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Abstract
In medical imaging, low signal-to-noise ratio (SNR) and/or contrast-to-noise ratio (CNR) often cause
many image processing algorithms to perform poorly. Postacquisition image filtering is an important
off-line image processing approach widely employed to enhance the SNR and CNR. A major
drawback of many filtering techniques is image degradation by diffusing/blurring edges and/or fine
structures. In this paper, we introduce a scale-based filtering method that employs scale-dependent
diffusion conductance to perform filtering. This approach utilizes novel object scale information via
a concept called generalized scale, which imposes no shape, size, or anisotropic constraints unlike
previously published ball scale-based filtering strategies. The object scale allows us to better control
the filtering process by constraining smoothing in regions with fine details and in the vicinity of
boundaries while permitting effective smoothing in the interior of homogeneous regions. A new
quantitative evaluation strategy that captures the SNR to CNR trade-off behavior of filtering methods
is presented. The evaluations based on the Brainweb data sets show superior performance of
generalized scale-based diffusive filtering over two existing methods, namely, ball scale-based and
nonlinear complex diffusion processes. Qualitative experiments based on both phantom and patient
magnetic resonance images demonstrate that the generalized scale-based approach leads to better
preservation of fine details and edges.
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1. INTRODUCTION
Noise is ubiquitous in acquired images, especially medical. In many tasks, the utility of an
image is determined by how well real intensity interfaces and fine details are preserved in the
acquired image. Often the details may be along an edge or a boundary. In addition to influencing
diagnostic tasks, noise also affects many image processing and analysis tasks such as
segmentation (Pal and Pal, 1993; Saha and Udupa, 2001), registration (Wells et al., 1996;
Lester and Arridge, 1999), and visual rendering (Höhne et al., 1990; Udupa and Herman,
2000) that are crucial in many applications.
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Methods for improving SNR and CNR can be divided into two categories: those based on
image acquisition techniques and methods based on postacquisition image processing.
Improving image acquisition techniques usually requires increasing the overall acquisition
time, losing spatial resolution, or upgrading the scanner. Filtering, an off-line image processing
approach, is often as effective as improving image acquisition without affecting spatial
resolution, and if properly designed, requires less time, and is usually less expensive. Filtering
techniques may be classified into two families: (i) enhancing, wherein wanted (structure)
information is enhanced, hopefully without affecting unwanted (noise) information, and (ii)
suppressing, wherein unwanted information is suppressed, hopefully without affecting wanted
information. We focus in this paper on filtering as in (ii). Suppressive filtering operations may
be further divided into two classes: a) space-invariant filtering (Rosenfeld and Kak, 1982), b)
space-variant filtering (Lee, 1980).

Space-invariant filtering techniques, wherein a spatially independent fixed smoothing
operation is carried out over the entire image, blur important structures along with noise. For
overcoming this problem, space-variant filtering, wherein the smoothing operation is modified
by local image features, have been proposed including edge-adaptive filtering (Lev et al.,
1977), local image-statistics-driven filtering (Lee, 1980), gradient inverse-weighted filtering
(Wang et al., 1981; Wang, 1992), gradient-controlled anisotropic diffusive filtering (Perona
and Malik, 1990), wavelet-based multiscale filtering (Xu et al., 1994; Bao and Zhang, 2003),
local shape-based template-matched adaptive filtering (Ahn, 1999), nonlinear feature-
dependent total variation filtering (Rudin et al., 1999; Chan et al., 2001), fractal based filtering
(Ghazel et al., 2003), and kernel principal component analysis based filtering (Kim et al.,
2005), and coherence-enhancing diffusion filtering (Weickert, 1999; Tschumperle and
Deriche, 2005). Among these, diffusive filtering methods (Perona and Malik, 1990) have
become quite popular. In these methods, image intensity at a pixel is made to diffuse to
neighboring pixels in an iterative manner, with the diffusion conductance controlled by local
intensity gradients. Diffusive filtering techniques have been employed in various applications
including filtering of 3D and multi-echo MRI (Gerig et al., 1992; Sapiro and Tannenbaum,
1994), SPECT/PET (Beekman et al., 1998; Demirkaya, 2002), 3D ultrasound (Montagnat et
al., 2003), CT (Saha and Udupa, 2001; Krisian, 2002), fMRI (Kim, et al., 2005), visualization
(Preuer and Rumpf, 1999; Clarenz, 2000; Meijering et al. 2002), and segmentation (Atkins and
Mackiewich, 1998; He and Narayana, 2002).

