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Abstract
In this paper, we present the development and application of current image processing techniques to
perform MRI inter-subject comparison of knee cartilage thickness based on the registration of bone
structures. Each point in the bone surface which is part of the bone–cartilage interface is assigned a
cartilage thickness value. Cartilage and corresponding bone structures are segmented and their shapes
interpolated to create isotropic voxels. Cartilage thicknesses are computed for each point in the bone–
cartilage interfaces and transferred to the bone surfaces. Corresponding anatomic points are then
computed for bone surfaces based on shape matching using 3D shape descriptors called shape
contexts to register bones with affine and elastic transformations, and then perform a point to point
comparison of cartilage thickness values. An alternative technique for cartilage shape interpolation
using a morphing technique is also presented. The cartilage segmentation and morphing were
validated visually, based on volumetric measurements of porcine knee images which cartilage
volumes were measured using a water displacement method, and based on digital thickness values
computed with an established technique. Shape matching using 3D shape contexts was validated
visually and against manual shape matching performed by a radiologist. The reproducibility of intra-
and inter-subject cartilage thickness comparisons was established, as well as the feasibility of using
the proposed technique to build a mean femoral shape, cartilage thickness map, and cartilage coverage
map. Results showed that the proposed technique is robust, accurate, and reproducible to perform
point to point inter-subject comparison of knee cartilage thickness values.
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1. Introduction
Osteoarthritis (OA) of the knee is a chronic disease associated with deterioration of the joint
cartilage. As OA progresses, the cartilage gets thinner and in severe cases breaks down losing
its entire functionality. This pattern is visualized on radiographs as a narrowing of the joint
space between the bones and is usually associated with symptoms such as pain, swelling, and
decreased motion. However, cartilage morphology cannot be directly assessed on radiographs,
which is probably the most important reason why magnetic resonance imaging (MRI) has
emerged as the imaging technique of choice for characterization of knee articular cartilage
morphology. MRI provides high contrast and high-spatial resolution images to visualize and
quantify cartilage degeneration (Peterfy et al., 1994).
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Proper assessment of cartilage morphology with MRI to monitor the progression of joint
diseases or related treatments is important. However, cartilage quantification and analysis is
not straightforward if true three-dimensional (3D) assessments are desired. The complications
increase when we want to compare the knee cartilage of the same patient at different time points
or when we want to compare specific joint regions between different patients at any time. These
difficulties are the result of anatomical differences, different positioning of patients in the MR
scanners, movement of patients during the scans, MR distortions, and other factors. However,
there is an increasing interest in performing a compartmental analysis of cartilage morphology
and MR relaxometry, and compare the results across different subjects. Typical knee femoral
cartilage compartments include for example medial, lateral, and trochlea, and most of the
studies perform this comparison by manual determination of the limits of the compartments.
The anatomical diagram and MR image of the knee joint in Fig. 1 illustrate the main anatomic
components of the knee articulation for the purposes of this paper. The rationale behind the
compartmental analysis is that the natural loading conditions of the knee joint due to the
biomechanics of the knee articulation are affected by OA leading to non-uniform cartilage
degeneration across the articulation. To properly overcome the subjectivity and difficulties of
doing an inter-subject compartmental comparison of cartilage knee properties, which increases
as the size of the compartments decrease, and to have a better understanding of knee OA,
accurate and robust image processing techniques are required. The purpose of this paper is to
present image processing techniques to perform inter-subject comparison of knee cartilage
thickness in 3D. After MR image acquisition has been performed, cartilage and bone structures
of the subjects to be compared are segmented and interpolated based on shape to create isotropic
voxels, cartilage thicknesses are computed and transferred to the bone surfaces, shape matching
is performed on the bone surfaces, and affine and elastic registrations are applied to perform
point to point inter-subject cartilage thickness comparisons.

Semi-automatic approaches to segment cartilage of the knee from MR images obtained with
3D spoiled gradient recalled (SPGR) fat suppressed pulse sequences have been published
(Cohen et al., 1999; Stammberger et al., 1999b; Warfield et al., 2000). Because these images
offer good contrast at the bone–cartilage interface (bone = dark, cartilage = bright), therefore,
the majority of these methods have been based on edge-detection. Recently an automatic
approach to segment knee cartilage from images of low field magnets has been reported based
on voxel classification (Folkesson et al., 2007), however, the performance of this technique
with anatomic images of high field magnets that better depict the knee cartilage morphology
and with sequences that offer a different type of contrast than the reported images needs yet to
be established. Segmentation of high-spatial resolution images of the knee cartilage is still time
consuming and the amount of human interaction is considerable as the result of noise and
artifacts encountered in MR images of OA patients. With the aim of reducing the time and
effort of manual segmentation while preserving accuracy, a semi-automatic interactive
segmentation technique based on edge-detection and Bezier spline interpolation was therefore
developed.

Because the through-plane spatial resolution is commonly inferior to the in-plane spatial
resolution in MR acquisitions of the knee due to a trade-off between signal to noise ratio and
spatial resolution in MRI, proper interpolation has to be performed prior to 3D analysis of the
segmented cartilage. Gray-level and shape-based interpolation are the two main interpolation
categories and different papers have been published to approach this common problem in image
analysis and display (Bors et al., 2002; Chatzis and Pitas, 2000; Grevera and Udupa, 1996;
Guo et al., 1995; Herman et al., 1992; Lee and Wang, 2000; Lee and Lin, 2002; Levin, 1986;
Migeon et al., 1998a,b; Raya and Udupa, 1990). The technique most widely used for cartilage
interpolation is based on distance fields (DFs), can handle branching, and its robustness has
been demonstrated (Stammberger et al., 1999a). In this paper we also present an alternative
technique to perform cartilage shape-based interpolation, which is a method based on DFs and

Carballido-Gamio et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2010 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



elastic registration (warping), and it is known as morphing (Beier and Neely, 1992; Cohen-Or
et al., 1998; Lee and Lin, 2002). Morphing techniques are better to handle situations of objects
with invaginations (Lee and Lin, 2002) such as those that can occur with focal cartilage lesions.
A comparison of both methodologies is also presented.

