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Abstract

The displacement and deformation of brain tissue is a major source of error in image-guided neurosurgery systems. We have designed
and implemented a method to detect and correct brain shift using pre-operative MR images and intraoperative Doppler ultrasound data
and present its validation with both real and simulated data. The algorithm uses segmented vessels from both modalities, and estimates
the deformation using a modified version of the iterative closest point (ICP) algorithm. We use the least trimmed squares (LTS) to reduce
the number of outliers in the point matching procedure. These points are used to drive a thin-plate spline transform to achieve non-linear
registration. Validation was completed in two parts. First, the technique was tested and validated using realistic simulations where the
results were compared to the known deformation. The registration technique recovered 75% of the deformation in the region of interest
accounting for deformations as large as 20 mm. Second, we performed a PVA-cryogel phantom study where both MR and ultrasound
images of the phantom were obtained for three different deformations. The registration results based on MR data were used as a gold
standard to evaluate the performance of the ultrasound based registration. On average, deformations of 7.5 mm magnitude were cor-
rected to within 1.6 mm for the ultrasound based registration and 1.07 mm for the MR based registration.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

1.1. Neuro-navigation and brain shift

Modern image guided neurosurgery (IGNS) systems
enable the surgeon to navigate within the patient’s brain
using pre-operative anatomical images (MRI, CT) as a
guide. The pre-operative images are related to the patient
using a rigid body transformation calculated from a num-
ber of anatomical landmarks that can be easily identified
on both the patient’s head and the pre-operative images.
By using a computer-tracked probe during the procedure,
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the surgeon can localize any point in the patient’s brain
on the pre-operative images. A significant source of error
in these systems is brain tissue movement and deformation,
so called brain shift, during the procedure. Tissue move-
ment can be caused by gravity, drainage of cerebro-spinal
fluid (CSF), retraction and resection of tissue, swelling of
brain structures, and administration of drugs. The amount
of movement and its influence on the accuracy of the
neuro-navigation system depend on a number of factors
including surgical target size and location, craniotomy size
and patient position during surgery.

The magnitude and direction of brain deformation dur-
ing surgery have been the subject of several studies. The
first quantitative measurements of brain deformation dur-
ing surgery relied on recordings of points on the cortical
surface relative to fixed points on the cranial surface Hill
et al., 1998; Roberts et al., 1998. These studies showed a
cortical surface shift of 10 mm on average, and movement
was found to be greatest along the direction of gravity.
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To better describe the dynamic process of brain defor-
mation, several groups have used intraoperative MRI
(iMRI) to study brain shift Nabavi et al., 2001; Hartkens
et al., 2003. The results show that surface shift ranges from
almost no detectable shift for smaller lesions to up to
50 mm for larger lesions. Surface shift well beyond the cra-
niotomy has also been documented. As in the previously
discussed studies it was found that surface shift was mainly
due to loss of cerebro-spinal fluid and resulted in a shift in
the direction of gravity. They also showed that surface shift
occurs throughout the procedure while deformation of dee-
per structures occurs mainly during resection. Volume
changes depend on the nature of the surgical procedure,
and are in general greater for resection cases than for biop-
sies and functional interventions. The principal direction of
displacement was not always aligned with the direction of
gravity.

Intraoperative ultrasound has also been used to estimate
brain shift. Letteboer et al. (2005) used ultrasound to mea-
sure the linear component of the shift at the tumor bound-
ary. This study also confirms the assumption that the brain
deforms mainly in the direction of gravity is not always
valid.

In summary, the cortical surface shift is mainly caused
by loss of CSF and subsequent ‘‘sinking’’ of the brain in
the direction of gravity. Surface shift can occur well beyond
the borders of the dural opening and can occur throughout
the procedure. However, the surface has been shown to
settle in cases where the resection cavity is smaller than
the cortical opening. If the cavity is larger than the cortical
opening, the borders sink in to form a crater. Deformation
of subsurface structures on the other hand is mainly due to
resection, relief of weight and intraparenchymal pressures.
Larger deformations are generally observed in the hemi-
sphere ipsi-lateral to the lesion, but significant deforma-
tions can also occur in the contra-lateral hemisphere.

In the following sections, we present a detailed overview
of previous work applied to the detection and correction of
brain shift. We present our vessel based registration tech-
nique in Section 2 followed by a series of validation exper-
iments in Section 3.

1.2. Model based techniques

With all this prior knowledge about how the brain shifts
and deforms during surgery, a number of groups have
developed model-based techniques to try to correct for
the displacements. Among the first groups to attempt this
approach was Miga et al., 1999. The technique was applied
to four neurosurgical cases, and it was found that the
model could account for 79% of the gravity induced defor-
mations on average. Other groups have extended this work
to include more complex deformations and deformation of
deeper structures Roberts et al., 1998; Skrinjar et al., 2002.
In these studies, it was assumed that brain tissues are iso-
tropic, homogeneous and with identical density and stiff-
ness. It was also assumed that there is no deformation in
the hemisphere contralateral to the craniotomy, and that
all deformations can be estimated based on data from the
exposed surface.

In general, the displacement and deformation of the
brain during surgery is far more complex and far reaching
than these models assume, and more work is needed to esti-
mate the mechanical properties of the brain Soza et al.,
2004 in order for this type of approach to be useful in more
than a very limited number of neurosurgical procedures.

The more direct solution to the problem is to acquire new
images when significant amount of deformation is sus-
pected. The most popular intraoperative imaging modali-
ties for neurosurgery are intraoperative CT, intraoperative
MRI, and intraoperative ultrasound (US) imaging.

1.3. Intraoperative CT imaging

A few groups have used intraoperative CT to actualize
the navigation data and verify the anatomical situation
during surgery Haberland et al., 2000; Grunert et al.,
1998. The CT images can be used to localize intracranial
lesions, but suffer from lower soft tissue contrast than
MRI, and are therefore less useful for brain surgery. CT
imaging is more commonly used in spine surgery, where
the vertebrae and surrounding structures are of primary
interest. Other disadvantages of intraoperative CT imaging
are the radiation dose to the patient which limits the num-
ber and duration of the scans, and the physical space occu-
pied by the scanner in the operating room.

1.4. Intraoperative MR imaging

Intraoperative MRI (iMRI) scanners can provide the
surgeon with updated anatomical images several times dur-
ing a procedure, and can therefore be a valuable tool for
characterization and correction of brain shift. One of the
first reports on the use of iMRI for neurosurgical guidance
was presented by Black et al. (1999). They illustrated the
advantages of intraoperative MRI imaging in a series of
60 craniotomies for tumor resection. Images were acquired
before and after opening of the dura and after closure of
the craniotomy. Nimsky et al. (2001) went one step further
and used intraoperative data for registration purposes.
Intraoperative MR images were rigidly registered to the
pre-operative data using MR-visible fiducials placed
around the craniotomy. The root mean square position
error after registration was reported to be between
0.39 mm and 2.3 mm.

