
White matter tractography by anisotropic wavefront evolution and
diffusion tensor imaging

Marcel Jackowskia,*, Chiu Yen Kaod, Maolin Qiua, R. Todd Constablea,b, and Lawrence H.
Staiba,b,c
aDepartment of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
bDepartment of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
cDepartment of Electrical Engineering, Yale University, New Haven, CT 06520, USA
dInstitute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455,
USA

Abstract
Determination of axonal pathways provides an invaluable means to study the connectivity of the
human brain and its functional network. Diffusion tensor imaging (DTI) is unique in its ability to
capture the restricted diffusion of water molecules which can be used to infer the directionality of
tissue components. In this paper, we introduce a white matter tractography method based on
anisotropic wavefront propagation in diffusion tensor images. A front propagates in the white matter
with a speed profile governed by the isocontour of the diffusion tensor ellipsoid. By using the
ellipsoid, we avoid possible misclassification of the principal eigenvector in oblate regions. The
wavefront evolution is described by an anisotropic version of the static Hamilton–Jacobi equation,
which is solved by a sweeping method in order to obtain correct arrival times. Pathways of connection
are determined by tracing minimum-cost trajectories using the characteristic vector field of the
resulting partial differential equation. A validity index is described to rate the goodness of the
resulting pathways with respect to the directionality of the tensor field. Connectivity results using
normal human DTI brain images are illustrated and discussed. We also compared our method with
a similar level set-based tractography technique, and found that the anisotropic evolution increased
the validity index of the obtained pathways by 18%.
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1. Introduction
Diffusion tensor imaging (DTI) has emerged as a noninvasive imaging modality capable of
providing in vivo information of the white matter structure in the human brain. Brain white
matter, because of its elongated and fibrous nature, exhibits higher hindrance to water diffusion
across the fiber axes than along them. This directional variation also known as anisotropy, is
defined by the variance of diffusivity rates which can be captured by diffusion-weighted
images. Although the true source of anisotropy in white matter still is not well understood, this
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water restriction is mostly attributed to the cell membrane and has been shown to be modulated
by the myelin sheath (Takahashi et al., 2002; Beaulieu, 2002).

In DTI, by acquiring diffusion-weighted images in at least six non-collinear directions, it is
possible to estimate a 3 × 3 symmetric matrix (i.e. diffusion tensor) at each location that
characterizes diffusion in anisotropic systems (Basser et al., 1994). By diagonalizing this
matrix, one can find its eigenvalues and eigenvectors which represent the main diffusion
orientations within a voxel. In the white matter, the eigenvector corresponding to the largest
eigenvalue is assumed to point along the direction of a fiber bundle. Classical tractography
methods, known as line propagation methods or streamline-based techniques, rely on the
orientation of the largest eigenvector to determine the orientation of axonal fiber pathways
(Mori et al., 1999).

Numerous fiber tractography techniques have been described in the literature (Mori et al.,
1999; Basser et al., 2000; Poupon et al., 2000; Mori and van Zijl, 2002; Lori et al., 2002). They
have enabled the reconstruction of large white matter structures in the brain such as the corpus
callosum and pyramidal tracts. Classical methods propagate from a seed voxel by locally
adapting the curve orientation to the vector field given by the major tensor eigenvector. They
end at locations with low anisotropy or at places where the trajectory takes a sharp turn. Several
problems, however, affect their reliability. First, the diffusion images are subject to acquisition
noise (Anderson, 2001) which can impede the ability to track fibers. Also, while it is true that
the principal eigenvector provides an estimate of the microscopic fiber direction (Beaulieu,
2002), because of partial voluming when fiber tracts cross, branch or merge, signal
contributions from multiple tissues can affect individual voxel measurements (Alexander et
al., 2001) resulting in a variation in the distribution of fiber directions. Therefore, tracing
smaller bundles becomes a significant challenge to line integration methods at current
resolution limits.

Methods derived from level set theory (Osher and Sethian, 1988) have been recently employed
to track axonal pathways (Parker et al., 2002b; O’Donnell et al., 2002; Lenglet et al., 2003;
Campbell, 2004). These techniques model the evolution of an advancing front through the
white matter tracts by following the local directionality provided by the diffusion tensor field.
Such methods have been shown to be more robust to noise and singularities (branches,
crossings, etc.) than classical streamlining methods (Campbell, 2004). Also, this framework
not only allows for track reconstruction but it automatically assigns a connectivity value for
every point in the tract.