The morphological cartilage analysis consisted in the computation of its thickness. Different
techniques have been proposed in the literature to perform brain cortical thickness (Fischl and
Dale, 2000; Haidar and Soul, 2006) and cartilage thickness measurements (Losch et al.,
1997; Stammberger et al., 1999a, 2000). The technique used in this work was based on
minimum 3D Euclidean distances and has been previously validated for knee cartilage
(Stammberger et al., 1999a). This technique suits well with our purposes since cartilage
thicknesses can be represented as a sheet, which in this case corresponds to the bone–cartilage
interface.

In follow-up studies where MR images of the knee of the same subject are obtained at different
time points, image registration is necessary for comparisons of corresponding cartilage regions.
Different intra-subject registration techniques have been proposed for this purpose (Kauffmann
et al., 2003; Kshirsagar et al., 1998; Lynch et al., 2001; Stammberger et al., 2000). However,
it would also be important to create a reference knee and normalize all other knees to this
common framework so comparisons of different cartilage properties such as thickness, MR
T2 or MR T1ρ relaxation times could be performed for different populations in the search of a
valid biomarker for OA. Since these comparisons involve different subjects, inter-subject
registration should be addressed. Few publications have approached the inter-subject
registration problem for comparisons of knee cartilage (Carballido-Gamio et al., 2005b;
Dardzinski et al., 2002; Slavinsky et al., 2003; Williams et al., 2003). Dardzinski et al.
(2002) proposed a 2D technique for inter-subject comparison of MR T2 relaxation times.
Slavinsky et al. (2003) proposed a 3D affine transformation which was followed by a set of
2D elastic registrations using manually identified landmarks to compare maps of cartilage
thicknesses. Williams et al. (2003) used a bone statistical shape model to obtain corresponding
regions of knee articular cartilage also to compare knee cartilage thicknesses. In this work,
semi-automatic affine (intra-subject) and elastic (inter-subject) image registration techniques
are proposed, where the cartilage thickness comparisons are based on the registration of the
corresponding bone structures (e.g. femoral cartilage comparison based on registration of
femora) instead of using the cartilage surfaces themselves, giving robustness to the technique.
This is important for OA patients where cartilage shapes can drastically change between
subjects. This registration allows point to point comparisons of cartilage characteristics, and it
is semi-automatic since the steps involving segmentation require interaction.

Registration is performed based on corresponding anatomic points. In this paper we are
presenting 3D shape contexts as shape descriptors that automatically compute such
correspondence based on shape matching (Belongie et al., 2002; Carballido-Gamio et al.,
2005a,b; Frome et al., 2004). The corresponding anatomic points are used to find the solution
to the absolute orientation problem given in Horn et al. (1988) to compute an affine
transformation, and also to compute an elastic transformation based on Wenland’s radial basis
functions (RBFs) with compact support (Fornefett et al., 2001; Wendland, 1995). This is an
extension and improvement of our initial work in this field presented at international
conferences (a,Carballido-Gamio et al., 2005b).

The structure of this manuscript is as follows: in Section 2, we give a brief technical background
related to shape contexts and the corresponding affine and elastic registration techniques used
in this work. Section 3, Materials and methods, describes in detail the cartilage segmentation
and shape-based interpolation techniques, the computation of cartilage thicknesses and
volumes, the application of 3D shape contexts to compute corresponding anatomic points to
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perform landmark-based registration of bone structures, the generation of difference cartilage
thickness maps, and how a mean bone shape, cartilage thickness and cartilage coverage map
were constructed. Qualitative and quantitative validation and results are then shown in Section
4, followed by our discussion and conclusion in Sections 5 and 6, respectively.

2. Background
2.1. Shape contexts

Finding corresponding anatomic points between two structures is a common problem in
medical image processing such as registration. Different approaches have been taken to solve
this problem and shape descriptors such as those described by Dr. Shen’s work (Shen et al.,
2001; Shen and Davatzikos, 2002) are excellent examples. Belongie et al. (2002) developed
shape descriptors called shape contexts and demonstrated their potential in the field of digit
recognition, so Carballido-Gamio et al. (2005a,b) extended Belongie’s idea to 3D and
presented and validated 3D shape contexts applied to medical image registration.

Point matching is based on 3D shape descriptors that characterize the shape of each point based
on histograms of the distribution of points around them. Corresponding points on similar shapes
will have similar shape contexts. In comparison to other point matching techniques, shape
contexts do not require an equal number of points for the shapes to be compared or segments
with specific geometrical configurations. Three-dimensional shape contexts are histograms
computed in 3D log-polar spaces on points defining the shape surface, are translation invariant,
and can be scaling and rotation invariant under proper normalizations. Fig. 2 shows a
representative example of the bin distribution of a 3D shape context where the radial lines of
the log-polar histogram binning structure have been avoided for clarity of representation except
for those of the two bins highlighted in red. Since the binning structure is log-polar, local as
well as global shape information is embedded in the histogram.

In order to find for point pS in the source shape S the best matching point pT in the target shape
T, points in the surfaces of S and T are sampled and 3D shape contexts are computed for each
sampled point to then be compared to each other. Belongie et al. (2002) suggested the χ2 test
statistic (1) as a suitable technique to compare shape contexts since they are histograms of
points:

(1)

Here V is the total number of bins in the shape contexts, hi(v) (hj(v)) the number of points inside
the vth bin of the ith (jth) shape context, and χ2(hi,hj) the cost of matching points pi and pj of
shapes S and T, respectively.