Perona and Malik’s seminal work paved the way for a variety of diffusive filtering methods
that have attempted to overcome some drawbacks and limitations of the original model (see
(ter Haar Romeny, 1994) and the references therein). (Catte et. al., 1992) proposed a simple
modified diffusion conductance controlled by intensity gradients estimated from a smoothed
image. (Weickert, 1998) proposed an anisotropic, nonlinear diffusion process that used both
magnitude and direction of gradients. (Liang and Wang, 1998) proposed a piecewise linear
diffusion process controlled by a space-variant, anisotropic local noise estimate. (Gilboa et al.,
2002) proposed a forward-and-backward adaptive diffusion process that attempted to enhance
features while locally suppressing noise in the image.

As we see from the above discussion, the various improvements in diffusion filtering are at
better control and adaptation of the diffusive process to local image characteristics. A recent,
somewhat different type of attempt towards this goal is through the use of local image scale
(Saha and Udupa, 2001; Saha, 2005). Several definitions of local image scale are available in
the literature (Elder and Zucker, 1998; Liang and Wang, 1998; Saha et al., 2000; Saha,
2005). In (Saha and Udupa, 2001), scale at any image element is considered to be the radius
of the largest ball centered at that element such that all elements within the ball satisfy a pre-
defined homogeneity criterion. We will refer to this scale model as ball scale (or b-scale for
short) from now on. The idea behind b-scale-based filtering is to take into account the local

Souza et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scale information at every image element to adaptively control diffusion and the extent of
filtering (see Figure 1). The work presented in the present paper is closely related to this idea,
in the sense that it uses the spirit of local scale to control diffusion, but it uses a different local/
global scale to arrive at improved filtering.

Our proposed filtering method is based on a novel scale idea called, generalized scale (g-
scale for short) (Madabhushi et al., 2006). The g-scale at any image element p is considered
to be the set of all image elements within the largest, homogeneous, fuzzily connected region
containing p. Roughly speaking, the g-scale at p is the largest set (of any shape whatsoever)
of elements within which there is a spatial contiguity of intensity homogeneity. g-scale differs
from b-scale and other local morphometric scale models in that it imposes no shape, size, or
anisotropic constraints on the homogeneous regions. Filtering is controlled by g-scale regions
so that the diffusion rate is greater deep within the region than in its border (see Figure 1)

The nonlinear diffusion filtering process originally proposed by Perona and Malik does not
offer any image-dependent guidance for selecting the optimum gradient magnitude at which
the diffusion flow must have a maximum value. More importantly, since it does not use any
morphological or structural information to control the extent of diffusion in different regions,
fine structures often disappear and fuzzy boundaries are further blurred upon filtering. To
overcome these problems, b-scale-based filtering was proposed to adaptively control the degree
of smoothing that is done in different regions of the image. By definition, the b-scale in regions
with fine details or in the vicinity of boundaries is small. Thus, a restricted parameter is
automatically selected for filtering in small b-scale regions (corresponding to fine details and
the vicinity of boundaries) and a generous filtering parameter is employed at large b-scale
regions (corresponding to interiors of large homogeneous regions). While b-scale-based
filtering has demonstrated significant improvements in preserving boundary sharpness and fine
details while suppressing noise, this (ball) scale model is not appropriate for effective diffusion
along edges and along elongated structures. That is, it does not take into account orientation
(shape) and anisotropy of local structures. The motivation for g-scale-diffusion filtering
method is to bring in explicitly the object shape, size, and anisotropy information to better
control the diffusion process along edges and elongated structures (see Figure 2). The shape
of the nonlinearity of the diffusion conductance function varies in this method with the g-scale
region. A g-scale region may successfully represent a fuzzily connected edge segment or an
elongated structure in the image leading to intense diffusion along this structure but not across
it.

The rest of this paper is organized as follows. In Section 2, we briefly give an overview of
anisotropic diffusion theory and describe briefly a recently published method based on
nonlinear complex diffusion (Gilboa et al., 2004) as well as the b-scale-based method (Saha
and Udupa, 2001) against which the new method will be compared. The g-scale-diffusion
filtering method is presented in Section 2. In Section 3, results of qualitative and quantitative
evaluations on MR and CT clinical and phantom images are presented by comparing among
the three methods by using a new evaluation strategy that considers the tradeoff that exists
between CNR and SNR. We state our b-scale regions g-scale regions conclusions in Section
4. A preliminary version of this paper was presented at the SPIE Symposium on Medical
Imaging 2005 (Souza et al., 2005).