A tractography technique based on Tsitsiklis’ fast marching method (FMM) (Tsitsiklis,
1995) was first used by Parker et al. (2002b). A front was evolved with a speed proportional
to the colinearity between the front normal and the tensor principal eigenvector. A discrete
approximation of front direction was used to drive the evolution through the eigenvector field,
since the original FMM does not correctly handle propagation in oriented domains. O’Donnell
et al. (2002) introduced two different approaches. The first approach is an extension of earlier
methods that models the problem as a heat diffusion equation and then computes the flux flow
across a certain cross section at steady state. In their second approach, the problem is posed in
a Riemannian framework where locally the space is warped based on the three eigenvectors
and the connectivity corresponds to the path lengths of the underlying geodesic paths. A level
set was evolved with a speed proportional to the length of the projected surface normal from
Riemannian into Euclidean space. Similarly, Lenglet et al. (2003) has considered the white
matter as a Riemannian manifold. The problem of finding a path between points in the white
matter becomes one of finding minimal geodesics in the Riemannian space. Both methods
employed the dynamic perspective of level sets, in which a narrow band was employed to
constrain front propagation and reduce computation time. Campbell (2004) has recently
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described a level set approach for determining connectivity using tensor and high angular
resolution diffusion acquisitions. There, a wavefront was propagated using the fiber orientation
distribution (ODF) derived from the spin displacement probability function. While arrival
times of the wavefront were used to compute fiber likelihood values, the problem was
formulated as a time-dependent dynamic evolution and required explicit recording of the arrival
times at each point. Minimum-cost pathways were then traced by using the gradient of the
solution, as done by Parker et al. (2002b).

Our method also poses the connectivity problem in the setting of level set theory. We extend
our previous connectivity work made on synthetic tensor fields and determine its applicability
in real human diffusion tensor data (Jackowski et al., 2004; Duncan et al., 2002b). In contrast
to other level set-based methods, we adopt an anisotropic distance function for front evolution,
in which the discrete approximation of front normal is not required. The speed by which the
front propagates is given by the distance between the center of the diffusion ellipsoid and a
point on its isocontour in the front normal direction. The solution to the resulting partial
differential equation (PDE) is obtained by an iterative sweeping approach, yielding correct
arrival times. By using a static version of the level set equation, we avoid the localization and
recovery of each zero-level set at different time steps, as is done by other methods. Similarly
to other approaches (O’Donnell et al., 2002; Campbell, 2004) though, we use the entire tensor
to control the evolution and avoid the possible biasing of its principal eigenvector in more
isotropic regions.

Because the propagation equation is anisotropic, we backtrack along its characteristic curves
rather than its gradient in order to extract fiber pathways. Characteristic curves are integral
curves obtained by reducing the evolution PDE into a set of ordinary differential equations.
The combination of the these curves provide a solution to the PDE. In the following, we first
model the white matter connectivity problem as one of wave-front evolution. Then we proceed
to describe our front evolution model and the numerical algorithm to solve the respective PDE.
We also show that the minimum-cost pathway is determined by the characteristic vector of the
PDE and not its gradient direction (Lin, 2003). Connectivity results using a normal human
dataset are presented and compared to those obtained with the fast marching approach (Parker
et al., 2002a).

2. Methods
2.1. Minimum-cost pathways

The white matter connectivity problem can be viewed as an instance of the minimum-cost path
problem in an oriented weighted domain. Essentially, one would like to find a fiber pathway
P(s) : [0, ∞) ↦ R3 that minimizes some cumulative travel cost from a starting point A to some
destination point B in the diffusion tensor field.

In the case of simple scalar images, the cost function, given by τ or its reciprocal speed F = 1/
τ, is only a function of position x, and it is called isotropic:

(1)

where L is pathway length, and the starting and ending points are given by P(0) = A and P(L)
= x. A solution to (1) also satisfies the Eikonal equation ‖∇T‖F(x) = 1, which describes a
wavefront propagating with speed F, where T(x) is the time of arrival of the front at point x.

An efficient single-pass method to solve the Eikonal equation was originally designed by
Tsitsiklis (1995) and rediscovered by Helmsen et al. (1996) and Sethian (1996) and it is widely
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known as the FMM. The FMM provides a continuous solution to the shortest-path problem by
employing upwind differences and a causality condition.

In the case of DTI, however, we need to consider the embedded directionality present in the
tensor field, and thus the cost function τ will be a function of both position P(s) as well as
direction P′(s). Because of this directional dependence, the cost function is called anisotropic
and is given by

(2)

where again L is pathway length, and the starting and ending points are given by P(0) = A and
P(L) = x. A solution to (2) satisfies the so-called anisotropic wave propagation equation

(3)

which describes a wavefront propagating with speed F where T(x) is the time of arrival of the
front at point x. This type of equation typically arises in problems where a preferred direction
of travel exists.