An image based registration algorithm for iMRI was
presented by Ferrant et al. (2002). A biomechanical finite
element (FE) model driven by surface correspondences
was used to estimate the deformation of the entire brain
during surgery. The accuracy of the registration was evalu-
ated using manually identified landmarks and resulted in a
mean error of less than 1.6 mm. A second image based reg-
istration technique was published by Hastreiter et al. (2004).
After having characterized the brain deformations, they
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used a non-linear registration method based on mutual
information to register pre-operative and intra-operative
data. The registration process made it possible to register
pre-operative functional data such as fMRI, PET and
MEG to the intraoperative MR images in 20–30 min.

Even though intra-operative MR imaging provides good
quality images in reasonable time, this solution suffers from
a number of disadvantages Nimsky et al., 2004; Jolesz, 2005.
Intra-operative MR imaging is a complex, expensive and
sometimes quite a time consuming procedure. The intraop-
erative images may be of poorer quality than pre-operative
MR images due to scanner design and short acquisition time.
In general, intraoperative images are less complete, have
lower resolution and are more susceptible to image distor-
tions due to inhomogeneous magnetic fields when compared
to pre-operative images. Another major shortcoming of this
solution is the substantial financial investment required for
the scanner as well as MR-compatible surgical instruments.
These investments are justifiable for only a very limited num-
ber of hospitals. In addition, interventional MR scanners are
space-consuming and in many cases compromise the sur-
geon’s access to the operating field.

1.5. Intraoperative ultrasound imaging

Intraoperative ultrasound imaging does not suffer from
many of the limitations associated with interventional
MRI. A high-end ultrasound scanner costs less than 10%
of a typical MRI system and is already in use by many neu-
rosurgeons. In addition, ultrasound systems are portable
and compatible with existing surgical equipment. Despite
these advantages, the use of ultrasound in neuro-naviga-
tion has been limited, probably due to poor image quality
and the difficulty of interpreting such images.

Since the mid-1990s a number of groups have developed
systems correlating intraoperative US with pre-operative
MR. In a neurosurgical context, intraoperative ultrasound
imaging can either be used directly as a surgical guide when
brain shift occurs or as a registration target for the pre-
operative images in order to correct for deformations.
These systems are described in more detail in the following
background sections before presenting our registration
method and validation experiments.

1.5.1. Direct ultrasound navigation

Grønningsæter et al. (2000) developed a neuro-naviga-
tion system based on navigation solely by 3D ultrasound.
This system also incorporates visualization of pre-operative
MR and/or CT images, but uses only intra-operative 3D
ultrasound for navigation if brain deformation occurs.
Navigation by ultrasound images requires high quality
images and display software in addition to well trained sur-
geons and technicians.

1.5.2. Manual registration of intraoperative ultrasound

Intra-operative ultrasound data can also be used in a
less direct manner. Image registration techniques can be
used to update pre-operative data. By registering pre-oper-
ative MR or CT images with intra-operative ultrasound
images, complex deformations can be estimated and
accounted for in the navigation system. For example, by
identifying anatomical landmarks in the US images, and
using a physical model of the brain, an elastic transforma-
tion can be calculated and applied to the pre-operative
data. Comeau et al. (2000) presented a surgical guidance
system that incorporated pre-operative images with intra-
operative ultrasound to detect and correct for brain shift
during neurosurgical procedures. Two dimensional ultra-
sound images were acquired during the operation and com-
pared to the corresponding slice from the pre-operative
data set. A method was presented to manually identify
homologous landmarks in ultrasound and MRI in order
to construct a set of displacement vectors that would allow
the pre-operative MR image to be warped to match the
intra-operative ultrasound image. The mapping procedure
was demonstrated to have an accuracy better than 2 mm.
Gobbi et al. (2000) demonstrated a similar technique where
manually placed landmarks and a thin-plate spline interpo-
lation were used to deform the MR volume to match the
ultrasound volume.

1.5.3. Automatic registration of intraoperative ultrasound

Several automatic registration procedures have also
been developed, in order to minimize the need for user
intervention and speed up the procedure, which is particu-
larly important for intraoperative registration. Roche et al.
(2001) estimated the rigid body transform required to line-
arly align pre-operative MR images and intra-operative US
images. They correlated the US intensities with both the
MR intensity and the MR gradient magnitude using a var-
iant of the correlation ratio and a robust distance measure.
The algorithm was tested on two clinical datasets and one
phantom dataset. Because no gold standard was available,
registration loops involving both the ultrasound and MR
data were used. In the ideal case each loop should lead to
the identity matrix. They reported registration residuals
up to 1.65 mm in translation and 1.57� in rotation and a
computation time of 5–10 min.

In order to correct for non-linear deformation Arbel
et al., 2001; Arbel et al., 2001 used a tracking system to
reconstruct 3D volumes from a series of US images in
the same space as the pre-operative MR-image. From the
pre-operative MR images, they created pseudo-US images
that closely resembled real US images of the same struc-
tures acquired during surgery. They then used an intensity
based non-linear registration technique to match tracked
intraoperative US images with the pseudo-US images to
detect and correct brain deformations. Qualitative results
from 12 surgical cases showed that the technique was able
to account for a large portion of the deformations.

Registration of intraoperative US with pre-operative
MR is a challenging registration problem due to very differ-
ent underlying physical principles and thus different image
characteristics. Image intensities, noise characteristics, con-
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trast, volume coverage and dimensionality are only a few
main differences between a typical pre-operative MR image
and a corresponding intraoperative ultrasound acquisition.

1.6. Vessel based registration

To try to overcome some of the difficulties discussed in
the previous section, we explore a different approach to this
particular registration problem. The idea is to use homolo-
gous features in the two datasets as ‘‘landmarks’’. Such fea-
tures might be any segmented structures present in both
images such as organ surfaces and vascular structures. In
this project we investigate the use of blood vessels seg-
mented from pre-operative angiographic images and
Doppler US for registration purposes. The cerebral vascu-
lature is relatively easy to identify and segment from pre-
operative angiographic data such as MR angiograms
(MRA). A method to segment vessels from other types of
MR acquisitions such as proton density (PD) images or
gadolinium (Gd) enhanced MR images has been presented
in Descoteaux (2004). Segmentation of Doppler ultrasound
images can easily be performed by simple thresholding
although this often produce vessels with a too big radius
due to noise from moving vessel walls. By using the center-
lines of the vessels this problem is largely overcome.