2. METHODS
For brevity, we refer to an acquired digital volume image as a scene and represent it by a pair
C = (C,f) where  is the set of 3-tuples of positive
integers called voxels, f is a function whose domain is C, called the scene domain, and whose
range is a set of integers [L, H], and for any c ∈ C,f (c) is referred to as the intensity of c. We
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call C a binary scene if the range of f is {0,1}. A digital ball (or simply a ball) of radius r
centered at any voxel c in C is the set Br(c)={d ∈ C| ‖c − d‖≤ r}. For any set X, we use the
notation |X| to denote its cardinality.

In the rest of this section, we will first outline the nonlinear diffusion method (Perona and
Malik, 1990), then discuss its extension as employed in the method of nonlinear complex
diffusion (Gilboa et al., 2004), and then describe the b-scale-based and g-scale-based methods.

2.1. Anisotropic diffusion
As described in (Perona and Malik, 1990), anisotropic diffusion is a locally adaptive smoothing
process, which attempts to minimize blurring near object boundaries. A mathematical
formulation of the diffusion process on a vector field V at a point c in coordinate-free form can
be given by

(1)

where Δτ is the volume enclosed by the surface s (surrounding c ) and ds=uds, where u is a
unit vector which is orthogonal and outward-directed with respect to the “infinitesimal” surface
element ds The intensity flow vector field V controls the diffusion process, and is defined as

(2)

where G is the diffusion conductance function, and F is the scene intensity gradient vector
field. In a linear isotropic diffusion process, G is a constant, and in (Perona and Malik, 1990),
the authors have argued that such diffusion strategies blur object boundaries and structures.
They presented an alternative, anisotropic diffusion method in which G varies at each location
in the scene as a nonlinear function of the magnitude of the scene intensity gradient so that
smoothing within a region with low intensity gradients is encouraged, and smoothing across
boundaries, wherein the magnitude of the gradients is much higher, is discouraged. Although
diffusion is a continuous process, in image processing, diffusion is achieved by an iterative
process in the discrete domain. Our method is formulated in 3D discrete spaces by using the
6-adjacent voxel neighborhood. This dichotomy between continuous versus discrete
representations of the diffusion process is not new and has already been addressed by earlier
papers. The core idea of using scale (either b- or g-scale) is to finely control the amount of
diffusion locally by fine tuning the conductance parameter rather than to assume it to be
constant for the whole image as proposed by Perona and Malik.

2.2. Nonlinear complex diffusion
The nonlinear complex diffusion (NCD) method of (Gilboa et al., 2004) presents a complex
diffusion-type process, which generalizes the nonlinear anisotropic diffusion process by
incorporating the free Schrödinger equation. An important characteristic of the NCD method
is that the imaginary part of the NCD process acts as an edge detector (smoothed second
derivative scaled by the phase angle θ and time) when the complex diffusion-conductance
function approaches the real axis (i.e., when θ is very small). The real part of the NCD process
is effectively decoupled from the imaginary part, and behaves like a real nonlinear diffusion
process. The authors have shown that NCD has better performance than the Perona and Malik
diffusion process in overcoming staircasing effect and in handling changes in the scene
illumination condition. Based on this property, they devised a complex functional form for the
diffusion-conductance function Gn, given by

(3)
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where for any c ∈ C Im(ft(c)) is the imaginary part of the complex intensity value ft(c) resulting
from the complex diffusion process of NCD at tth iteration, and k is a threshold parameter for
the gradient magnitude. The phase angle θ of the complex function Gn does not change over
time (iterations). Since the imaginary part is normalized by θ, the process is almost not affected
by changing the value of θ, as long as it stays small (θ < 5°). Im(ft(c)), for any c ∈ C, is assumed
to be zero at t = 0 (first iteration). A discrete implementation is given in (Gilboa et al., 2004).
Diffusion flow magnitude function |V| has a maximum value at magnitude of gradient |F| = k, |
V| is monotonically increasing for |F| < k, and it is monotonically decreasing for |F| > k. When
k is large, the generosity of filtering is high and the possibilities of blurring across boundaries
increase. On the other hand, for small k, the generosity of filtering is low. Because k is fixed
in this method while filtering a given scene as in (Perona and Malik, 1990), a fine control on
and adaptivity to local region characteristics are missing. How to bring this local control and
adaptivity is the main thrust of this paper.