Given a cost matrix C with entries ci,j = χ2(hi,hj) a permutation π(i) which gives a one-to-one
point matching that minimizes the total cost is required. A well known algorithm that satisfies
this criterion is the Hungarian method. However, the optimal point matching in this work was
a MAT-LAB (The Mathworks, Inc. Natick, MA) implementation of the robust contour
matching technique via the order preserving assignment problem or COPAP (Scott and Nowak,
2006). This technique allows the matching of only a fraction of points to increase robustness
with respect to shape irregularity and avoids the crossing of landmarks which is physically
implausible.
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2.2. Affine registration
The affine transformations in this paper were accomplished by using the closed form solution
proposed by Horn et al. (1988). Given a set of landmark pairs between two shapes, Horn et al.
(1988) find the rotation, translation, and scale factor that will map the source set of landmarks
onto the target set so as to minimize the sum of squared distances between them. The solution
to the problem of aligning two point sets is formulated in the classic least-squares sense. The
residual error between a target landmark and its corresponding transformed source landmark
is given by (2)

(2)

where s is the scale factor, R the rotation matrix, r0 the translation, and lS,i and lT,i the
corresponding ith source and target landmarks. The problem is then to minimize:

(3)

where N is total number of landmarks.

By leveraging the centroids of the landmark sets, the translation and scale factor are calculated,
while the optimal rotation is computed based on eigenvalue decomposition. Note that while
the solution presented above uses orthonormal matrices to represent rotation, a more elegant
solution using quaternions is given in Horn (1987).

2.3. Elastic registration
Elastic registration for shape-based interpolation with the morphing technique and inter-subject
registration of bone structures was accomplished by using Wendland’s RBFs as proposed by
Fornefett et al. (2001), which exactly map one landmark set onto the other. These RBFs are
compactly-supported and take the following form:

(4)

Here, d refers to the dimension of space on which ψ is proven to be positive definite, and k
designates the function’s smoothness C2k. The (·)+ notation encodes the function’s limited
support as

(5)

The mathematical properties also hold for different spatial supports a beyond unity:

(6)

For a specified space dimension d > 0 and smoothness parameter k≥ 0 there exists a unique
Wendland function ψd,k(r) ∈ C2k(ℝ) which is positive definite on ℝd and has a polynomial of
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minimal degree floor(d/2) + 3k + 1, where floor(x) returns the largest integer ≤x. In this paper,
the selected function was

(7)

The selection was based on Fornefett et al. (2001) where they chose the pair (d,k) = (3, 1) as
it gave the smallest degree polynomial that was still smooth and differentiable when evaluated
at r = 0. The scalar input to these functions, r, is the distance from a point to a particular source
landmark. For (6), Fornefett et al. (2001) suggested a minimum value of a equal to 2.98 the
maximum landmark displacement for 2D, and 3.66 the maximum landmark displacement for
3D.

3. Materials and methods
After MR images of the knee articulation are acquired, cartilages and corresponding bone
structures are segmented and interpolated based on shape to create isotropic voxels. For each
point in the bone surfaces corresponding to the bone–cartilage interfaces a thickness value is
computed, and for a subset of points in the bone surfaces, 3D shape contexts are calculated to
perform shape matching and localized inter-subject comparisons of cartilage thicknesses.

In the following subsections, we describe the details of the image processing steps just
mentioned above. Although we focus our application to inter-subject femoral cartilage analysis,
the patellar and tibial implementations are straightforward.

3.1. Magnetic resonance imaging
Sagittal MR images of 16 fresh porcine knees were obtained at 3 T (General Electric
Healthcare, Milwaukee, WI, USA) using a quadrature knee coil for signal reception. The
porcine knees were stored at −80 °C between the measurements, and thawed to room
temperature in a water quench for imaging. Images were acquired with a 3D water excitation
spoiled gradient echo sequence (WE), in-plane resolution of 0.195 mm × 0.195 mm, and slice
thickness of 1.5 mm after reconstruction (Bauer et al., 2006).

In vivo sagittal MR images of five human knees of healthy subjects were also acquired at 3 T
(General Electric, Milwaukee, WI) using a GE 8 channel transmit/receive phase-array knee
coil. Subjects were positioned supine in the scanner and images were acquired using a 3D
SPGR sequence with fat suppression and parallel imaging (ASSET) with acceleration factor
of 2, in-plane resolution of 0.312 mm × 0.312 mm, and slice thickness of 1 mm after
reconstruction. Each subject was imaged twice in a period of less than 2 weeks for
reproducibility purposes.

3.2. Cartilage and bone segmentation
Cartilage was segmented from MR images using a semiautomatic segmentation technique
based on Bezier splines and edge-detection. The user placed control points inside the cartilage
(e.g. femoral cartilage) following its shape to create a Bezier spline as is shown in Fig. 3a.

In order to find the bone–cartilage interface, edges were enhanced by using anisotropic
diffusion filtering (Perona et al., 1994) (λ = 0.25, number of iterations = 13, K = 95), and contrast
was improved by using a power law transformation technique (Gonzalez and Woods, 2002)
(c = 1, γ = 1/3). Then rays perpendicular to the splines on the control points were traced towards
the bone–cartilage interface to a distance equal to a width of approximately 15 pixels. From
these positions, line profiles were computed back to the cartilage using bicubic interpolation
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with an average of two points per pixel (Fig. 3b) for a total of 30 points. After computing the
first derivative of brightness of the line profiles, the maximum values were taken as the bone–
cartilage interface for each control point.

The original image was taken again, edges were enhanced with anisotropic diffusion filtering
(λ = 0.25, number of iterations = 7, K = 50), and contrast was improved by a power law
transformation (c = 1, γ = 2) to find the articular surface. New line profiles were computed in
opposite direction of those shown in Fig. 3b as is shown in Fig. 3c, and based on the maxima
of the first derivatives of brightness positions for the articular surface were found. The first
and last points of the splines remained in their original positions at all times.

Since edges are not always well defined at the patello-femoral and tibio-femoral articulations,
an automatic thickness correction algorithm was implemented in the segmentation process.
The mean value plus one fourth of the standard deviation of the distances between
corresponding points for the found bone–cartilage and articular surfaces was computed. For
the pairs of points above this thickness value, a new articular edge was searched since there
was a higher confidence on the identified bone–cartilage edges. For this thickness correction
step, the original image was taken again and filtered with anisotropic diffusion (λ = 0.25,
number of iterations = 1, K = 5). No contrast enhancement was applied this time. The new
articular edges were computed as the last peaks of the first derivative of brightness of the new
line profiles. If no local maxima were found, the control points were not moved from the initial
computed edges. The user had the opportunity of manually adjusting the position of any control
point at any time. Based on the found edges, new Bezier splines were created to represent the
bone–cartilage interface and the articular surface, giving also an automatic labeling as is shown
in Fig. 3d with color coding (cyan = bone–cartilage interface; magenta = articular surface).
The labeling of surfaces as bone–cartilage and articular was essential for our cartilage thickness
computation.