The cerebral vasculature is a good candidate for use in
image registration because the vessels are distributed all
over the cerebral cortex and inside the brain and move with
the surrounding tissue. The brain deformations are there-
fore well captured by the vasculature. In addition, blood
vessels will be present in any region of interest (ROI)
throughout the brain. The probability of not finding reli-
able landmarks in a given ROI is therefore low. Keeping
track of important vessels during surgery also provides
the surgeon with important reference points in order to
avoid major vessels during the procedure and monitor
blood supply to specific areas of the brain. This approach
has already been investigated by a number of different
groups for several different purposes. Porter et al. (2001)
rigidly registered MRI with B-mode and color Doppler
ultrasound volumes based on segmented blood vessels from
the forearm, the liver and a prostate phantom. The skin
surface, bone and internal landmarks were used to evaluate
the registration error which ranged from 2 to 8 mm.

Another rigid body registration technique based on vas-
culature was presented by Slomka et al. (2001). The carotid
bifurcation of six patients was imaged with B-mode and
Power Doppler ultrasound as well as MRA. The mean
errors were 0.32 mm in translation and 1.6� in rotation
based on a series of anatomical landmarks for initial misa-
lignments of up to 5.4 mm in the x and y directions, 10 mm
in the z direction and rotations up to 40�. The algorithm
was not affected by missing arterial segments of up to
8 mm, but would fail if the bifurcation was missing from
either dataset.

A third rigid body registration technique as well as a
vessel segmentation algorithm was presented by Aylward
et al. (2003). A registration metric was defined based on
the parameters of the vessel segmentation algorithm and
used to register CT images of the liver and pre and post-
surgery MRA images of the brain. A series of Monte Carlo
simulations was conducted to measure how consistently the
registration method was able to align segmented vessels
from the liver given random initial misregistrations. The
application of this registration algorithm was extended to
include CT to ultrasound registration Aylward et al.,
2002 and then further extended to take into account non-
linear deformations Jomier and Aylward, 2004. Following
global rigid registration, each branch in the vessel tree was
linearly registered resulting in a piece-wise rigid transfor-
mation. The alignment was then further refined with a
deformable registration method. The results showed that
the 87% of the centerline points in the model were within
two voxels of the centerlines in the target image.

A more recent technique to register MR and B-mode
ultrasound images of the liver based on vasculature was
presented by Penney et al. (2004). The rigid registration
used ultrasound images to establish the correspondence
between the MR volume and the patient on the operating
table. This corresponds to the rigid registration usually per-
formed by identifying homologous landmarks on the
patients head and on the pre-operative images before neu-
rosurgical procedures. The results showed that the method
was accurate to within an RMS error of between 2.3 and
5.5 mm with respect to a ‘‘bronze standard’’ registration
calculated by manually picking points in both modalities.

The algorithm described in this paper is designed to reg-
ister pre-operative MR images and intra-operative US
images of the brain in order to correct the brain shift occur-
ring during neurosurgical procedures. The work is based
on experiments first presented in Reinertsen et al. (2004)
where we demonstrated that it was possible to use vessel-
based non-linear registration for this task. In this paper,
we have further developed and improved our vessel based
registration method and present experimental validation
of the technique. We have replaced the free-form ANI-
MAL-based deformation Collins and Evans, 1997 with a
thin-plate spline transform to improve regularization of
the deformation. We now use a modified version of the
ICP algorithm to register vessel centerlines extracted from
MR and Doppler ultrasound data. In order to reduce the
number of outliers, we have incorporated the least trimmed
squares (LTS) robust estimator Rousseeuw and Leroy,
1987. Therefore, our method effectively reduces the number
of incorrect pairings without limiting the capture range of
the registration algorithm. While our algorithm shares
some similarities with the procedure described by Lange
et al. (2004), there are some important differences. Our pro-
cedure is applied to interventional brain imaging, while
Lange’s technique was applied to liver. Both techniques
use segmented vessel centerlines to drive the registration.
Our technique uses LTS robust estimation to reject outlier
points instead of a the user-defined distance threshold used
by Lange. Both techniques use spline-based regularization
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of the deformation; we use a thin-plate spline while Lange
uses B-splines. Finally, Lange estimated the quality of reg-
istration quantitatively based on the RMS distance of ves-
sel-points and semi-quantitatively based on structure
boundaries. Our main contribution in this paper is a more
thorough quantitative validation using data with simulated
deformations and real MR and US data from a novel
deformable anthropomorphic poly vinyl alcohol cyrogel
(PVAc) brain phantom.

This paper is organized into five sections. In Section 2,
the vessel segmentation method and the centerline extrac-
tion technique are briefly described, and the registration
algorithm is presented in detail. Section 3 is concerned with
the validation experiments using simulated and phantom
data. A discussion of the results is given in Section 4, and
finally our conclusions are presented in Section 5.

2. Methods

2.1. MR vessel segmentation

We used a new multi-scale geometric flow for segment-
ing vasculature in the MR images of the phantom. The
method can be summarized in three steps: First, the
method applies Frangi’s vesselness measure Frangi et al.,
1998 to find putative centerlines of tubular structures along
with their estimated radii and orientation. Second, this
multi-scale measure is distributed to create a vector field
which is orthogonal to vessel boundaries. Finally, the flux
maximizing flow algorithm Vasilevskiy and Siddiqi, 2002
is applied to the vector field to recover the vessel bound-
aries. This technique overcomes many limitations of exist-
ing approaches in the literature specifically designed for
angiographic data due its multi-scale tubular structure
model. It has a formal motivation, is topologically adaptive
due to its implementation using level set methods, is com-
putationally efficient and requires minimal user interaction.
The technique is detailed in Descoteaux (2004).

2.2. US vessel segmentation and volume reconstruction

When scanning using Doppler ultrasound imaging, the
Doppler signal and the B-mode signals are combined on
Fig. 1. An example of an ultrasound image before (left) and after segmentation
colorbar, and keeps only the trapezoid-shaped ultrasound image.
the display of the ultrasound scanner. The Doppler signal
is displayed in color, and the B-mode signal is displayed
in grayscale. Segmentation of the ultrasound images was
therefore obtained by extracting all colored pixels from
the original images. A simple filter was implemented that
would set to zero all pixels with a saturation equal to zero
(Hue-Saturation-Value color model), which constitutes the
grayscale. Following segmentation, the 2D images were
masked to remove information outside the ultrasound
wedge, converted to grayscale, and finally reconstructed
into a 3D volume. The 3D volume was then thresholded
again to produce a binary image. An example of an ultra-
sound image before and after segmentation and after mask-
ing is shown in Fig. 1. The 2D slices were interpolated to a
uniform grid using a Kaiser–Bessel function as the interpo-
lation function and an isotropic regrid radius of 2 mm.

2.3. Centerline extraction

Following segmentation, we extracted the vessel center-
lines using a fast, robust and automatic method based on
medial surfaces. The technique uses the average outward
flux of the gradient vector field of the distance transform
of the object to compute the medial surface Siddiqi et al.,
2002. The centered medial curves are then obtained by
topology preserving thinning ordered by the distance func-
tion to the object’s boundary. This ensures that the remain-
ing points lie on the medial surface and as far away from
the vessel boundary as possible. The medial curve was
finally pruned based on length to remove superfluous
branches and obtain a single curve for each vessel branch.
Details on the method can be found in Bouix et al. (2005).