2.3. b-scale-based diffusive Filtering
For any ball Br(c) of radius r centered at c, we define a fraction FOr(c), that indicates the
fraction of the set of the voxels in the ball boundary whose intensities are sufficiently uniform
with that of c, by

(4)

where Wψ (x) is a fuzzy membership function corresponding to the predicate “x is small”. A
complete discussion of the characteristics of Wψ is presented in (Saha et al., 2000). Basically,
Wψ should satisfy the following properties: function range should be [0,1], Wψ (0)=1, and
should be monotonically decreasing with |f(c) − f(d)|. In this paper, a zero mean unnormalized
Gaussian function with standard deviation σψ is used for Wψ. σψ is a homogeneity parameter
which, for the purposes of the present paper, is automatically estimated from the given scene
as described in (Saha and Udupa, 2001). σψ is therefore not considered to be a parameter of
the bD filter.

The algorithm for b-scale estimation, described in (Saha et al., 2000), iteratively increases the
ball radius r by 1, starting from r=1, at every voxel c ∈ C, and checks FOr (c), the fraction of
the object containing c that is contained in the ball boundary. The first time when this fraction
falls below the tolerance parameter ts, the ball is considered to enter a region of different
homogeneity from that to which c belongs. Following the recommendation in (Saha et al.,
2000), we have used ts = 0.85 in this paper. The output of the algorithm is a b-scale scene CS
= (C,fS), where fS(c) is the radius of the largest ball centered at c within which the voxel
intensities are homogeneous.

The b-scale-based diffusion (bD) method is iterative, and so let t denote the iteration number.
Let Ct = (C,ft) denote the scene resulting from the diffusion process at tth iteration. For any
voxels c,d ∈ C, such that c ≠ d and c and d are 6-adjacent, let D(c,d) denote the unit vector
along the direction from voxel c toward voxel d. Let Ft(c,d) represent the component of the
intensity gradient vector along, D(c,d) given by

(5)

Note that scene resolution anisotropy is taken into account in (5), where ν = (ν1,ν2,ν3) is the
voxel size.
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The intensity flow from voxel c to voxel d is affected by the effective scale reff(c,d), which is
defined as

(6)

where e ∈ C is the neighboring voxel of c just opposite d, defined by e = c − (d − c). (When
c is in the border of the scene domain, we let e = c.) The diffusion conductance function for
the flow from c to d at the tth iteration, via this definition of effective scale, is defined as follows:

(7)

where σs (c,d) is the b-scale-adaptive region-homogeneity parameter used for controlling the
intensity flow from d to c, given by

(8)

Gt(c,d) is an unnormalized Gaussian and a valid conductance function as proposed by (Perona
and Malik, 1990). The intention here is to let Gt(c,d) tend to zero at the edges where b-scale
(and hence reff(c,d)) is small and so Gt(c,d) decreases. In all the experiments in this paper, the
maximum ball radius rMAX in the b-scale scene CS of C is set to 12. σψ is the homogeneity
parameter defined earlier. Intensity flow vector Vt(c,d) from voxel c to voxel d at the tth
iteration is now defined by

(9)

Then the iterative process is defined as follows:

(10)

where KD is the integration constant that must be adjusted according to the adjacency criterion.
We use KD = 1/7, as indicated in (Saha and Udupa, 2001) and (Gerig et al., 1992) for 6-adjacent
neighborhood. The flow direction between any voxels c,d ∈ C is always such that it tries to
reduce the gradient between them, i.e., Vt(c,d)·D(c,d) is positive when ft(c) > ft(d), negative
otherwise, and zero when c = d. Further, this diffusion process described by (5)–(10) is both
nonlinear and anisotropic.

2.4. g-scale-based diffusion
As defined in (Madabhushi et al., 2006), for any number tg ∈ [0,1], and a homogeneity function
Wψ (as introduced in Section 2.3), the g-scale G(c) of any c ∈ C in a given scene C = (C,f), is
the largest subset of C such that

1. G(c) contains c, and

2. for any αb-adjacency of voxels in C, say 6-adjacency, and for any voxel d,o ∈ G(c),
there exists an αb-path pdo = < c(1) = d,c(2),…, c(m) = o < in G(c) connecting d to o
such that, for 1 ≤ I < m, Wψ(|f (c(i)) − f(c(i+1))|) ≥ tg.