Classical solutions for PDEs are obtained by first reducing it into an independent system of
ordinary differential equations (ODE). This can be accomplished by the method of
characteristics (Ockendon et al., 2003; John, 1982). For a first-order PDE, a characteristic is a
line in phase space, that comprises the independent variables, dependent variables and its partial
derivatives along which the PDE degenerates into an ODE. With suitable initial boundary
conditions, the solution can then be constructed by solving the ordinary differential equations
and following the characteristics. The union of these characteristic curves form a surface which
provides a solution to the PDE. Note that solutions to (3) in continuous space are given by the
Hamilton–Jacobi (HJ) equations and a classical solution may not exist because they develop
discontinuities. Hence the viscosity solution is commonly sought (Osher and Sethian, 1988;
Sethian, 2000; Osher and Fedkiw, 2003; Crandall and Lions, 1984). The viscosity solution is
obtained by adding a smoothing term to the right-hand side of the PDE. This smoothing term
is a function of the second derivatives of the equation and prevents the developments of such
discontinuities. Numerical approximations of the viscosity solution have been studied (Kao et
al., 2002, 2004; Sethian and Vladimirsky, 2003).

Once the evolution equation (3) is solved for all points in the domain, one can derive a solution
for the minimum-cost path (2) by tracing the characteristics of the wavefront using the resulting
arrival times.

2.2. Connectivity wavefront model
In contrast with methods which rely on the principal eigenvector of the tensor in order to trace
connectivity, we employ the entire tensor in the propagation model. This is similar to other
approaches (Lazar et al., 2003; Lenglet et al., 2003; O’Donnell et al., 2002), however we
properly account for the anisotropy present in the resulting PDE. By using the entire tensor,
we avoid measurement errors of the principal eigenvector in oblate tensor regions, which may
lead to wrong assignment of front arrival times.

Let us assume the diffusion tensor D has been factored into D = VAV−1, where V is the matrix
containing the eigenvectors and A is a diagonal matrix containing the corresponding
eigenvalues. Furthermore, assume the eigenvectors are ordered such that λ1 > λ2 > λ3. The
diffusion tensor can be written into a normalized form D′ = VA′V−1, where A′ = A(1/λ1). This
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normalization makes the any segment connecting the center of the ellipsoid to its surface have
a maximum length of 1.0. In our propagation, we will use this length to drive the propagation.
This is also done because we are not concerned with the apparent diffusivity coefficients from
the original tensor, but rather the ellipsoid’s shape, which will control evolution.

We design our wavefront to evolve from a given seed point A, T(A) = 0, at a speed governed
by the distance from the center of the diffusion ellipsoid, D′ to its isocontour in the front normal
direction n⃗:

(4)

The motivation behind Eq. (4) is to let the speed vary locally according to the normalized tensor
isocontour, descriptive of the underlying diffusion process. The value of d(n⃗) will be 1.0 when
n⃗ = ε1. Thus, we can write the propagation equation as follows:

(5)

where α weighs the final propagation speed. Since water diffusion measured in the ventricles
and in the gray matter is less directional than in the white matter, the resulting tensor profile
tends to be spherical with eigenvalues λ1 ≃ λ2 ≃ λ3. We want to prevent propagation into these
areas, and thus we choose α to be a measure of diffusion tensor anisotropy. For that, we use
the well-known FA index (Basser and Pierpaoli, 1996). While we have experimented with
different forms of α previously (Jackowski et al., 2004), we did not observe a significant
difference in the propagation result. In this work, we set α = FA. In areas of crossings and
branches, it is expected that a low FA value will slow down the evolution and thus penalize
these areas with higher traversal costs. The evolution, however, will still get through these
singularity regions, since the FA will not be as low as in isotropic regions.

Propagation equation (5) belongs to a family of static HJ equations described by

(6)

where Ω is the domain in 3, V(x) = 1, and s(x) is a function prescribing boundary condition
values, T(A) = s(A) = 0. Therefore, we can rewrite (5) as the following Hamiltonian, after
discarding the dependence of x on H:

(7)

where p = ∂T/∂x, q = ∂T/∂y, r = ∂T/∂z and dij are the tensor elements. While Eq. (5) can be
reformulated as a time-dependent HJ equation and solved by recovering each zero-level set, it
is more convenient and less computationally expensive to model it as a static problem and
determine arrival times instead. In the following section, we will describe an iterative method
that solves our static HJ equation (7) so that a viscosity solution can be obtained.
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2.3. Anisotropic wavefront evolution
Hamiltonians such as (7) cannot be correctly solved by isotropic propagation methods, such
as the FMM. While numerical methods for obtaining viscous solutions to static anisotropic
propagation equations exist, their implementation tends to be more involved than those used
in isotropic problems. Single-pass (Sethian and Vladimirsky, 2003) and iterative methods
(Kao et al., 2002, 2004) have been devised to construct accurate solutions for such equations.
Single-pass algorithms are based on the monotonicity of the solution along the characteristic
directions in order to compute the arrival time T(x). Iterative methods, on the other hand,
compute arrival times in a number of pre-defined directions.