2.4. Registration algorithm

After segmentation and centerline extraction, the MRA
image and the Doppler ultrasound volumes are binary
images representing the vascular tree. The vessels are in
the form of a ‘‘skeleton’’ representing the midlines. The
two datasets are only partially overlapping, and vessels
are not necessarily continuous. A number of vessels might
also be missing from one or both data sets. The task of reg-
istering the two datasets using a modified version of the
(middle) and after masking (right). The masking removes the text and the
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original ICP algorithm presented by Besl and McKay
(1992), can be summarized in the six following steps as pro-
posed by Rusinkiewicz and Levoy (2001):

(1) Sampling.
(2) Point matching.
(3) Weighting/rejecting point pairs.
(4) Estimating the transformation.
(5) Applying transformation to the source points.
(6) Calculating the error.

2.4.1. Sampling

The original ICP algorithm attempts to use all available
points to establish correspondence when computing the
transformation. In order to decrease computational cost,
improve the convergence rate, and reduce sensitivity to
noise and missing data, some authors have proposed to
use a subset of all available points. There are a number
of sampling strategies in the literature that have been pre-
sented in order to adapt to particular types of images. Turk
and Levoy (1994) created triangle meshes from laser range
images and used the ICP algorithm to bring corresponding
portions of meshes from different images into alignment
with one another in order to create a single polygonal mesh
that completely describes the outside part of the scanned
object. The creation of triangle meshes represents a uni-
form sub-sampling of the images. Sub-sampling of the
images is an efficient way of reducing computation time,
but depending on the sampling frequency, accuracy may
be compromised. A different method of sub-sampling is
to choose a number of points extracted at random. Masuda
et al. (1996) used this technique with a different subset of
points at each iteration in order to provide different start-
ing positions for the algorithm. Other possibilities include
selecting points with high intensity gradients Weik, 1997
or choosing points such that the distribution of normals
among selected points is as large as possible Rusinkiewicz
and Levoy, 2001. in order to obtain more points in regions
with small features critical to determining the correct align-
ment. In line-to-line registration, such features could be
regions with high curvature or bifurcations. In this paper
we start with all available source points and then selects
points based on the distance to the target. As an option
it is possible to perform a uniform sub-sampling of the
selected points in order to speed up the computation.

2.4.2. Point matching

The next step addresses the problem of finding corre-
sponding points in the source and target point sets. Because
the ICP algorithm is sensitive to the source vs. target selec-
tion, the source should always have fewer points than the
target. In the original ICP algorithm, the simple Euclidean
distance was used to find the closest point in the target
dataset. The closest-point algorithm tends to produce a
large number of incorrect pairings when the images are rel-
atively noisy or do not completely overlap. This sensitivity
to noise and missing data is one of the main disadvantages
of the original ICP algorithm. Because noise and missing
data are problems frequently encountered in real images,
a number of point matching techniques have been devel-
oped in order to increase the robustness of the registration
algorithm. Possible approaches used in the past are to find
the intersection of the ray originating at the source point in
the direction of the source point’s normal with the destina-
tion surface, or different projection methods such as projec-
tion of the source point onto the target followed by a local
search based on distance or intensity Pulli, 1999. Rus-
inkiewicz and Levoy (2001) found that the projection-
based algorithms converged significantly faster than for
example the closest point method. In their experiments,
convergence was reached in between 10 and 20 iterations.
In the experiments presented in this paper, we reached con-
vergence in less than 35 iterations in all cases, and linear
registration was completed in less than 15 s which was con-
sidered satisfactory. We have therefore chosen to keep the
original point matching technique based on the Euclidean
distance and minimize the number of incorrect pairings
by implementing the least-trimmed squares estimator as
explained in the following section.

2.4.3. Weighting and rejecting point pairs

The idea behind the assignment of weights or completely
discarding certain point pairs is to limit as much as possible
the influence of erroneous pairings on the transform com-
putation. Efforts are made to reduce the number of such
pairs through sampling and point matching strategies,
but when dealing with noisy data where the overlap is
not complete and data are missing as is the case here, effi-
cient weighting and rejection techniques may considerably
improve the final result. Without any weighting and/or
rejection strategy, all pairs will be used and all points will
be equally weighted. A simple modification to this method
is to assign lower weights to pairs with greater point-to-
point distance, and to possibly reject corresponding points
more than a given distance apart. Another method pro-
posed in the past is weighting based on the compatibility
of normals. The weight is then calculated as the scalar
product of the normals. Point pairs with colinear normals
will have weights equal to one, and point pairs with perpen-
dicular normals will be rejected.

Other strategies include rejection of pairs whose point-
to-point distance is larger than some multiple of the stan-
dard deviation of distances, or rejection of pairs that are
not consistent with neighboring pairs. A potentially very
useful strategy is to remove pairs that include points on
boundaries. These pairs may introduce a systematic bias
in the estimated transform in cases where the overlap is
not complete.

A method widely used in computer vision is the random
sample consensus (RANSAC) algorithm introduced by
Fischler and Bolles (1981). The method selects a subset of
the data to estimate the parameters of the model to fit.
The subset is selected at random, and the algorithm deter-
mines the number of samples that are within an error
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tolerance. If the number of samples within the error toler-
ance is high enough, the solution is kept. The process is
repeated and the solution with the smallest error is kept
as the final model. The number of iterations required
increases with the size of the sample subset and the percent-
age of outliers in the data.

Another possibility is to use robust regression methods
such as the least median of squares (LMS) Trucco et al.,
1999 or the least trimmed squares (LTS) Chetverikov
et al., 2002. While the least squares technique minimizes
the sum of squared residuals, the LMS minimizes the med-
ian of squared residuals. The LTS method on the other
hand, is based on sorting and trimming the sequence of
squared residuals. The squared residuals are sorted, and
the points corresponding to the n% greatest distances are
rejected. The percentage is user defined and can be adjusted
according to the amount of noise or missing data expected
in the dataset. The transformation is then calculated based
on the remaining pairs, and the result is applied to the entire
dataset. These two steps are then iterated until convergence.
The LTS method is usually preferred to the LMS because it
has a better convergence rate and a smoother objective
function Rousseeuw and Leroy, 1987. LTS and LMS have
the same breakdown point of 50%, which means that the
number of outliers in the dataset cannot exceed 50%.

