AmplEnd| > x · |AmplProm| ∧ tw = 0
0, otherwise
tw, if tw 6= 0

(11)

where x = 1.1, this being an experimental value.153

2.5. Recommendations154

In the proposed method (Section 2) the raw traces can be used. However,155

we recommend data interpolations so that the use of interpretation exceptions156

(subsection 2.1.1) is minimized. Among the interpolations most used in GPR157

to correct and find the truth peaks - the linear, polynomial, and cubic spline158

[20, 21] must be quoted. In this work, we use the cubic spline interpolation.159

An example for a trace is shown in Figure 1.160
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Figure 1: Example of how the interpolation function can be used to correct the clipped
form of the traces.

With the interpolation the clipped wave parts have been corrected (Figure161

1). We also use interpolation to obtain a finer data discretization. Thus,162

we carry the trace value from the original amount to a constant value (4096163

samples/trace), which enables comparison between radargrams with different164

rates of capture (samples per trace). In addition, in this work we use the165

absolute wave amplitude values, which improve the final visualization because166

agent stamina increases during the competition.167

3. Experimental study168

This section provides the implementation of the proposed method of WSS169

component evaluation from GPR radargrams using a multi-agent approach,170

as described in Section 2. The case-study corresponds to GPR images taken171

from a plastic pipe commonly used in WSS. The pipe material tested was172

PVC with a diameter of 0.10 m. The GPR image was obtained by burying173

the pipe in dry soil in the test tank. The following task consists in post-174

processing the captured GPR radargram using the proposed method. In175

Figure 2, some competition times are shown.176

In Figure 2, we can observe the different agent reactions after the pass-177

ing through the soil configurations. Thus, for the analyzed radargram the178

warming-up phase is not finished until time 475, and the first movement for179

the racing phase takes place at 476. Similarly, the grouping of agents in180

areas is observed after the competition is finished, and this corresponds to181
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Figure 2: Some competition times.

the proposed test configuration. For a better interpretation, in Figure 3 we182

contrasted the last race time with the schematic configuration test proposed.183

Figure 3: Last race time versus schematic configuration test.

In the last race time, the agent movements indicate, for the proposed test184

configuration, different velocity areas (Figure 3). In addition, the marked185

areas correspond to the soil velocities for the test: the materials for the186

tested soil being air, wall, dry soil, mixed area, dry soil and wall (from left187

to right). Moreover, the mixed area is the accumulation of velocities, since188

the air, dry soil, PVC, air, PVC and dry soil compose the mixed area (from189

top downwards). The movement times (MovTi) for each agent are rendered190

graphically and the result is shown in Figure 4, b. The input for the race191

(radargram) and the schematic test configuration are shown in Figures 4, a192

and c, respectively.193

In the images shown in Figure 4, b presents a smaller number of points194

than the corresponding image in Figure 4, a, and thus enabling an easier195

interpretation. It can also be observed when comparing Figures 4, b and c,196

that obtained points with similar configurations also produce similar images.197
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Figure 4: a) radargram, b) final image, and c) squematic configuration for test.

As a result, we can demonstrate that the application of the proposed multi-198

agent method improves insight into the subsoil properties.199

4. Conclusions200

In this paper we propose a tool for WSS component evaluation from GPR201

radargrams using a multi-agent approach. In the raw captured radargram202

without post-processing, we can see how the weakly reflective plastic pipe203

materials (PVC) are difficult to identify. The transformation of the raw204

data based on the proposed multi-agent method improves the visualization205

of plastic pipe images by producing a better representation of the signal206

characteristics. In general, it is much easier to see the pipe features in the207

GPR images. This procedure reduces the number of points that comprise the208

radargrams, and provides clear information for further intelligent processes.209

In each point obtained for the figures, the most relevant information for their210

environment has been grouped. The points can be visualized in a binary scale211

of colors (white and black), and thereby subjectivity in the choice of the color212

scale is eliminated.213

Finally, it should be noted that this is a simple process that does not214

depend on specialist skills (thus being a non-subjective process) and is re-215

peatable. The proposed multi-agent method is efficient with computational216

resources (even in the complicated case of plastic pipes). The amount of infor-217

mation dealt with has been reduced, while reliability is preserved. Moreover,218

the proposed method offers the possibility of more detailed analysis in terms219

of time with the movements of agents, and this creates the possibility of bet-220

ter interpretations that could serve as a basis for intelligent training systems.221

This approach would help give WSS managers a more accurate vision of the222

systems they operate and, as a result, offer a better service to users.223
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