The g-scale set (C) of C is the family of sets.{G(c) | c ∈ C}. The g-scale regions collectively
cover the entire scene domain but also they do not overlap – that is, any two g-scale regions
are either the same region in C or they are completely disjoint. This implies that, for any voxel
d ∈ G (c), there is no need to compute. G(d). The g-scale set of any given scene can be computed
by using the following algorithm. As described in (Madabhushi et al., 2006), the two parameters
σψ and tg associated with estimating (C) are automatically determined.

Algorithm gSE
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Input: C, Wψ, tg

Output: (C).

Auxiliary Data Structures: A queue Q.

begin

unmark all voxels of C;

repeat

take an unmarked voxel c of C and put it in Q;

mark c and set G(c) to empty;

while Q is not empty do

remove a voxel d from Q and add it to G(c);

for each unmarked voxel e in C αb-adjacent to d do

if Wψ(| f(d) − f(e)|) ≥ tg then put e in Q and mark it;

endfor;

endwhile;

output G(c);

until there is no unmarked voxel in C;

end

In g-scale-based diffusion (gD), the adaptive region-homogeneity parameter σs (c,d) is
redefined by using g-scale morphometric information as follows.

(11)

where Gmax is the maximum g-scale size |G(c)|, and β is a threshold on the size of g-scale. Now
the process of g-scale-based diffusion is completely described by (5), (7) and (9)–(11).
Intuitively, β should be small because it characterizes potential noise regions in the image,
which appear as small g-scale regions, where diffusion should not be constrained (i.e., then
σs = σψ). This equation assumes that diffusion across the boundary of large g-scale regions (>
β) should not occur (i.e., then σs = σψ/Gmax). And σs(c,d) is equal to σψ inside these regions.
We note that, in this process, diffusion takes place along boundaries in a uniform manner, no
matter what their shape is, but not across them. For large, β, gD operates as a classical
anisotropic diffusion filter. We did not see any significant change in gD results for β values in
the range from 5 to 8. Filter performance degraded considerably for β values less than 5 and
greater than 8 in our tested images. In both bD and gD, the scale values are evaluated only once
at the beginning and not modified in the iterative diffusive process.

3. EXPERIMENTS, RESULTS, DISCUSSION
In this section, we present the results of qualitative and quantitative experimental evaluation
by comparing the three methods bD, NCD, and gD. In all experiments, the following values
for the parameters of the three methods have been used. For the NCD method, we have used
k = σψ and θ = π/60 in (3) as recommended by the original method. In both gD and bD methods,
we have set the tolerance parameter ts = tg = 0.85 as suggested and justified in the original
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methods. For the gD method, we have used β = 8 in (11) as explained in the previous section.
The data sets utilized in our evaluation are described briefly in Table 1.

3.1 Qualitative Evaluation
Data sets D1–D6 are used for qualitative evaluation. In Figure 3, we display an example from
each of these data sets D1–D5 and the filtered results produced by the three methods after three
iterations. Filtering has been done in 3D space in all these cases although the results are shown
for only one slice. To minimize the number of displays, somewhat zoomed in versions only
are shown. Overall, we may observe that the bD and gD methods preserve fine details and
edges in the diffusion process better than the NCD method. Note and compare particularly the
regions indicated by arrows. At the same time, the interior of homogeneous regions are
smoothed well by bD and gD as well as by NCD methods. This effectiveness of bD and gD
seems to be independent of the body region and the imaging modality and protocol.

A particular strength of gD over bD (and NCD) is its ability to diffuse well along edges, at the
same time minimizing diffusion across them. Most diffusion based methods, if run for a
sufficiently large number of iterations, will eventually not only smooth the interior
homogenous regions and along edges but will also smooth across edges. The relative merits
of different methods come from their ability to smooth more within object regions and along
edges for a given amount of blurring (diffusion) they commit across edges. That is, between
two methods M1 and M2, if M1 achieves more diffusion within homogeneous regions and
along edges than M2 for the same given amount of blurring committed by both M1 and M2
across edges, then M1 is to be regarded as a better method than M2. In our view, this is what
all diffusion based (for that matter, all noise suppression) filtering methods try to accomplish.
In the next section, we present a new method for evaluating filtering techniques that can
properly address this dichotomy. The purpose behind this discussion is to make the point that,
in the above sense, gD is a better diffuser than bD (and NCD). Why this is so is intuitively easy
to explain. The b-scale regions are very small (1–2 voxel diameter) in the vicinity of object
boundaries (see Figure 2). Every voxel along object boundaries is thus likely to be in a different
b-scale region, whereas, since g-scale regions have no restriction on shape, a single g-scale
region may typically run along a boundary consisting of a run of voxels on the boundary.
Therefore, by (11), we can see that gD achieves more diffusion along the boundary also. This
is borne out in Figure 3 for data sets D1–D4. D5 is specially created to demonstrate this
phenomenon. This phantom was generated by first blurring by applying a 2D Gaussian kernel
(σblurr = 2.0) the original spiral pattern image and subsequently by adding a correlated zero
mean Gaussian noise (σnoise = 20). Better smoothing along the edges by gD without introducing
blur across edges is evident in Figure 3 for D5 compared to other methods.