2.4.4. Transformation

Most of the registration methods using a variant of the
ICP algorithm estimate a rigid body transform (three trans-
lations and three rotations). For linear registration, we
have also included isotropic scaling, which gives a total
of seven parameters. While this might be sufficient in cases
of motion detection or to provide a good starting position
for non-linear registration, it is not enough to describe the
highly complex brain deformation taking place during neu-
rosurgical interventions. The deformation is non-linear,
and single points can move as far as 50 mm from their ini-
tial position. One possibility is to use a thin-plate spline
(TPS) transformation Bookstein, 1989. TPS is an interpola-
tion method that finds a ‘‘minimally bended’’ smooth
(hyper)surface that passes through all given points. TPS
are particularly popular in representing shape transforma-
tions, for example in image morphing or shape detection.
In this work, we use the thin-plate spline transformation
with points selected as described above, to represent the
non-linear component of the deformations. The interpola-
tion can be regularized using a scaling parameter r that will
determine the ‘‘stiffness’’ of the spline. In this work, we
start by estimating a seven parameter linear registration.
In neuronavigation, this linear transformation is required
due to the error in the landmark based registration per-
formed prior to the opening of the skull and the actual lin-
ear component of the brain deformation occurring after the
craniotomy. Then, the linear registration is refined by re-
running the algorithm and using a thin-plate spline trans-
form to correct the non-linear component of the
deformation.
2.4.5. Registration error

In the original ICP algorithm, the mean squared error was
used and the algorithm was proved to converge to a local
minimum of the objective function in terms of this error met-
ric. A ‘‘point-to-plane’’ metric can also be used by taking the
sum of squared distances from each source point to the plane
containing the target point and oriented perpendicular to the
target normal Chen and Medioni, 1991. The robust estima-
tors LMS and LTS also converge to a local minimum of
the objective function depending on the starting position
Rousseeuw and Leroy, 1987. The thin-plate spline transform
needs to have a reasonably good starting point, in terms of
correct point pairings in order to give a satisfactory result.
In most cases involving registration of pre-operative MR
and intra-operative ultrasound, the two modalities will be
linearly registered at the beginning of the procedure. This ini-
tial registration can be corrected by performing a linear ICP
registration with seven parameters as described above. In
cases where there is no initial linear registration, or if the
ultrasound probe is not tracked during the procedure, it is
possible to manually perform a coarse linear registration
by dragging the source dataset into place.

For the linear registration, the steps described in Section
2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5 need to be iterated until a
stopping criterion has been met. In previous literature, this
criterion is usually a fixed number of iterations, an error
metric below a pre-defined threshold or the difference
between two successive error measurements below a pre-
defined threshold. In this work, the iterations are stopped
when the difference in mean distance between the source
points and their closest target point between two successive
iterations is smaller than 0.1 lm. Possible limitations with
this approach are that the difference in distance might
not fall below this limit, and that the optimizer could oscil-
late between two local minima. In the experiences pre-
sented in this paper, however, the algorithm has
converged to a correct solution in all cases.

2.4.6. Algorithm

In this project, we have chosen to use the least trimmed
squares and the simple Euclidean distance for point match-
ing. The algorithm can be summarized in four steps:

(1) Find the closest point in the target dataset for each
source point.

(2) Sort the distances, and select the source points corre-
sponding to the n% smallest distances.

(3) Estimate a seven parameter linear transform or a
thin-plate splines deformation based on the selected
points.

(4) Apply the transformation to the entire dataset.

3. Experiments and results

In order to validate the registration algorithm presented
above we performed two sets of experiments. First, we sim-
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ulated 14 realistic brain deformations in order to test the
algorithm in a situation where the ground truth is known.
Second, we performed a phantom study with a deformable
brain phantom in order to come closer to a realistic clinical
situation and to test the registration technique with real
ultrasound data.

3.1. Simulations

3.1.1. Data pre-processing

For the simulation experiments, a standard phase-con-
trast MRA (TE = 71 ms, TR = 8.2 ms, flip angle = 15�)
from a normal volunteer with full brain coverage and a
voxel size of 0.5 · 0.5 · 1.5 mm was used. The original
dataset was resampled using tri-linear interpolation to an
isotropic voxel size of 0.5 mm. A series of 22 landmarks
were placed at random spots throughout the volume and
four landmarks were placed on the surface of the cortex
in a square just above and below the right lateral fissure.
These four landmarks were then manually displaced from
±2 to 20 mm in the x-direction (left–right direction). These
deformations represent a smooth expansion or contraction
Fig. 2. The centerlines extracted from the simulated ultrasound volume register
registration (bottom middle) and after non-linear registration (bottom right). In
the registration are in green and source points that do not participate in
correspondences for the points that participate in the registration.
toward the midline of the brain as shown in Fig. 2. A thin-
plate spline transform was computed between the original
26 landmarks and the 26 landmarks where four points
had been displaced. The resulting transform was then
applied to the resampled MRA dataset in order to obtain
a deformed version of the same brain. Thus, the thin plate
spline transform represents the ground truth in these exper-
iments, and the two datasets (resampled and deformed) will
be used to estimate the deformation.

In order to simulate a typical ultrasound acquisition, a
4.5 cm rectilinear scan path was defined between two points
on the cortical surface in the region of interest on the
MRA. The region of interest is shown by the rectangular
box in Fig. 2. Two points inside the brain were manually
selected to determine the direction of the first and last
image plane. The orientation of the image planes was per-
pendicular to the scan path. The dimension of the image
planes was 50 mm wide, a depth of 40 mm and a thickness
of 3 mm, with a voxelsize of 1 · 1 · 3 mm and 2 mm
between each slice. The slice was averaged over 3 mm in
the scan direction to simulate the thickness of the ultra-
sound beam. The individual slices were thresholded to
ed to the MR vessel tree (top). Before registration (bottom left), after linear
the upper image target points are in blue, source points that participate in

the registration are in red. The yellow lines illustrate the closest point



Fig. 3. Mean distance (mm) between all source points and their closest
target point as a function of iteration number for the 14 linear
registrations presented in Tables 1 and 2. Iterations were stopped when
the difference in mean distance between two successive iterations was
smaller than 0.1 lm.

Table 1
Mean ± std distance between 10 source and target landmarks before
registration, after linear registration and after non-linear registration

Displ.
(mm)

Mean ± std
before reg.

Mean ± std
after linear
reg.

Mean ± std
after non-linear
reg.