We use a Lax–Friedrichs (LF) discretization of our Hamiltonian and employ a nonlinear
Gauss–Seidel updating scheme (Kao et al., 2004) to solve the propagation equation. With the
LF discretization, a solution at each grid point can be easily obtained in terms of its neighbors.
Also, no minimization is required when updating an arrival time, and thus it is very easy to
implement.

The Lax–Friedrichs Hamiltonian of Eq. (7) is defined as

(8)

where p±, q± and r± are the forward and backward difference approximations for ∇T, and σi
are the artificial viscosities which depend on the second derivatives of H with respect to p, q
and r. This artificial dissipation smoothes out possible discontinuities and therefore enforces
the stability of the approximation (Osher and Fedkiw, 2003).

2.3.1. Lax–Friedrichs sweeping algorithm—Initially, all seed points for propagation are
labeled as frozen and their time of arrival are assigned to zero (Step 1).

Next, to get a numerical approximation for (7) we solve for HLF = 1 by sweeping the domain
in the alternating directions ±x, ±y and ±z (Step 2). By doing this, we are able to follow a group
of characteristics at each iteration. At every point, HLF is evaluated in terms of the immediate
adjacent neighbors (Update step). Values from the previous sweeping step are used to make

the approximation decreasing so that it updates an arrival time only if .

Sweeping is stopped when the convergence criterion  is met (Step 3).

Outline: Consider the volumetric domain [xmin, xmax] × [ymin, zmin] × [zmin, zmax] with points
(xi, yj, zk), i ∈ [0, 1, …, mx, mx + 1], j ∈ [0, 1, …, my, my + 1] and k ∈ [0, 1, …, mz, mz + 1],
where xi = (i − 1)Δx + xmin, yj = (j − 1)Δy + ymin, zk = (k − 1)Δz + zmin and let Δx = (xmax −
xmin)/(mx − 1) and similarly for Δy and Δz.

1. Initialization. Assign T(0)(x) ← s(x) for points where exact solution is known. Freeze
these grid values. For all other points, assign T(0)(x) ← ∞.

2. Sweeping. Let (rx, ry, rz) = (±1, ±1, ±1) be the alternating directions in each dimension:

for (i = (rx < 0?mx : 0); (rx < 0?i≥ 0 : i < mx); i+ = rx)

for (j = (ry < 0?my : 0); (ry < 0?j ≥ 0 : j < my); j+ = ry)

for (k = (rz < 0?mz : 0); (rz < 0?k ≥ 0 : k < mz); k+ = rz)
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Update 

3. Convergence. If ‖Tm + 1 − Tm‖ ≤ ε, stop, otherwise go to step (2).

Update. Given iteration m + 1, if point (i, j, k) is not frozen, let a = p+ + p−, b = q+ + q− and
c = r+ + r− and compute

where .

Because the 3D LF method yields a solution utilizing adjacent neighbors, values for points
outside the boundary of the domain are extrapolated in order to guarantee the outflow of the
solution at the computational boundary.

The accuracy of the LF method will depend on the grid size chosen as well as the artificial
viscosities. Large viscosity values will smear out the solution, so it is important to select

appropriate values for σi, such that . More details
on the algorithm, accuracy and convergence of the LF sweeping (LFS) scheme can be found
in (Kao et al., 2004).

In the case of diffusion tensor images, we can speed up the wavefront evolution process by
masking out the background, focusing the calculations only on the brain parenchyma. Thus we
freeze values outside the mask, setting the arrival times to infinity. Since frozen values are
assumed to be given, they are never updated, speeding up the sweeping process.

2.4. Characteristic directions
It is important to realize that minimum-cost paths are determined by the characteristic curves
of the PDE (Ockendon et al., 2003; John, 1982). A generic first-order PDE with m independent
variables is described by

(9)

where u is a function of the independent variables xi. In our case, u represents the arrival times
of the wavefront. The characteristics for such a PDE can be obtained via Charpit’s equations
(Ockendon et al., 2003):

(10)
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(11)

(12)

Together, they form a (2m + 1)-dimensional characteristic space which describes the solution
of u. Given appropriate initial values for pi and u at t = 0, one can construct the solution for
the PDE, by integrating each one of these equations along t. The characteristic vector

 of the solution u given by (10) is a projection of the higher-order characteristic
space. Its integration with respect to t will yield the characteristic curves of the PDE.

In the case of isotropic equations, such as the 3D Eikonal,

(13)

it is easy to observe that the characteristic vector  will lie in the same direction as the gradient,
since

(14)

and therefore the minimum-cost path X, between point A and an arbitrary point B becomes a
solution to dX/dt = −∇u, given X(0) = B. This optimal path can be constructed by integration
starting from point B back to the seed point A using standard numerical techniques. Fig. 1(a)
illustrates the evolution of an isotropic wavefront in a two-phase environment. In the left half
of the space F = 1 and in the right half, F = 2. The front propagates faster once it reaches the
region with less viscosity. Both normals and characteristics are the same and are depicted in
Fig. 1(b). Fig. 1(c) illustrates minimum-cost pathways from different locations in the less
viscous area.