The technique allows performing segmentation of disconnected cartilage as can happen with
subjects with advanced OA by positioning a Bezier spline inside of each cartilage component.
In order to segment a contiguous slice, only the corresponding end points for each Bezier spline
were needed doing the segmentation based on information from the closest segmented slice.

Bone structures were segmented with a similar technique as that used for the bone–cartilage
interface. In fact, the section of the bone surface corresponding to the bone–cartilage interface
was taken from the cartilage segmentation. Fig. 4 shows the corresponding femoral bone
segmentation of the images shown in Fig. 3.

3.3. Shape-based interpolation of segmented cartilage and bone
After cartilage and bone structures were segmented using the semi-automatic technique
described in the previous section, the contours were used to interpolate its shape to create
isotropic voxels with a side length equal to the in-plane resolution (squared pixels after
reconstruction). This interpolation was done with a technique based on DFs which was
previously validated for cartilage (Stammberger et al., 1999a).

For each slice, the Bezier splines representing the bone–cartilage interfaces and articular
surfaces were evaluated and discretized. For each contour (Cm) representing a cartilage
segment in a slice z a bounding box was computed followed by its DFm (Breu et al., 1995),
where the value of each pixel q was computed by using (8):

(8)
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where dist(·) is the Euclidean distance function. Then DFs were put together with a minimum
function in case of overlapping of bounding boxes, and a new global bounding box was created
for further processing.

New DFs between slices were created by using linear interpolation:

(9)

where DFS, DFT, and DFt, represent the DF of the source, target, and source + t slices,
respectively; and t is a variable that can take values in the range of [0, 1]. Then the interpolated
shape was extracted from the interpolated DFt by using (10):

(10)

where cartt represents the set of pixels q inside or in the border of the interpolated cartilage at
slice source + t.

Shape-based interpolation of bone structures was accomplished by applying the same technique
to the bone contours.

An alternative cartilage shape-based interpolation technique using morphing was also
developed. For this purpose the splines representing the cartilage contours were evaluated and
discretized, and DFs were computed as previously described in this section.

From the pair of contiguous segmented slices under evaluation, the slice with more
disconnected cartilage segments was selected, and each contour was matched to a cartilage
segment on the other slice based on minimum Euclidean distances. Based on the relative
positions to the spline end points, an artificial matching of approximately 20 points was done
to obtain corresponding landmarks for the source and target slices.

The positions of landmarks at slice source + t were computed with linear interpolation, and
then by using RBFs with compact support (Fornefett et al., 2001; Wendland, 1995), the warping
parameters were computed to elastically register them to the source and target landmarks. The
computed registration parameters were then applied to the coordinates of the slice source + t,
and by using bilinear interpolation two new distance fields were obtained:  and . The
interpolated distance field DFt was computed by linear interpolation of the new DFs’, and the
pixels representing the interpolated cartilage shape were obtained by using (10).

3.4. Cartilage thickness and volume
Labeling of the cartilage surfaces as bone–cartilage interface and articular surface is required
for the computation of 3D cartilage thickness measurements using either 3D minimum
Euclidean distances or a normal vector approach. Unfortunately, this information was lost for
the interpolated cartilage in the two shape-based interpolation techniques described in the
previous section, and an automatic labeling technique had to be developed. This labeling was
based on the end points of the cartilage segments and Euclidean distances between them.

For each point on the bone–cartilage surface, the closest point on the articular surface was
found and the corresponding distance was assigned as its thickness value. So each point in the
bone surface corresponding to the bone–cartilage interface had a thickness value assigned to
it. For validation purposes, this process was done for three different cases for the porcine knees:
(1) cartilage with no shape interpolation (anisotropic resolution); (2) cartilage with shape
interpolation using only DFs; and (3) cartilage with shape interpolation using the morphing
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approach. Cartilage volume was also digitally computed for these three cases for the porcine
knees, and it was done by counting the number of cartilage voxels.

Although an indirect approach to validate the accuracy of the segmentation and shape
interpolation techniques, the femoral cartilage of all porcine knees was scraped off after image
acquisition and their volume was measured using a water displacement method, which was
then compared to the digital values.

The in vivo precision of the segmentation and shape-based interpolation techniques was
assessed by computing the coefficient of variation (CV) based on previously reported
techniques to measure the short-term precision of a technique (Glüer et al., 1995). Human
cartilage thicknesses of the five pairs of baseline and follow-up acquisitions were used for this
purpose.

3.5. Registration
Corresponding anatomic points between femora were computed by using 3D shape contexts
(Carballido-Gamio et al., 2005b) and COPAP (Scott and Nowak, 2006). Shape-interpolated
voxels representing the source and target bone shapes were uniformly sampled in space
(approximately every 67 voxels for shapes with approximately 135,000 surface points). Since
shape contexts are not rotation invariant, Belongie et al. (2002) proposed to find the tangent
vector at each point and use it as the positive x-axis to compute 2D rotation invariant shape
contexts. Frome et al. (2004) accomplished 3D rotation invariance by computing 3D normal
vectors to the shapes and aligning the positive z-axis of 3D shape contexts to them, followed
by a series of rotations around this axis to remove the left degree of freedom. Since the final
goal of Carballido-Gamio et al. (2005a) was image registration, 3D rotational effects of medical
images were reduced by a previous 3D alignment of source and target shapes based on the 3D
registration of their middle slices assuming similar shapes, orientations, and fields of view. In
this work, initial 3D alignment was accomplished by using the iterative closest point (ICP)
algorithm (Besl and McKay, 1992).