% of def.
recovered by
reg. (%)

�20 15.66 ± 2.85 2.83 ± 1.57 2.69 ± 1.66 83
�15 11.63 ± 2.27 2.14 ± 1.31 1.88 ± 1.06 84
�10 7.65 ± 1.62 1.63 ± 1.10 1.43 ± 0.61 81
�8 6.08 ± 1.33 1.32 ± 0.71 1.19 ± 0.54 80
�6 3.15 ± 1.60 1.53 ± 1.13 1.47 ± 0.98 53
�4 3.00 ± 0.71 1.02 ± 0.46 0.86 ± 0.34 71
�2 1.49 ± 0.36 0.54 ± 0.32 0.52 ± 0.31 65

2 1.47 ± 0.39 0.52 ± 0.10 0.37 ± 0.14 75
4 2.91 ± 0.79 0.81 ± 0.43 0.74 ± 0.24 75
6 4.33 ± 1.22 1.30 ± 0.65 1.17 ± 0.46 73
8 5.73 ± 1.66 1.55 ± 0.99 1.05 ± 0.38 82

10 7.10 ± 2.13 2.08 ± 1.22 1.56 ± 0.52 78
15 10.41 ± 3.41 2.88 ± 1.66 2.11 ± 0.85 80
20 13.54 ± 4.83 3.64 ± 1.59 2.86 ± 1.24 79
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segment vessels and then masked using a wedge-shaped
mask to simulate the shape of real ultrasound images.
The masked images were then reconstructed into a volume
using the reconstruction algorithm described in Section 2.2.
Following volume reconstruction centerlines were
extracted. The original MRA dataset was then segmented
using the algorithm described in Section 2.1. The vessel
centerlines were extracted from the segmented data, and
used as input to the registration algorithm. In order to
reduce the noise in the extracted centerlines (single points
not connected to the vessel tree), points located more than
5 mm from their closest neighbor were removed from the
image prior to registration. The resulting vessel tree is
shown in blue3 in Fig. 2.

This technique of simulating ultrasound data from MR
images is similar to the method proposed by Arbel et al.
(2001). They created pseudo ultrasound data from pre-
operative MR images in order to facilitate intensity based
registration of intra-operative ultrasound data.

3.1.2. Registration

In this experiment the simulated ultrasound volume
represents a part of the middle cerebral artery that has
been shifted and deformed compared to the target image
which represents a nearly complete arterial ‘‘tree’’.
Because the simulated ultrasound volume contained
fewer points than the original MR dataset, it was consid-
ered the source image in this experiment. In order to
recover the deformation, the source image was first line-
arly registered to the target in order to provide an opti-
mal position for the non-linear deformation. In this step,
between 80% and 99% of the available source points
were used. The iterations were stopped when the differ-
ence in mean distance between all source points and their
closest target point between two successive iterations was
smaller than 0.1 lm. The mean distance as a function of
iteration number for all 14 linear registrations is shown
in Fig. 3.

The registration was then further refined by non-linear
registration, where 55–99% of the source points were used
and a r between 0.5 and 1.5. An example of the registration
is shown in Fig. 2. To evaluate the performance of the reg-
istration technique, the recovered transformations were
compared with the ground truth thin plate spline transform
applied. We computed the 3D root-mean-square (RMS) of
the difference between the two transforms over every third
voxel in the region of interest (ROI). In addition, a series of
10 landmarks placed in the highly deformed region were
used to specifically estimate registration accuracy in the
ROI. The percentage of the deformation recovered by the
registration algorithm was calculated in each case using
the following formula:

% ¼ ðRMSBefore �RMSAfterÞ � 100

RMSBefore

: ð1Þ

For the landmarks, the RMS in Eq. (1) should be replaced
by the mean distance between landmarks.
The results are presented in Table 1 and 2. These results
show that the technique was capable of recovering on aver-
age 76% of the deformations ranging from 2 to 20 mm by
measuring the distance between landmarks, with a maxi-
mum of 84% for a displacement of �15 mm and a mini-
mum of 53% for a displacement of �6 mm. By estimating
the RMS over the ROI, we recovered 73% on average, with
a maximum of 83% for a displacement of �20 mm and a
minimum of 50% for a displacement of �6 mm.

3.2. Phantom study

3.2.1. Phantom preparation

To further evaluate and validate the registration tech-
nique in a situation closer to a real clinical setting, we per-
formed a phantom study. The phantom was made of



Table 2
3D RMS before registration, after linear registration and after non-linear
registration evaluated over the region of interest (ROI)

Displ.
(mm)

RMS (ROI)
before reg.

RMS(ROI)
after linear
reg.

RMS(ROI)
after non-linear
reg.

% of def.
recovered by
reg. (%)

�20 14.81 2.63 2.46 83
�15 10.98 2.14 1.96 82
�10 7.21 1.66 1.59 78
�8 5.73 1.29 1.27 78
�6 3.09 1.63 1.55 50
�4 2.83 0.96 0.92 67
�2 1.40 0.54 0.54 62

2 1.38 0.52 0.36 74
4 2.74 0.84 0.71 74
6 4.08 1.33 1.19 71
8 5.40 1.65 1.29 76

10 6.69 2.15 1.59 76
15 9.82 3.07 2.18 78
20 12.79 4.64 3.74 71

All measurements in mm.

Fig. 4. The PVA phantom in a plastic container. The syringe was used to
inject water into the catheter balloon to deform the phantom.

Fig. 5. MR images of the phantom with empty catheter balloon (top),
half-full catheter balloon (middle) and full catheter balloon (bottom).
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polyvinyl(alcohol)-cryogel (PVAc), and was designed to
resemble a hemisphere of the human brain. To prepare
the PVAc, the technique proposed by Surry et al. (2004)
was applied. An inflatable 5 ml Bardex Foley catheter
(C.R. Bard, Inc., Covington, GA) was placed under the
phantom to simulate a brain lesion, and plastic tubes with
inside diameters of 1.57, 2.36 and 3.18 mm were inserted to
simulate blood vessels. By inflating or deflating the catheter
balloon, the phantom would deform in an elastic non-lin-
ear manner. A detailed description of the phantom as well
as a thorough study of the reproducibility of the deforma-
tions can be found in Reinertsen and Collins (2006). The
phantom made it possible to test the registration algorithm
and segmentation technique as well as the ultrasound imag-
ing setup and the navigation software in a setting with
known geometry and simpler deformations than in the
human brain. Because both MR and ultrasound images
of the phantom were obtained both in the original and
two deformed states, it was possible to validate the US
based registration by comparing it to MR based registra-
tion. In this experiment, the MR based registration would
therefore serve as a gold standard in order to validate the
ultrasound based registration. A photo of the phantom is
shown in Fig. 4.

3.2.2. MR imaging and vessel segmentation

The phantom was scanned using a Siemens SonataVi-
sion 1.5 T scanner using a standard T1 weighted anatomi-
cal scanning sequence (TR=22 ms, TE=9.2 ms, flip angle
= 30�) with full brain coverage and 1 mm isotropic resolu-
tion. The phantom was scanned six times: twice for each
catheter balloon volume filling (0 ml, 5 ml and 10 ml).
The catheter was either inflated or deflated between each
scan. The inflation or deflation of the balloon deformed
the phantom in a non-linear fashion as shown in Fig. 5.
During MR imaging the phantom remained in the plastic
container and the plastic tubes were filled with water. For
technical reasons there was no flow in the tubes during
imaging, but due to the contrast between the PVA (bright),
the tubes (dark) and the water inside the tubes (bright) it
was still possible to apply the segmentation algorithm
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described in Section 2.1. In order to be able to segment the
smaller tubing, the original image was supersampled to
0.5 mm3 isotropic resolution. The smallest tubes used in
the phantom have an inside diameter of 1.57 mm. Unfortu-
nately these tubes were too small for the automatic segmen-
tation algorithm to detect due to limited contrast between
the water inside the tubes and the plastic. For successful
registration of the phantom data, the segmentation of all
the tubes was necessary. This was mainly due to the limited
number of tubes present in the phantom, and thus a limited
number of tubes to capture the deformation. To overcome
this problem, parts of the smallest tubes were segmented
manually. In the future, a possible solution to this problem
would be to fill the tubes with a contrast agent prior to MR
imaging Reinertsen and Collins, 2006. Following segmen-
tation, centerlines were extracted using the algorithm
described in Section 2.3. A surface rendering of the phan-
tom with the segmented tubes is shown in Fig. 6.