Consider now the following anisotropic 3D Eikonal equation:

(15)

In the case where F = 1 everywhere, this equation describes a wave propagating in an ellipsoidal
fashion. Differentiating H with respect to p1, p2 and p3 yields the following characteristic
vector:

(16)
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Note that, in this case, the characteristic  no longer coincides with the gradient n⃗ = ∇u.
Therefore, one must integrate  instead to obtain the minimum-cost path. Fig. 2(a)
shows the 2D propagation of an anisotropic front (a = 1, b = 0.25) through a two-phase
environment: left region with F = 1 and F = 2 in the right. Fig. 2(b) shows the front normal
vector field which is clearly different from the characteristic vector field seen in Fig. 2(d). That
is because the propagation equation depends not only on location but also on the direction of
the front, since it favors the x axis over y. Shortest-paths are then characterized by integrating
along the characteristics (Fig. 2(e)) rather than normals (Fig. 2(c)).

As we have seen above, when correctly designed, the speed function F may also depend on
the gradient information of the wavefront, and this will also make the PDE anisotropic. Again,
in such instances, the trivial integration of ∇T will not yield the correct result for the minimum-
cost path problem. Furthermore, any geometrical information derived from such pathways,
such as curvature or directional coherence to the tensor field may become meaningless.

2.5. Validity index
After tracing the fiber pathways by back-tracing on the characteristic vector field, we must still
assess how coherent these pathways are to the underlying fiber directionality. This is necessary
because we also allow movement in the direction perpendicular to the direction of principal
diffusivity, albeit to a smaller degree. We define a validity index as the mean colinearity
between the tangent of the pathway P(s) and the principal tensor eigenvector ε⃗1:

(17)

The validity index will be maximum for a minimum-cost trajectory that closely follows the
principal eigenvector field. We anticipate that because of fiber crossings and other partial
volume effects, the validity index may be low in areas containing singularities. Nevertheless,
the mean colinearity value provides a reasonable index for assessing whether a minimum-cost
pathway represents a true trajectory in diffusion tensor images. The validity index is similar
in nature to what has been described as a connectivity metric (Parker et al., 2002a). It will also
enable a quantitative comparison of our method with Parker’s fast marching tractography
(Parker et al., 2002a).

3. Results
Diffusion-weighted data of a normal subject was acquired using a Siemens 3T Trio scanner
with a standard head coil. A single-shot EPI image of matrix size 128 × 128 × 40, resolution
2 × 2 × 3 mm3, b-factors 0 and 600 s/mm2, TR = 5400 ms, TE = 81 ms, and 32 gradient
directions uniformly sampled on a sphere was obtained. A twice-refocused spin echo pulse
sequence was utilized to minimize the distortions due to Eddy currents (Reese et al., 2003).
The diffusion tensor was calculated from a total of 12 averages to maximize signal to noise
ratio. The diffusion tensor was diagonalized and the fractional anisotropy (FA) map calculated
using its eigenvalues.

3.1. Lax–Friedrichs sweeping method
In order to evaluate connectivity using LFS method, we fixed a seed point in the splenium of
the corpus callosum (Fig. 3(a)) and propagated our wavefront throughout the tensor image
(Fig. 3(b)). A total of 45 iterations were needed for convergence with ε = 10−3. Time for
convergence was ≈7 min on a Intel Pentium Xeon 1.7 GHz machine with 1.5 Gb of RAM.
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Fig. 3(c) depicts the resulting arrival time level sets between 0 and 1600. In order to trace
connectivity pathways to the splenium, we first obtained an approximate boundary of the white
matter according to the following procedure. The FA image was thresholded at 0.18, in order
to obtain all points belonging to the white matter. Next, by using a morphological operator, we
determined the inner boundary of the thresholded region. Boundary points belonging to
ventricles were removed. All pathways between points on this boundary and the point in the
splenium were traced using the characteristic directions. A total of 14,952 fibers were
successfully traced from the boundary points. A 4th order Runge–Kutta method with an
integration step  was used.

Fig. 3(d) shows the resulting fiber pathways. Individual points were colored according to the
colinearity between the tangent and the principal tensor eigenvector, representing the validity
index at each point. A continuous ramp of colors varying from yellow to red was associated
with the validity index. High validity values are shown in red while points with low validity
are shown in yellow. Fig. 3(e) shows the fiber pathways colored with the mean validity index
computed on a fiber-by-fiber basis. Although sections of fibers located far from the splenium
had a strong validity value (such as those in the frontal lobe), only fibers connecting closer
regions yielded a high fiber mean validity value.