For each point in the sampled surface, a 3D shape context representing the point distribution
of the relative remaining points was computed. The histogram bins were uniform in a 3D log-
polar space: r [1/8, rmax], θ [0,2π) and φ [0,π]. Eleven values for r, 11 values for θ, and 6 values
for φ were used in this paper for a total of 726 bins. Shape contexts were made scaling invariant
by normalizing the radial distances by the mean distance of all the pair-wise distances of the
points representing the shape (Belongie et al., 2002). The value of rmax was equal to the
maximum distance between two surface points.

A total of 30 shape contexts were uniformly selected from the target shape and approximately
75% of them were matched to the source by using COPAP (Scott and Nowak, 2006). Based
on the computed corresponding anatomic points and by using the closed form solution given
by Horn et al. (1988), an affine transformation was obtained and applied to the source shape.
When the target and source bones correspond to the same subject, the application of this affine
transformation allows intra-subject point to point comparisons of cartilage properties such as
thickness.

For the elastic registration after the affine transformations (i.e. for inter-subject comparisons),
a new set of 200 target shape contexts were uniformly selected and approximately 75% of them
were matched to the source shape by using COPAP. Based on the computed corresponding
anatomic points, elastic registration parameters were calculated (Fornefett et al., 2001) and
applied to the source shape.
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In order to compare point to point the source and target bone–cartilage interfaces after
registration, their points were matched based on minimum Euclidean distances, and maps
representing their thickness differences were computed.

It is important to clarify that the cartilage thicknesses were calculated prior to the registrations,
so their values remained unchanged during the transformations.

In order to validate the accuracy of the shape matching proposed in this paper based on 3D
shape contexts and COPAP, a radiologist selected seven pairs of corresponding anatomic points
on the baseline and follow-up scans for each subject. Based on these manual anatomical
correspondences 5 intra-subject and 8 inter-subject affine transformations were computed.
These 13 transformations were also computed in two additional ways for validation purposes.
First, the target anatomic points were those selected by the radiologist, and the corresponding
source anatomic points were computed automatically based on shape matching. Second, both
the target and source anatomic corresponding points were computed automatically as
previously described in this section. Final Euclidean distances between target and source
corresponding anatomic points were computed for the three different cases and compared.
Average minimum Euclidean distances between bone surfaces after registration were also
evaluated.

To further validate our technique, a precision study was implemented where 5 intra- and 10
inter-subject localized cartilage thickness analyses were computed twice to asses a CV by using
previously reported techniques (Glüer et al., 1995).

The feasibility of implementing a comparison of a small predefined region of interest between
different subjects was also established as well as its reproducibility.

3.6. Mean shape, cartilage thickness and coverage map
A mean femoral shape was constructed based on previously reported techniques (Cootes and
Taylor, 2004) and using 3D shape contexts with COPAP to identify corresponding anatomic
points across the population. Basically all femoral bones are translated so their centers of
gravity are at the origin. One sample is selected as an initial estimate of the mean shape and
scaled so that |x̄| = 1, where x̄ is a vector with the coordinates of the mean shape. This first
estimate is recorded as  to define a reference frame. Then all shapes are aligned with the
current estimate of the mean shape, and the mean shape is re-estimated based on the aligned
shapes. This is an iterative process where each time there are constraints that are applied to the
current estimate of the mean by aligning it with  and scaling so that |x̄| = 1. The process is
terminated when there are no substantial changes of the mean shape after an iteration. During
this alignment process the inter-subject comparisons of knee cartilage thicknesses were
performed and recorded to create a mean femoral cartilage thickness map. Because the area
on the bone surface that is covered by cartilage changes from subject to subject, a cartilage
map representing the probability of bone being covered by cartilage was also constructed.

To further validate the feasibility of using a mean femoral shape and mean cartilage thickness
map as a fixed reference instead of performing one-to-one inter-subject comparisons, one
subject with severe OA was scanned at a different field strength (1.5 T) and spatial resolution
(0.235 mm × 0.235 mm × 2 mm), and his femoral cartilage was compared to the model. Same
segmentation and shape-interpolation techniques were used as well as registration strategies,
however, the final isotropic spatial resolution was of 0.235 mm.
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4. Results
4.1. Cartilage segmentation and shape interpolation

A Pearson correlation coefficient r = 0.83 (p < 0.001) was found for the cartilage volume of
16 porcine knees measured with the water displacement method, and the digitally computed
volume obtained from interpolated cartilage with DFs, interpolated cartilage with morphing,
and no interpolated cartilage.

Digital volumetric results were also compared to the water displacement technique by using
the Bland–Altman method, which is a robust technique that quantifies the strength of agreement
between two methods of measurement (rather than the relationship between them) by
comparing the difference in measurements for each subject. Digital volumetric measurements
showed good agreement with the water displacement results since all volumetric differences
were inside of the band of 2 standard deviations of the difference of the measurements. The
Bland–Altman analysis basically demonstrated that the digital volumetric techniques were as
good as the water displacement method.

Cartilage thickness analysis revealed a Pearson correlation value r = 0.95 (p < 0.001) for the
measurements based on the shape-interpolated cartilage with DFs (most common technique)
and the morphed cartilage. Both thickness measurements showed good agreement according
to the Bland–Altman method. Examples of 3D cartilage thickness maps of human knees for
different shape-interpolation strategies are shown in Fig. 5.

The reproducibility of the intra-subject cartilage thickness measurements is reported in Table
1 for the femoral medial, trochlear, and lateral compartments, as well as for the whole femoral
cartilage using DFs as well as morphing for shape interpolation. For the baseline and follow-
up scans the femoral cartilage compartments were manually delineated and their mean cartilage
thickness values were used to generate a CV.

4.2. Shape matching
The performance of 3D shape contexts for matching of corresponding anatomic points was
validated visually and quantitatively. Table 2 summarizes the quantitative intra-subject shape
matching validation. In this table, mean distances of corresponding anatomic points as well as
femoral surface errors are shown for different scenarios. Since the true femoral anatomical
correspondences were unknown, we computed the surface errors as defined in Gefen et al.
(2003), where surface error is defined as the average Euclidean distance, where the distance is
measured between a point on the surface of a test shape’s structure and the closest point to it
on the corresponding reference shape’s structure. The numbers presented in Table 2 are the
results of intra-subject follow-up to baseline registrations.