3.2.3. US imaging and segmentation

Free-hand ultrasound images were then acquired using
an HDI 5000, Philips Medical Sytems (Bothwell, WA)
ultrasound machine with a Philips P7-4 multi-frequency
probe. Tracking was achieved with the Polaris optical
tracking system (Northern Digital Inc., Waterloo, ON), a
passive reference and an passive tracker device (Traxtal
Inc., Toronto, ON) attached to the ultrasound probe.
The position and orientation of each 2D image were
recorded and used to reconstruct a 3D volume as described
in Section 2.2. A physiological pump (Manostat Corp.,
New York City, NY) was used to pump water through
the plastic tubes while the phantom was scanned using
Fig. 6. A surface rendering of the phantom with the segmented tubes in
red. (For interpretation of the references in color in this figure legend, the
reader is referred to the web version of this article.)
color Doppler imaging. The plastic container with the
phantom was filled with water, and the phantom was
allowed to rest for a few minutes for air bubbles in the
water to disappear. This procedure is analogous to the
one used in surgery when the craniotomy is filled with ster-
ile water prior to ultrasound imaging. During Doppler
imaging, the Doppler signal is overlaid on the regular B-
mode ultrasound image. The gain of the B-mode signal
was therefore turned down to facilitate the extraction of
the ‘‘vessels’’ from the images afterwards. The phantom
was scanned with catheter balloon filled with volumes of
0, 5 and 10 ml of water. The two dimensional ultrasound
images were masked to remove all data outside the ultra-
sound image wedge, and then thresholded to separate the
Fig. 7. US–MR registration: before (top) and after (bottom) non-linear
registration. Target points are in blue, source points that participate in the
registration are in green and source points that do not participate in
the registration are in red. The yellow lines illustrate the closest point
correspondences for the points that participate in the registration. (For
interpretation of the references in color in this figure legend, the reader is
referred to the web version of this article.)
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Doppler signal from the B-mode image. The slices were
then resampled into a 3D volume. Following volume
reconstruction, centerlines were extracted using the algo-
rithm described in Section 2.3.

3.2.4. Linear registration
Prior to ultrasound imaging, the phantom was linearly

registered to the MR images by identifying four homolo-
gous landmarks on the phantom container and in the cor-
responding MR image. In order to improve this initial
alignment we performed a linear registration between the
ultrasound and MR images with corresponding catheter
balloon volumes as described in Section 2.4. In this case
the ultrasound volume was considered the source volume
and the MR volume the target because the ultrasound vol-
ume contained fewer vessels than the MR volume. Based
on the results presented in Fig. 3, the iterations were
stopped after 20 cycles. As we had six MR volumes and
only three ultrasound volumes, each ultrasound volume
was registered to both MR volumes with corresponding
deformation, resulting in six linearly registered ultrasound
volumes. These volumes provided the starting points for
the non-linear registration described in the following
section.

3.2.5. Non-linear registration

The centerlines of the MRI data and the US data were
registered using the technique described in Section 2.4.
Between 55% and 99% of the available points were used
for registration. We used a scaling parameter r between
0.7 and 1.2. To decrease the computation time, the data
were sub-sampled by a ratio between 0.5 (every second
point) to 0.25 (every fourth point). The percentage of
source points used, the sample ratio and r were manually
optimized for each registration depending on the amount
Table 3
Mean ± std distance in mm between the 10 landmarks before non-linear regis

0 ml-1 0 ml-2 5 ml-1

0 ml-1 · · 1.64 ± 0.56
0 ml-2 · · 1.64 ± 0.73
5 ml-1 1.64 ± 0.56 1.64 ± 0.73 ·
5 ml-2 1.79 ± 0.78 1.78 ± 0.77 ·
10 ml-1 3.69 ± 0.94 3.69 ± 1.02 2.14 ± 0.69
10 ml-2 3.83 ± 1.00 3.83 ± 1.07 2.33 ± 0.65

Table 4
Mean ± std distance in mm between the 10 landmarks after US-to-MR non-l

0 ml-1 0 ml-2 5 ml-1

0 ml-1 · · 1.07 ± 0.53
0 ml-2 · · 1.26 ± 0.51
5 ml-1 0.92 ± 0.47 0.91 ± 0.39 ·
5 ml-2 1.32 ± 0.62 0.90 ± 0.50 ·
10 ml-1 2.11 ± 0.92 2.08 ± 0.80 1.98 ± 1.02
10 ml-2 2.69 ± 0.76 2.49 ± 0.89 1.74 ± 0.57

Ultrasound volumes (source) are listed vertically and MR volumes (target) ho
of noise, missing vessels and volume covered by the ultra-
sound. One example of the original centerlines extracted
from the two volumes and the centerlines with the selected
points and the initial pairings is shown in Fig. 7. We per-
formed non-linear registrations between all the linearly reg-
istered ultrasound volumes to all MR volumes resulting in
a total of 24 registrations.

In order to validate the accuracy of the registration we
used a series of 10 homologous landmarks. Because it
was very difficult to identify points in the ultrasound vol-
ume accurately, we tracked a series of points as they were
deformed in the MR volumes. We identified 10 landmarks
in all six MR volumes. These points were air bubbles in the
PVA and less than 2 mm in diameter. They were clearly vis-
ible in all scans. The landmarks were located in the region
of the phantom that deformed the most when the catheter
balloon was either inflated or deflated. They were placed
between ‘‘vessels’’ and did not participate in the registra-
tion. The transformation recovered after each non-linear
registration was used to warp the landmarks identified in
the source image, and the distances between the warped
landmarks and the real landmarks identified in the target
image were recorded. The mean distances of the landmarks
in the source and target image before non-linear registra-
tion is shown in Table 3, and the distances between the
warped landmarks and the landmarks in the target image
are shown in Table 4. For comparison and in order to
establish a lower bound on the registration error, we
repeated the non-linear registrations using only MR data.
One example of the MR-to-MR registration is shown in
Fig. 8. In this case, we had full volume coverage for both
source and target datasets and the overlap of the seg-
mented vessels was nearly complete.