In order to assess whether the validity index could be used to rate the goodness of the extracted
pathways, fibers were thresholded based on their mean validity scores. Fig. 4(a)–(e) shows top
20%, 10%, 5%, 2.5% and 1.2% fibers, respectively. Fibers are colored according the validity
values on individual fiber points. Table 1 shows minimum, mean and variance values of the
validity index for each set of fibers. As we raise the threshold on the validity index, fewer fibers
are obtained and the group mean validity value increases as expected. At 1.25%, although
minimum group validity was 0.7901, there were still few fiber sections with even lower validity
(shown in yellow), very likely indicating regions of singularities. For comparison, we show
the same result for fibers found using the FMM, described next.

3.2. Fast marching method
Here we compare the differences between connectivity results obtained with isotropic (Parker
et al., 2002a,b; Lazar et al., 2003) methods versus the LFS anisotropic propagation method.
The fast marching tractography (FMT) technique designed by Parker used the FMM to
determine connection pathways between points in the white matter. In their work, the wavefront
traveled with a speed according to the colinearity between principal tensor eigenvector ε⃗1 and
front normal n⃗. As we have pointed out earlier, the resulting PDE becomes anisotropic. Since
the FMM only handles speed functions that depend on position (Sethian and Vladimirsky,
2003), it is interesting to compare the two methods when measuring connectivity.

Before comparing connectivity results, let us first investigate their propagation in the case of
uniform speed fields. Let ‖∇T‖(n⃗ · ε⃗)2 = 1 be the propagation equation. This equation models
a wavefront that travels fastest when the normal has the same orientation as the underlying
vector field ε⃗. In the FMM, we will approximate n⃗ during the fast marching process using the
arrival times of neighboring points. Fig. 5(a) shows the resulting propagation using the FMM
with ε⃗ = (0, 1, 0)T. As one would expect the wavefront correctly moves faster in the y direction.
Fig. 5(b) shows the result of propagation by using the LFS method. Except for a smoother
result, the LFS does not show a drastic change. Now let us tilt the vector field, such that ε⃗ =
(1, 0.5, 0)T. Fig. 5(c) shows the corresponding result using the FMM. Note, in this case, the
level surfaces do not accurately depict the intended expansion. The LFS method, however, was
able to correctly solve the PDE (Fig. 5(d)). While a discrete approximation of n⃗ in the FMM
degrades the accuracy of the arrival times, the resulting solution profile in Fig. 5(c) should still
resemble an ellipsoidal shape. The answer to the problem lies in failing to observe the causality
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condition in the fast marching method, where it is assumed that the gradient of arrival times
coincides with the direction of the characteristic. In this example, they will only coincide when
∇T = ±ε⃗.

To investigate the differences in terms of connectivity between the LFS and the FMM methods,
we seeded a point in the frontal lobe of the right hemisphere and probed for its frontal
connections in left hemisphere. In these experiments, the LFS method will use the characteristic
vector for tracing pathways while the FMM will use the gradient vector, unless otherwise
stated. A subset of the white matter boundary points (1, 317) from the frontal area in the left
hemisphere was used to back-trace pathways to the origin of propagation. From Fig. 6(b) and
6(c), it can be seen that pathways resulting from these two methods differ substantially in their
trajectories. The main reason for this difference is the use of the gradient of the arrival times
by the FMM to compute the connectivity pathways. These pathways do not represent true
minimum-cost trajectories, however they tend to converge into branches which coincide with
high directional coherence. Fig. 6(c) shows true minimum-cost pathways which follow the
characteristic vector field of the PDE. The mean validity score for all fibers recovered with the
LFS method was 0.7466 while in the FMM the score was 0.5497. The LFS results show a better
resemblance to fiber bundles as they are seen from dissection illustrations (Gluhbegovic and
Williams, 1980).

To further compare results between the FMM and the LFS, a second experiment was performed,
in which the validity index of the resulting fibers were calculated. Using the seed point in the
splenium of the corpus callosum as before, we used the FMM method to propagate a surface
throughout the tensor image. Fig. 7(a) shows 35 uniformly spaced zero-level sets of the front
up to time 1600. The resulting isocurves can be immediately observed as being more irregularly
shaped than the isocurves from Fig. 3(b). Using the same number of white matter boundary
points as in the LFS method, pathways were backtraced to the seed point (Fig. 7(b)). The mean
overall validity value for all fibers obtained with the FMM method (Fig. 7(c)) was 0.4926,
compared to the 0.5696 from the LFS method. That shows an increase of 13.5%. We then
thresholded the fibers at different percentages and observed their validity scores. Table 1 shows
the obtained statistic figures. Fig. 7(d)–(h) depicts the resulting fiber pathways colored by
individual validity indices. A consistent average increase of about 18% was observed in the
mean validity scores in favor of the LFS method. This shows that pathways obtained with the
FMM method are less coherent with directionality of the tensor field. Also, the FMM showed
more spurious fibers as can be seen in Fig. 7. Due to the intrinsic use of an artificial viscosity
in the LFS method, the resulting connections were smoother than the ones obtained by the
FMM.