Similar to Table 2, quantitative results for the inter-subject validation are shown in Table 3. In
order to generate this table, one subject was selected as the target for both the baseline and
follow-up scans, and all other subjects were matched to it yielding a total of 8 registrations (4
baselines and 4 follow-ups).

Visual validation was implemented in different ways based on renderings of the bone structures
and anatomic points. The position of automatically computed source anatomic points based on
the manually selected target anatomic points given by a radiologist was observed as is shown
in Fig. 6. Similar visual validation was implemented for the automatically computed target and
source anatomic points as is shown in Fig. 7.
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4.3. Cartilage thickness comparisons
Figs. 8 and 9 show examples of the results of localized cartilage thickness comparisons based
on elastic femoral bone registrations, demonstrating the feasibility of the technique. In these
figures it is evident that corresponding anatomic locations are being compared between the
source and target maps. In the difference thickness maps, blue areas represent source thicker
cartilage points, while red areas represent thinner points. Although the difference thickness
maps can be displayed in the warped coordinates, Figs. 8 and 9 display them in the original
source coordinates. This is possible because the cartilage thickness maps were calculated
before any registration and each point in the bone–cartilage interfaces had a thickness value
assigned to it.

In terms of the precision of the localized intra-subject comparisons of cartilage thicknesses,
Table 4 summarizes the results, while Tables 5 and 6 summarize all the inter-subject
longitudinal comparisons. The localized intra-subject reproducibility reported in Table 4 is
based on five subjects. For this purpose, the baseline femoral cartilage compartments were
manually delineated while those of the follow-up scans were automatically selected. Point
matching was then performed between corresponding compartments based on the target
cartilage, and the mean cartilage thickness values of the matched baseline and follow-up points
were used to generate a CV.

For comparison purposes, the precision of performing inter-subject comparisons of mean
cartilage thickness values with manual delineation of cartilage compartments was also assessed
and Table 5 shows the corresponding results for 10 cases.

Table 6 shows the precision results for the femoral inter-subject localized cartilage thickness
comparisons for 10 cases. Target cartilage compartments were manually delineated while those
of the source were automatically computed. For each point in the bone–cartilage interface at
each compartment in the target subject, one point in the corresponding compartment in the
source bone–cartilage interface was assigned and their cartilage thickness differences
computed. The values of these differences at each compartment were used to generate a CV.

Basically, Tables 5 and 6 show two different ways of comparing cartilage thickness values
between two subjects: (1) difference of the mean cartilage thicknesses with no registration;
and (2) mean values of point difference thicknesses as those shown in Figs. 8 and 9.

The feasibility results of comparing a predefined small region of interest are shown in Fig. 8.
The CV for this scenario based on 4 comparisons was of 6.86%.

4.4. Mean shape, cartilage thickness and coverage map
Results of testing the feasibility to use the proposed technique to build a mean femoral shape,
mean femoral cartilage thickness map, as well as a cartilage coverage map are displayed in
Figs. 9 and 10. These results were generated based on five subjects. The global mean femoral
cartilage thickness was 1.71 mm and 1.91 mm for bone regions with probability of being
covered by cartilage of greater than zero and greater than 0.5, respectively (Fig. 10). The mean
cartilage thickness for regions always covered by cartilage was 2.09 mm. In the mean femoral
cartilage thickness map displayed in Fig. 9, blue regions represent thick cartilage while red
regions depict thin cartilage. In the cartilage coverage map showed in Fig. 10, dark and yellow
regions represent regions of the bone–cartilage interface with high and low probability of being
covered by cartilage, respectively.

Visual results of the point comparisons of the advanced OA subject to the mean cartilage
thickness map are displayed in Fig. 9. For this case a mean difference of −0.31 mm was detected
with a maximum difference of −2.84 mm.
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5. Discussion
Osteoarthritis (OA) is the most common form of arthritis in the world and it is a major cause
of morbidity and disability in the US and Europe. It is expected that in 2020, 59.4 million
Americans will be affected by some form of osteoarthritis (Boulos et al., 2003).

Different morphological, molecular, and biochemical biomarkers for predicting or evaluating
the degree of OA of the knee have been investigated (Gray et al., 2004), including cartilage
thickness and volume. These morphological biomarkers have received substantial attention as
thinning of cartilage is a common manifestation of this pathology. MRI in contrast to
radiographs allows the direct visualization and quantification of cartilage morphology and is
therefore the imaging technique of choice.

It is important to quantify knee cartilage morphology to monitor the progression of
degenerative joint disease or related treatments, and when this assessment is based on medical
images such as MRI, accurate and robust image processing tools are required to perform 3D
cartilage quantification and analysis. We have presented and validated a set of techniques to
accomplish this goal for intra- and inter-subject scenarios.

The segmentation technique proposed in this paper allows the segmentation of 1 slice in about
30 s with no significant loss of accuracy as it was quantitatively demonstrated with the Bland–
Altman method and correlation coefficients based on the cartilage volumetric measurements
of the porcine knees.

Volumetric and thickness results could suggest at first glance that there is no need for shape
interpolation of cartilage. However, there are certain applications such as analysis and follow-
up of focal cartilage lesions where shape interpolation plays a central role. Inspection showed
that the quality of the cartilage thickness maps was enhanced by using the morphing technique
for shape interpolation demonstrating a smoother transition from slice to slice compared to the
DFs approach, which in some occasions introduced small artifacts. This improvement however,
also came with a major computational cost to perform the corresponding point matching and
warping. If shape-interpolation based only on DFs is desired, then cubic interpolation instead
of linear would be a better choice. Both techniques however, demonstrated excellent levels of
reproducibility as is shown in Table 1. The reproducibility of 2.5% or better for the intra-subject
mean cartilage thickness measurements was comparable to those previously reported in the
literature (Glaser et al., 2006;Gray et al., 2004). Further validation with a larger data set of
patients with focal lesions is still necessary to demonstrate the advantages of the morphing
technique.