PDE based anisotropic diffusion filtering frameworks have been proposed recently that use so
called diffusion tensors to smooth along edges (Weickert, 1999; Tschumperle and Deriche,
2005). We have tested the Weickert diffusion method on the image data sets used in this paper.
Some examples are shown in Fig.4. The Weickert diffusion process via the second-moment
matrix has been proved to be useful for images with flow-like texture (e.g., Diffusion Tensor
MRI). We find that, after applying Weickert diffusion, the gyri and sulci patterns in brain MR
images are distorted and the bone trabecular structures are destroyed, as indicated by arrows
in Figure 4. Strictly speaking, the PDE equation by Weickert et al. does not fully respect the
tensor geometry. Yet there is a difficult trade-off between noise removal and preservation of
curved structures, when using trace-based PDE’s (Tschumperle and Deriche, 2005).

To further demonstrate the phenomenon of better smoothing along edges, we present in Figure
5 3D renditions (Udupa and Odhner, 1993) from data set D6. Zero mean correlated Gaussian
noise (σnoise = 100) was added to the original CT scene to test the ability of the three methods
to suppress noise. The skull surfaces were extracted from the noisy scene and from the three
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filtered scenes by applying the same fixed threshold. The top row of Figure 5 displays renditions
of these surfaces. In the bottom row of Figure 5, we display zoomed in renditions of the teeth
and mandible. Again, the sites of interest where important differences exist in filtering effects
are indicated by arrows. Surface rendition from scale-based filtered scenes appears notably
sharper than the one obtained by NCD method. Yet surfaces appear smoother with gD than
with bD filtering. In addition, surface interfaces and fine details of the teeth and mandible are
better retained (or even enhanced) by gD than by bD while suppressing noise. The differences
between bD and gD methods are difficult to assess and portray visually because of the trade-
off issue referred to earlier. This issue has not been addressed in the literature. Published
methods show usually at one parameter setting some qualitative/quantitative improvement.
This does not convey the full story of the trade-off behavior. Methods should be compared, we
argue, based on their entire range of behavior, as described in the next section.

3.2 Quantitative Evaluation
For a quantitative comparison among the methods, we used data set D7 consisting of 45 MRI
simulated phantom scenes corresponding to (i) three levels of noise (3%, 7%, and 9%), (ii)
three protocols (PD, T1, and T2), and (iii) five slice thicknesses (1 mm, 3 mm, 5 mm, 7 mm,
and 9 mm). Let {Cxi | Cxi = (C,fxi), 1 ≤ i ≤ 45} denote the set of scenes produced after applying
the filtering method x ∈ {bD, NCD, gD} to the set of 45 phantom scenes. For a given object
region in these scenes and for a given method x, we define residual noise RNxi in the scene
Cxi as the standard deviation of voxel intensities fxi(c) in Cxi within the object regions in Cxi.
(The object that was considered for these data sets was the white matter region. The true tissue
region information available in Brainweb as binary scenes was used for this purpose.) Similarly
relative contrast RCxi of the object regions in Cxi is defined as:

(12)

where Mxi and σxi denote the mean and standard deviation, respectively, of voxel intensities
fxi(c) in Cxi within the object region, and  denote similar entities outside the object
region in their immediate exterior(i.e., a set of all voxels in the background which are 6-adjacent
to some voxel in the object). In Figure 6, we demonstrate the behavior of each method by
plotting how the RN and RC values vary as the number of iterations is varied for the different
protocols at different levels of noise. The RN and RC values and the curves shown here are
averaged over the five scenes corresponding to five different slice thickness values for each
protocol and noise level. The values of RNxi and RCxi were normalized by their maximum
observed in these experiments. Table 2 lists the area under the curve (AUC) of these values
for each curve in Figure 6.