3.3. Fast marching method using characteristics
We also investigated whether the FMM method could be used to extract pathway fibers by
following the characteristic directions rather the gradient directions. While the results were
visually closer to those of the LFS method (Fig. 8), a lot more false fibers were obtained with
the same threshold levels. A few fibers that could not be successfully traced back to the
splenium can also been seen. Those are probably due to errors in the resulting characteristic
field caused by the imperfections in the solution of the FMM. While this hybrid implementation
resulted in the highest global validity score (0.9782), it has also yielded more variation at lower
validity thresholds than the two previous techniques (Table 2). This technique showed an
apparent increase of about 8% in mean validity scores compared to the LFS method. These
results include scores from those fibers which did not successfully reach the origin of
propagation. By discarding those and re-evaluating the statistics, we still obtained a higher
overall validity index compared to the LFS. We attribute this result to the ability of the FMM
to yield a solution without the additional smoothness term as is present in the LFS method.
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High curvature trajectories are likely to have been smoothed out in the solution computed by
LFS, yielding a lower global validity score. We note, however, that the FMM does not yield
the correct arrival times for the anisotropic PDE and the resulting characteristic vector will not
be correctly estimated.

4. Discussion
We believe that fiber pathways computed from DTI can be described as minimum-cost
pathways. Connections between cortical regions are kept optimal as the brain develops (Essen,
1997). Because of physical constraints, these connections should minimize length and perhaps
curvature as well. Such constraints can be effectively modeled by the propagation of interfaces
or fronts. With the LFS method and characteristic curve backtracking, we were able to
successfully trace optimum pathways that were more coherent with the principal eigenvector
field than FMM methods that rely on a gradient descent approach. This is due to the proper
anisotropic solution achieved using the LFS method and the tracing of the characteristic curves
of the PDE, which are the true shortest pathways to the origin of propagation. The resulting
pathways from the LFS method were more naturally distributed than the ones recovered by
gradient descent, as can be seen in synthetic fields (Fig. 2(c) and 2(d)) as well as in human data
(Fig. 6(b) and 6(c)). Pathways resulting from the gradient descent approach present more spatial
overlap, and seem to converge prematurely into the fastest route of connection. Our validity
scores indicated that these routes are not the optimal ones, yielding a consistently lower mean
colinearity for corresponding pathways. It was also shown that when using the FMM method
coupled with characteristics tracking, a higher global validity index was obtained. In future
work, we can further assess these results by employing a sweeping method which does not
require any smoothness terms (Kao et al., 2002) and then re-evaluate the validity scores.

Parker et al. (2002a) used the minimum value of the colinearity as the connectivity metric. Due
to the presence of effects such as crossings and branches, this index can be highly conservative.
Since our goal is to recover pathways that can go across such singularities, we used the mean
colinearity between the tangent to the pathway and the principal eigenvector as our metric.
Although this measure may not be reliable in singular regions, it does provide a global
indication of whether or not the extracted trajectories conform to the tensor directionality.
Furthermore, most of a fiber trajectory will not likely fall in areas of singularity. The validity
index also provides the means for a quantitative comparison against tractography methods
which rely on the principal tensor eigenvector (Parker et al., 2002a). In future work, we will
seek different forms of validation which will not be affected by crossing or branches. We will
also investigate whether the fractional anisotropy value could be incorporated in the index,
thereby giving a low weight for pathway points falling inside these regions.

For high angular resolution data, higher-order tensor formulations (Frank, 2002; Liu et al.,
2004; Tuch, 2004) could be used to derive the isoprobability contour of non-Gaussian diffusion.
Such an isocontour could be used in the speed function of the front propagation equation,
despite the complexity of the high order terms. Campbell (2004) has employed before both
tensor and high resolution data to derive a wavefront evolution methodology using particle
displacement probabilities. It was shown that tractography results using high angular resolution
data had much less diverging trajectories than those obtained with the diffusion tensor.
However, gradient curves rather than characteristic curves were used for tracking. As shown
by Campbell (2004), highangular datasets will allow one to trace pathways more accurately
when multiple populations of fibers are present in a voxel. In this scenario, the validity index
would rely on the maxima of the generalized tensor profile.

In our results, we obtained minimum-cost trajectories between points in the boundary of the
white matter and a point in the splenium. This was performed to mimic similar experiments
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done by other investigators and to provide a means to compare our findings. While anatomically
the great majority of these pathways will not exist, one can use the validity scores to select
only the most likely ones. It is possible to reformulate the propagation equation to restrict
evolution only to the direction of maximum diffusivity. In this case, a validity index may not
be necessary. However, this type of evolution will not allow for alternate pathways to be found
as it will only cross through the branches, and not exploit them. A shortest pathway between
any pair of points may no longer exist in this configuration, since it may take an infinite time
for it to reach the origin of propagation.