In follow-up studies, or studies involving Different patient populations, proper image
processing methods are required to compare common regions or points of cartilage. We have
presented and validated a semi-automatic registration technique to accomplish this task. The
alignment to perform such comparisons is based on the registration of bone structures instead
of using the cartilage surfaces themselves, giving robustness to the technique. This is important
for OA patients where cartilage shapes can drastically change between subjects. Since the
technique requires the shapes of the bones to perform the alignment, it is still dependent on the
segmentations. However, 3D shape contexts are robust enough to capture corresponding points
on the structures of interest, and robust automatic segmentation techniques are under
continuous development. The shape matching technique as it was presented is translation
invariant, scaling invariant, and by the initial application of ICP registration its rotational
invariance is well handled. This shape matching does not require an equal number of points
for the shapes to be compared or segments with high curvature, allows the application of non-
linear registration techniques that enable local or global deformations as proposed by Fornefett
et al. (2001), and is simple and easy to apply.
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Intra-subject shape matching validation indicated that affine transformations based on
automatically computed target and source anatomical points yielded similar results than the
affine transformations based on the set of corresponding anatomic points manually selected by
a radiologist as can be observed in Table 2. The Difference of mean distances between the
target and source points selected by the radiologist was smaller then the smallest voxel
dimension between the automatic and manual cases after affine registration. This Difference
was slightly higher when the source anatomic points were automatically computed based on
the target anatomic points given by the radiologist, however, it was still less than the diagonal
of the shape-interpolated voxels. The automatic case yielded the smallest surface error.

Inter-subject shape matching validation also indicated that affine transformations based on
automatically computed target and source anatomic points yielded similar results than the
affine transformations based on the set of corresponding anatomic points manually selected by
a radiologist as can be observed in Table 3. The Difference of the mean distances between
target and source points selected by the radiologist was slightly larger after affine registration
compared to the intra-subject case; however, it was less than two times the diagonal of the
shape-interpolated voxels. The automatic inter-subject shape matching yielded the smallest
surface error as in the intra-subject case.

Intra-subject reproducibility of mean cartilage thickness measurements based on point
matching of manually selected target compartments and automatically delimited source
compartments (Table 4) yielded similar results than the mean intra-subject cartilage thickness
comparisons based on manual selection of compartments (Table 1). This fact indicates that the
whole process is highly reproducible: imaging, segmentation, shape-based interpolation,
cartilage thickness measurements, intra-subject femoral alignments, and point matching for
localized cartilage thickness comparisons. Visualization of the inter-subject matching as is
demonstrated in Figs. 6 and 7 demonstrates that corresponding anatomic points were properly
computed.

Successful point to point inter-subject cartilage thickness comparisons were accomplished with
a general precision improvement when compared to the manual case as can be observed in
Tables 5 and 6. It is important to clarify that for the intra- and inter-subject cases with no
registration, the mean cartilage thickness values of the compartments were utilized to calculate
the CVs, while for the intra- and inter-subject cases with registration, the mean values and the
mean values of the cartilage thickness Differences of matched points were used, respectively.
Local reproducibility of other cartilage properties such as cartilage MR T2 relaxation times
have been reported for the intra-subject case (Glaser et al., 2006), but no local inter-subject
knee cartilage thickness reproducibility measurements have been published. However, in a
recent international conference similar reproducibility results were presented using a Different
registration approach (Williams et al., 2006).

Our technique also demonstrated good levels of reproducibility (6.86%) when a small region
of interest was predefined in one subject and matched to the other four. Again, inspection of
Fig. 8 corroborated our results.

Visual representation of localized cartilage thickness differences in the original coordinates of
the source subject as is shown in Figs. 8 and 9 was possible since cartilage thickness
measurements were performed before any registration, and each point in the bone–cartilage
interface had a thickness value assigned to it. This is important because our goal was only to
compare cartilage thicknesses at corresponding anatomic locations, so we wanted to keep the
original thickness values from the source and target subjects. If affine and elastic
transformations were applied to the source cartilage, and then cartilage thicknesses were
computed, the source thickness values would then depend on the target subject, since the
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transformation parameters include scaling and non-linear transformations that are the result of
shape matching. By keeping the original thickness values, the Difference between healthy an
OA subjects can be better appreciated. However, normalization of cartilage thickness values
based on the femoral bone geometry as is commonly done for the cartilage volume could be
applied.

We have also demonstrated the feasibility of constructing a mean femoral bone shape, cartilage
thickness map, and cartilage coverage map, which opens the possibility of many OA potential
studies and technical developments. A mean shape could be used to automatically segment
bones of the knee articulation which could benefit biomechanical analyses of the knee joint.
Different mean shapes and cartilage thickness maps could be used for Different OA population
studies, and cartilage coverage maps could be employed to perform automatic cartilage
segmentation. A larger data set is obviously needed in order to have a representative model
that includes more possible variations of the femoral bone shape and cartilage thickness values.
However, the comparison of a subject with severe OA and the initial model constructed in this
paper demonstrated that corresponding anatomic regions were compared (Fig. 9), and that as
it was expected, the mean of the point-wise Difference of cartilage thicknesses showed that
the subject with severe OA had thinner cartilage than the mean femoral cartilage thickness
based on healthy volunteers.

Although the technique has been applied for inter-subject comparison of femoral cartilage
thickness measurements, it could also be used to compare other important parameters derived
from MR images such as T2 or T1ρ relaxation times. If only comparison of anatomic regions
is desired (not point to point), 3D shape contexts could be then employed to establish
correspondence of common areas with no necessity of elastic registration, which probably
could improved the precision of the technique.