We note that, in assessing the performance of a suppressing filter, the trade-off that exists
between RN and RC should be analyzed. This is akin to the trade-off issue between false
positives and false negatives arising in image segmentation and object detection tasks. In
analogy with ROC curves for the latter task, we call the curves depicting the trade-off behavior
between RN and RC filter operating characteristic (FOC) curves. As discussed previously, it
is usually easy to reduce RN simply by increasing the number of iterations or by changing the
parameter that controls the conductance function. However, it is challenging to reduce RN and
at the same time increase/maintain RC. The FOC curve depicts how well this trade-off is
handled by a filtering method. The upper left corner in this graph represents the ideal filter
operating point of least residual noise and highest contrast that is possible. The upper right
corner indicates the operating point after a large number (essentially infinite) of iterations when
the residual noise reduces to zero but so does the contrast. The AUC value is therefore a good
measure of the overall performance of a filter. A higher value of AUC for the method indicates
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more effective filtering. From Table 2, we observe that, for every protocol and each level of
noise, AUC for scale-based diffusive filtering (bD and gD) is higher than that for the NCD
method and that the gD method always outperforms the bD method. Continuing our earlier
discussion on filtering within uniform regions and along boundaries versus blurring
boundaries, we note from Figure 6 that, for every level of noise and for each protocol, gD
achieves more smoothing (lower RN) for the same level of boundary blur (RC) than bD and
NCD. Similarly, it achieves less boundary blur (higher RC) than bD and NCD for the same
level of noise suppression (RN). Although, in this paper, we varied only the number of iterations
for FOC curves, other important parameters can also be considered for this purpose. In this
case, each point on the FOC curve would denote a particular setting of the parameter vector
for the method.

One may argue that σψ may not be the optimal value for k in the complex functional form for
diffusion-conductance in (3). In Table 3, we list AUC values for all three methods estimated
over five different values of σψ given by 0.25σψ, 0.50σψ, 0.75σψ, 0.75σψ, and 1.50σψ, on a
MNI phantom scene with 9% noise and 9 mm slice thickness. We observe that variation in
NCD filtering performance in terms of change in AUC values was not significant. Both scale-
based methods outperformed NCD for all different settings of σψ, while gD had the highest
AUC values among the three.

On a Pentium IV (3.4 GHz and 1 GB RAM) PC, the gD method performs as quickly as the
NCD method, on average, under 1 minute for three iterations for a 256×256×51 scene. The bD
method requires more iterations to achieve a level of filtering similar to that achieved by gD
in homogeneous regions. For roughly the same level of filtering in homogeneous regions, bD
takes about 2 minutes for the same scene.

4. CONCLUDING REMARKS
In this paper, we have presented a new scale-based diffusive filtering method, called gD
method, wherein a fine control on and adaptivity to local region characteristics is incorporated
by using a local morphometric scale model, called g-scale. Unlike other local morphometric
scale models, g-scale imposes no shape, size or anisotropic constraints. The mechanism
underlying the scale-based methods bD and gD is to use the size of the scale region to control
diffusion. Equation (8) for bD uses the fact that small values of b-scale (the radius of the largest
homogenous ball centered at each voxel) occur in the vicinity of the boundaries where diffusion
should be constrained, but allow strong diffusion to take place where b-scale value is large (at
the center of homogenous regions). Equation (11) for gD has a clear theoretical advantage as
compared with (8), namely that g-scale can have any shape and can potentially drive diffusion
along boundaries (but not across them) in a highly non-linear manner. This equation assumes
that diffusion across different g-scale regions should not occur but should be at maximum
inside these regions. Most parameters are computed automatically and the only free parameter
in (11), β, is very intuitive. It characterizes the potential noise regions in the image, which
appear as small g-scale regions. β indicates what is the minimum region size of g-scale so that
for any g-scale region with region size less than β diffusion across boundary is allowed.

We demonstrated that the gD method outperforms both bD and NCD methods and a recent
diffusion tensor based method. The filtered scenes produced by the gD method have fine details
and structures better preserved while suppressing noise in large homogeneous regions and
along boundaries.

The gD method achieves a considerable gain in terms of AUC values over the recently reported
NCD method and improves over bD. Computationally it is comparable to NCD and is faster
than bD. Thus, gD becomes a powerful contender for filtering noise in medical images at the
present time. White matter regions were chosen for evaluation because it occupies a large
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portion in the brain. While the same analysis can be done for other regions, we have limited
ourselves to that region only during evaluation for the following reason. Grey matter and
peripheral cerebrospinal fluid are very thin objects so that, RN, which defines the standard
deviation of voxel intensities within the object, is difficult to estimate because, in these objects,
most voxels are boundary voxels. There is not a sufficient number of voxels in the proper object
interior to provide sufficient statistics.