While the diffusion tensor data used in this work was not spatially smoothed, we predict that
the use of a tensor regularization method would certainly improve the quality of the
connectivity results, yielding higher validity scores. While we have shown the robustness of
the LFS tractography method in tracing fibers through crossings in different levels of noise
before (Jackowski et al., 2004), we plan to further validate our results with other available
known ground-truth synthetic datasets (Deoni). We will also be able to assess differences
between tracing the characteristics versus tracing the gradient vector. The characteristics,
though, are the true minimum-cost path solutions for trajectories modeled here. The mismatch
between them and the gradient vector field is clear from Fig. 2.

In future work, we will investigate specific cortical connections by seeding appropriate white
matter boundary points, and then tracing optimum pathways to hypothesized target regions.
We will also study whether additional constraints such as pathway curvature or prior
information could be useful in devising a more robust validity metric. Ultimately, we would
like to construct an automated system for fiber tract reconstruction, which will allow the study
of white matter both in its normal and pathological states.

5. Conclusion
We have presented a technique for determining connection pathways from diffusion tensor
images using a new level set based approach. A wavefront is evolved with a speed that depends
on the distance from the center of the diffusion tensor ellipsoid to its isosurface in the front
normal direction. This evolution is modeled by a static HJ equation which can be solved
efficiently by a Gauss–Seidel iteration technique combined with a sweeping approach. The
sweeping approach is able to follow multiple characteristic directions at each iteration step.
This results in the correct computation of arrival times for the front. Minimum-cost trajectories
are then determined by following the direction of the characteristics rather than the gradient
direction, as has been done previously in the literature. These pathways represent plausible
anatomical connections which are then checked against a validity index, representative of the
main direction of diffusivity. Pathways resulting from our method have shown a superior
conformance to the principal eigenvector field than other level set based approaches.
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Fig. 1.

(a) Evolution of the front  in a two-phase environment, shown as orange
curves. (b) Front normals , shown as white lines. (c) Minimum-cost pathways
traced from nine different locations in cyan color.
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Fig. 2.

(a) Evolution of the front  in a two-phase environment, shown as
orange curves. (b) Front normal n⃗ = ∇u/‖∇u‖ depicted as white arrows. (c) Minimum-cost
pathways traced from 9 different locations using n⃗. (d) Front characteristic vector  depicted
as green arrows. (e) Minimum-cost pathways using  shown in yellow.

Jackowski et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
(a) FA map and seed point at the splenium of the corpus callosum (at cross-hairs). (b) LFS
propagation map in which darker regions reveal earlier arrivals. (c) FA map overlaid with zero-
level sets up to time 1600. (d) 14,952 resulting pathways colored pointwise according to the
validity index (from yellow = low to red = high). (e) Pathways colored with fiber average
validity index.
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Fig. 4.
(a) Top 20% fibers colored pointwise according to the validity index. (b) Top 10% fiber
pathways. (c) Top 5% pathways. (d) Top 2.5% pathways. (e) Top 1.25% pathways.
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Fig. 5.

(a) FMM propagation .with ε⃗ = (1,0,0)T (b) Corresponding LFS
propagation. (c) FMM propagation with ε⃗ = (1, 0.5, 0)T. (d) Corresponding LFS propagation.
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Fig. 6.
(a) FA map showing the seed point in the right hemisphere. (b) Resulting pathways using the
FMM method with gradient backtracing. (c) Resulting pathways using the LFS method and
characteristics.
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Fig. 7.
(a) FA map overlaid with FMM propagation showing zero-level sets up to time 1600. (b)
Resulting pathways colored pointwise according to the validity index. (c) Resulting pathways
colored fiberwise. (d) Resulting top 20% pathways. (e) Top 10% pathways. (f) Top 5%
pathways. (g) Top 2.5% pathways. (h) Top 1.25% fiber pathways.
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Fig. 8.
(a) Resulting pathways from FMM using characteristics colored pointwise according to the
validity index. (b) Resulting pathways colored by the mean validity scores in a fiberwise basis.
(c) Top 10% fiber pathways. (d) Top 5% pathways. (e) Top 2.5% pathways. (f) Top 1.25%
pathways.
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Table 2

Fiber mean validity values for different percent fiber groups for the FMM method using characteristics

Top % Minimum Mean Variance

20% 0.7484 0.7905 0.0012

10% 0.7818 0.8171 0.0010

  5% 0.8105 0.8413 0.0008

  2.5% 0.8350 0.8630 0.0008

  1.25% 0.8501 0.8807 0.0007

Maximum validity value for all fibers was 0.9782.
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