The mean distances between the warped landmarks and
the real landmarks identified in the target image are shown
tration

5 ml-2 10 ml-1 10 ml-2

1.79 ± 0.78 3.69 ± 0. 94 3.83 ± 1.00
1.78 ± 0.77 3.69 ± 1. 02 3.83 ± 1.07
· 2.13 ± 0. 69 2.32 ± 0.64
· 2.02 ± 0. 40 2.21 ± 0.44
2.02 ± 0. 40 · ·
2.21 ± 0. 44 · ·

inear registration

5 ml-2 10 ml-1 10 ml-2

1.46 ± 0.65 1.50 ± 0. 78 2.04 ± 0.92
1.23 ± 0.68 1.70 ± 0. 98 1.85 ± 1.23
· 1.39 ± 0. 36 1.72 ± 0.56
· 1.51 ± 0. 38 1.53 ± 0.63
1.38 ± 0. 45 · ·
1.61 ± 0. 50 · ·

rizontally.



Fig. 8. MR–MR registration: before (top) and after (bottom) non-linear
registration. Target points are in blue, source points that participate in the
registration are in green and source points that do not participate in
the registration are in red. The yellow lines illustrate the closest point
correspondences for the points that participate in the registration. (For
interpretation of the references in color in this figure legend, the reader is
referred to the web version of this article.)
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in Table 5 for the MR–MR experiment. Overall, these
results show that we were able to correct the non-linear
deformations with an average residual error of 1.6 mm
for the ultrasound based registration. For comparison,
the technique corrected the same deformations with an
average residual error of 1.07 mm for the MR-to-MR
registration.
Table 5
Mean ± std distance in mm between the 10 landmarks after MR-to-MR non-

0 ml-1 0 ml-2 5 ml-1

0 ml-1 · · 0.63 ± 0.36
0 ml-2 · · 0.77 ± 0.51
5 ml-1 0.73 ± 0.42 0.75 ± 0.25 ·
5 ml-2 0.90 ± 0.40 0.82 ± 0.55 ·
10 ml-1 1.33 ± 0.82 1.43 ± 0.96 1.19 ± 0.54
10 ml-2 1.63 ± 0.89 1.59 ± 0.86 1.04 ± 0.58
4. Discussion

In this paper, we have presented a new method for cor-
rection of brain shift based on blood vessel segmentation
and registration. The technique has been tested in a series
of simulation experiments, and in a phantom study. It
has shown to be able to recover large portions of linear
and non-linear deformations even when only a very limited
region of the MR image is covered by the US acquisition.

For the simulation experiments presented here, the tech-
nique was capable of recovering on average 75% of the
deformations within the ROI with only 2% of the brain
volume used to estimate the transformation. Because the
ground truth was known in these experiments, there was
no observer error associated with the identification of land-
marks. Three of the registrations showed no improvement
with non-linear registration. By visual inspection of the
registration results, the alignment of the vessel trees
improved, but this change was too small to influence the
RMS or the landmarks.

The registrations presented in this paper can all be per-
formed in less than 30 s on a 1.7 GHz PC. Linear and non-
linear registration of the vessels can therefore be achieved
in less than a minute. Non-linear resampling of entire
image volumes might take more time. The computation
speed is an important feature for intraoperative use, and
will make it possible to efficiently correct preoperative data
several times during a neurosurgical procedure. For the
segmentation techniques, the most time consuming MR
vessel segmentation can be computed pre-operatively and
therefore does not add to the computation time required
during surgery. The ultrasound vessel segmentation is only
a simple thresholding, and the center line extraction can
also be performed within less than 30 s which makes it pos-
sible to produce corrected anatomical and angiographic
MR images in 1–2 min.

For the phantom study, it proved to be difficult to
obtain a reliable segmentation of the smallest tubes from
the MR images, especially the tubes on the surface of the
phantom. This could probably be solved with higher reso-
lution image acquisition, and if necessary a MR contrast
agent in the tubes instead of water. However, this problem
will not arise in real data sets were the blood vessels appear
bright on a dark background (MRA, CTA) or dark on a
bright background (PD) with no contrast between the ves-
sel wall and the surrounding brain tissue.
linear registration

5 ml-2 10 ml-1 10 ml-2

0.87 ± 0.47 1.08 ± 0. 63 1.35 ± 0.54
0.73 ± 0.36 1.17 ± 0. 64 1.50 ± 0.62
· 0.94 ± 0. 43 0.95 ± 0.45
· 0.87 ± 0. 56 1.17 ± 0.47
1.00 ± 0. 34 · ·
1.21 ± 0. 49 · ·
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Missing ultrasound data in highly deformed regions, in
particular the tubes on the top of the phantom surface lim-
ited the accuracy of the registration. The ultrasound acqui-
sition therefore has to be optimized for registration
purposes, in order to target vessels in highly deformed
regions. Despite these difficulties, the US-to-MR registra-
tion was able to recover the deformations to within an
average of 1.6 mm compared to an average of 1.07 mm
for the MR-to-MR registration. We consider the MR-to-
MR registration the best possible result for this technique,
and it shows an accuracy comparable to the resolution of
the original data and the observer error in point
identification.

These results demonstrate that ultrasound imaging in
general and Doppler ultrasound in particular can be very
useful modalities in detection and correction of brain shift
occurring during neurosurgical operations if the ultrasound
acquisition is carefully performed in the highly deformed
regions and optimized in order to capture vessels that are
well represented in the preoperative MRA data. Better seg-
mentation techniques for MRA data that include segmen-
tation of smaller vessels and in particular vessels on the
cortical surface will increase the accuracy of the image
registration.

Even though numerical simulations and physical phan-
toms are useful to test validate a registration technique,
these approximations cannot fully simulate the complexity
of the human brain. The registration technique will there-
fore be applied to a series of clinical data in the near future.
The application of the technique to real data will enable us
test the technique on data with anatomical variability, dif-
ferent magnitudes and directions of brain shift, and differ-
ent ultrasound volume coverage. This application will also
enable us to make further improvements to the navigation
software and the registration algorithm. Classification of
vessel segments and branching points in order to further
reduce the number of incorrect pairings and take into
account vessel directions are possible improvements to
the existing algorithm.

5. Conclusions

In this study, we have designed and validated a method
to detect and correct brain shift using image registration of
blood vessels segmented from MR images and Doppler
ultrasound data. The registration algorithm can correct
the deformed region to within 1–2 mm. The ultrasound
based registration was compared to results obtained using
MR-to-MR registration, and the results are comparable
taking into account the difference in volume coverage.
While more experiments are required to test the method
with real patient data, these experiments show that blood
vessels have the potential of being very useful features for
registration of MR and US images. By using segmented
blood vessels, we overcome many of the difficulties associ-
ated with registration of US data, providing the neurosur-
geon with a fast tool to obtain accurate information about
the anatomy and vasculature at any point in time during a
surgical procedure.
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