Another contribution of this paper is a methodology to quantify the trade-off behavior between
residual noise and residual contrast that exists in all filtering methods. The AUC mechanism
proposed here allows filtering methods to be compared over their entire range of behavior
rather than at some arbitrary operating point set in an ad hoc manner, as done in most published
filtering methods.

While the AUC value is useful in comparing methods over their range of behavior, it does not
suggest how to set the parameters of a particular method for a desired operating point. We
suggest that by studying the dynamics of the filtering method via FOC, one can devise
techniques even for the optimal selection of filter parameters including the number of iterations.
The idea consists of graphing the FOC curve in such a way that each operating point on the
curve represents one possible choice of the filter parameter vector values including the number
of iterations. Our aim is to find that operating point on the curve that represents the best
performance. One possible choice of this point may be the point on the curve closest to the
upper left corner. In this case, the optimization criterion is the distance of the FOC curve from
the upper left corner of the graph. We may minimize this distance as a function of the parameters
of the filter to arrive at an optimal operating point for the filter. This approach will fill the void
that currently exists in the choice of filter parameters.

The performance of both bD and gD may improve further if scale estimation is done again
after each iteration of filtering and if scale estimation and filtering are carried out iteratively.
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Figure 1.
Illustration of diffusive filtering control by local scale information. On left, a zoomed in axial
PD MR image of the left superior portion of the head of a subject is shown. On right, the b-
scale regions (white circles) and a g-scale region (light gray contour) of an image element p
are overlaid. In b-scale-based diffusion, the radius r of the circle controls diffusion at p, while
the size and shape of the g-scale region will control the diffusion process in g-scale-based
diffusion.
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Figure 2.
An object region in an image consisting of a blobby and an elongated part is shown. The b-
scale regions in the vicinity of the boundary of the object are individual small (radius=1) balls.
The g-scale regions in the vicinity of the boundary of the object, however, are likely to be
elongated thin regions running along the boundary. Thus, along the boundary, individual b-
scales do not permit or encourage diffusion, whereas, since individual g-scale regions are likely
to run along the boundary, they do encourage diffusion along boundaries. In the interior of the
object, both b- and g-scales would behave in a similar manner.
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Figure 3.
Filtered scenes output by the three methods for data sets D1–D5.

Souza et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Left to right: original, gD and Weickert et al. diffusion.

Souza et al. Page 18

Med Image Anal. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Comparison of 3D renditions created from the filtered scenes for data set D6 to demonstrate
the relative effectiveness of smoothing by the three methods along edges. Top row: Skull
surfaces. Bottom row: Zoomed in views of the teeth and mandible.
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Figure 6.
Curves for 45 MR phantom scenes depicting the variation of RN and RC as the number of
iterations is changed from 1 to 200.
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Table 1
The data sets used in evaluation.

Data Set Description Voxel Size (mm3) Scene Domain

D1 PD brain MR image of a multiple sclerosis patient 0.86 × 0.86 × 3 256 × 256 × 51
D2 Gradient echo MR image of a normal human foot 0.55 × 0.55 × 1.3 256 × 256 × 60
D3 T1 simulated brain image with 9% noise from Brainweb

(www.bic.mni.mcgill.ca/brainweb)
1 × 1 × 9 181 × 217 × 20

D4 CT image of a human thorax 0.78 × 0.78 × 2.5 512 × 512 × 60
D5 A 2D mathematical phantom constituting a thin Archimedes’

spiral pattern
1×1 512×512

D6 CT image of a human head (Visible Woman) 0.49 × 0.49 × 1 512 × 512 × 209
D7 45 3D simulated MRI data sets of the brain from Brainweb

containing PD, T1, T2 images at different levels of noise and slice
thickness values

1×1× (1 – 9) 181 × 217 × (20 –181)
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Table 2
AUC values for the curves shown in Figure 6.

Protocol Noise level bD NCD gD

3% 0.8713 0.7289 0.9154
T1 7% 0.8596 0.7509 0.9061

9% 0.8636 0.7551 0.9025

3% 0.8100 0.6885 0.8837
T2 7% 0.8187 0.7811 0.8688

9% 0.8335 0.7918 0.9311

3% 0.7875 0.6908 0.9072
PD 7% 0.8166 0.7771 0.8601

9% 0.8716 0.8398 0.8969
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