6. Conclusions
It is important to asses the quantification of knee cartilage morphology to monitor the
progression of joint diseases or related treatments. When this assessment is based on medical
images such as MRI, accurate and robust image processing tools are required. We have
presented and validated a set of techniques to accomplish this goal for the intra- and inter-
subject analysis.
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Fig. 1.
Anatomic diagram and sagittal MR image of the knee articulation indicating corresponding
structures and compartments. F = Femur; P = patella; T = tibia; FC = femoral cartilage; L =
lateral; M = medial; Tr = trochlea; PFA = patello-femoral articulation; TFA = tibio-femoral
articulation.
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Fig. 2.
Bin distribution of 3D shape context. Radial lines of the log-polar histogram binning structure
have been avoided for clarity of representation except for those of the two bins highlighted in
red.
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Fig. 3.
Femoral cartilage segmentation of a human knee. (a) Initial Bezier spline defining the shape
of the cartilage to be segmented is shown in cyan with its corresponding control points. (b)
Blue vectors show the line profiles to find the bone–cartilage interface. (c) Magenta vectors
show the line profiles to find the articular surface. (d) Final Bezier splines defining the bone–
cartilage interface (cyan) and articular surface (magenta).
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Fig. 4.
Segmentation of the femoral bone using Bezier splines and edge-detection.
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Fig. 5.
Human femoral 3D cartilage thickness maps. (a) Map from non-shape interpolated cartilage.
(b) Map from shape-interpolated cartilage based only on DFs. (c) Map from shape-interpolated
cartilage based on morphing. Scale bar is in mm.
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Fig. 6.
Visual representation of inter-subject anatomical point matching. On the left side the target
bone is displayed with seven anatomic points selected manually by a radiologist (blue dots),
and on the right side the source bone is displayed with the corresponding anatomic points
manually selected by a radiologist (blue dots), as well as with the corresponding anatomic
points automatically computed (magenta dots) based on those of the target.
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Fig. 7.
Visual representation of automatic point matching. Blue dots represent anatomic points
automatically computed for the femoral bone of a subject with severe OA (bottom) based on
those automatically and uniformly distributed in the mean femoral shape (top).

Carballido-Gamio et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2010 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Inter-subject cartilage thickness comparison of a small region of interest. Top row: Source
cartilage thickness map and its matched region. Bottom left: Target cartilage thickness region.
Bottom right: Source minus target thickness region of interest. Color bars are in mm.
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Fig. 9.
Point-wise cartilage thickness comparison using a mean femoral bone shape and cartilage
thickness map. Top left: Mean femoral cartilage thickness map overlaid on the mean femoral
bone shape. Top right: Cartilage thickness map of a subject with severe OA overlaid on its
femoral bone. Bottom left: Overlapping cartilage regions on the mean femoral bone shape after
registration. Bottom right: Difference thickness map (OA subject minus mean map) overlaid
on the bone of the subject with OA. Scale bars are in mm.
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Fig. 10.
Mean femoral bone shape and its corresponding cartilage coverage map. Scale bar represents
the probability of the mean bone shape of being covered by cartilage.

Carballido-Gamio et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2010 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Carballido-Gamio et al. Page 29

Table 1

Reproducibility (CV) of mean intra-subject cartilage thickness measurements with manually delineated baseline
and follow-up compartments

Compartment CV (DFs) CV (morphing)

All 1.78 1.78

Medial 1.92 2.05

Trochlea 2.26 2.18

Lateral 2.42 2.39

All values are in %. Based on five subjects.
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Table 2

Validation results of intra-subject shape matching based on mean distances

Affine
registration based
on manually
selected target
and source
anatomic points

ICP registration
based on bone
surfaces

ICP registration
based on bone
surfaces → Affine
registration based
on manually
selected target and
automatically
computed source
anatomic points

ICP registration
based on bone
surfaces → Affine
registration based
on automatically
computed target
and source
anatomic points

Manually placed
target and source
anatomic points

2.26 2.65 2.68 2.50

Bone surfaces 0.75 0.77 0.84 0.71

Manually placed
target and
automatically
computed source
anatomic points

NA NA 1.07 NA

Automatically
computed target
and source
anatomic points

NA NA NA 1.21

All values are in mm. NA = Not apply. Based on five registrations.
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Table 3

Validation results of inter-subject shape matching based on mean distances

Affine
registration based
on manually
selected target
and source
anatomic points

ICP registration
based on bone
surfaces

ICP registration
based on bone
surfaces → Affine
registration based
on manually
selected target and
automatically
computed source
anatomic points

ICP registration
based on bone
surfaces → Affine
registration based
on automatically
computed target
and source
anatomic points

Manually placed
target and source
anatomic points

3.45 4.98 4.05 4.25

Bone surfaces 1.96 1.95 1.32 1.15

Manually placed
target and
automatically
computed source
anatomic points

NA NA 1.58 NA

Automatically
computed target
and source
anatomic points

NA NA NA 1.81

All values are in mm. NA = Not apply. Based on eight registrations.
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Table 4

Reproducibility (CV) of localized mean intra-subject cartilage thickness measurements with manually delineated
baseline and automatically computed follow-up compartments

Compartment CV (DFs)

All 2.41

Medial 2.88

Trochlea 2.88

Lateral 2.47

All values are in %. Based on five subjects.
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Table 5

Inter-subject comparisons of mean cartilage thicknesses with manually delineated baseline and follow-up
compartments

Compartment CV (DFs)a CV (DFs)b

All 10.37 17.32

Medial 8.37 17.75

Trochlea 11.24 16.11

Lateral 14.16 19.25

All values are in %. Based on 10 comparisons.

a
Target shape is always the baseline scan, e.g. shapebaseline2 − shapebaseline1 vs shapefollow-up2 − shapebaseline1.

b
Target shape changes, e.g. shapebaseline2 − shapebaseline1 vs shapefollow-up2 − shapefollow-up1.
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Table 6

Localized inter-subject comparisons of mean cartilage thickness Differences with manually delineated target and
automatically computed source compartments

Compartment CV (DFs)a CV (DFs)b

All 7.50 12.14

Medial 8.58 14.63

Trochlea 12.78 18.82

Lateral 11.16 13.83

All values are in %. Based on 10 comparisons.

a
Target shape is always the baseline scan, e.g. shapebaseline2 − shapebaseline1 vs shapefollow-up2 − shapebaseline1.

b
Target shape changes, e.g. shapebaseline2 − shapebaseline1 vs shapefollow-up2 − shapefollow-up1.
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