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Abstract
This study presents methods to 2-D registration of retinal image sequences and 3-D shape inference
from fluorescein images. The Y-feature is a robust geometric entity that is largely invariant across
modalities as well as across the temporal grey level variations induced by the propagation of the dye
in the vessels. We first present a Y-feature extraction method that finds a set of Y-feature candidates
using local image gradient information. A gradient-based approach is then used to align an articulated
model of the Y-feature to the candidates more accurately while optimizing a cost function. Using
mutual information, fitted Y-features are subsequently matched across images, including colors and
fluorescein angiographic frames, for registration. To reconstruct the retinal fundus in 3-D, the
extracted Y-features are used to estimate the epipolar geometry with a plane-and-parallax approach.
The proposed solution provides a robust estimation of the fundamental matrix suitable for plane-like
surfaces, such as the retinal fundus. The mutual information criterion is used to accurately estimate
the dense disparity map, while the Y-features are used to estimate the bounds of the range space. Our
experimental results validate the proposed method on a set of difficult fluorescein image pairs.

Keywords
3-D reconstruction; Mutual information; Global registration; Retinal fundus image

1 INTRODUCTION
We present methods that facilitate the analysis of retinal images. Automated analysis of retinal
images can assist in the diagnosis and management of blinding retinal diseases, such as diabetic
retinopathy, age-related macular degeneration (AMD), and glaucoma. For evaluating and
imaging patients with retinal diseases, clinical photographers usually first capture color images
of the retina using a specialized fundus camera. Subsequently, a fluorescein dye is injected into
a vein in the subject’s arm, and as the dye propagates through the retinal blood vessels, the
photographer takes serial (over a 5–10 minute period) pictures of the retina. The view point
changes as the eye moves, and the camera may also move. Registration of the retinal image
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sequence needs to be performed to align the images in order to facilitate the study of the
evolution of the dye propagation. Unfortunately, the intensities of the color image and the
acquired grey level angiograms are not consistent, making registration of these images non
trivial. Figure 1 shows various examples of color and fluorescein images of the retina.
Significant variations in the intensity (and in some cases morphology) of the fluorescein pattern
of retinal structures can be observed over the course of the angiogram, and thus registration of
color and angiographic sequence can be considered truly multimodal. For example, the retinal
veins in Figure 1 are red in the color image (Figure 1-(a)), hypointense in the early angiogram
(Figure 1-(b)), increase in intensity (fill with dye) in mid angiogram (Figure 1-(c)), and then
decrease in intensity (“fade”) in the late phases (Figure 1-(d)).

In the literature, most of the previous research in retinal images analysis has focused primarily
on the issue of 2-D registration, which means registration at the image level. Since the retinal
fundus has depth variations, 2-D registration cannot account for the true 3-D transformation,
and residual errors must be expected. So, the inference of the 3-D shape of the retinal fundus
may be useful in diagnosing and monitoring changes in macular edema, choroidal neovascular
membranes, and the morphology of the optic nerve head in patients with optic neuropathies
such as glaucoma. Research in the 3-D reconstruction of retinal images and in particular
macular images, however, has been very limited. Fluorescein images of the retinal fundus have
unique properties that prevent the use of classical stereo algorithms to estimate the 3-D shape
of the retinal fundus from a pair of images. First, as demonstrated in Figure 1, the intensity and
color of the same physical positions may vary considerably across consecutive images. Second,
the shape of the retinal fundus is almost planar, and its 3-D depth is relatively shallow, which
makes classical methods unreliable to estimate the depth.

The methods proposed here cover two main topics. The first topic deals with the 2-D
registration of color images and fluorescein angiographic image sequences. The second
presents the 3-D reconstruction of the retinal fundus from a pair of images. Both methods utilize
Y-features as matching features and mutual information for matching criteria; these methods
are intended to improve the accuracy and reproducibility of diagnosis for ophthalmologists.
The novel contributions of this paper are: (1) the use of Y-features; (2) a global 2-D registration
method using the all pairs’ shortest path algorithm; (3) the estimation of epipolar geometry by
a plane-and-parallax method and search space reduction using accurately fitted Y-feature
position; (4) the estimation of a dense disparity map by mutual information, and, (5) the
evaluation of the accuracy of the 3-D reconstruction using ground-truth data from optical
coherence tomography.

The paper is organized as follows. Section 2 reviews different approaches in retinal image
analysis. Section 3 describes the 2-D registration of color and fluorescein retinal images with
model-based Y-feature extraction, matching Y-features, and global registration. Section 4
describes the 3-D reconstruction of retinal fundus images with epipolar geometry estimation
and dense stereo matching. Future research directions and the conclusion are outlined in section
5.

2 PREVIOUS WORK
2.1 2-D Registration

The key element for matching and registering color and fluorescein images is the extraction
of invariant geometric features. Commonly used robust features are the optic disc, blood
vessels, and Y-features. The optic disc is a frequently-used and robust feature to which all
vessels and nerve fibers converge. Although many studies (Pallawala et al., 2004; Walter and
Klein, 2001) have implemented image registration with the detection of the optic disc, its use
is limited since it requires the optic disc to be visible in the image, and the images to be
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registered by a simple translation model (Foracchia et al., 2004). The assumption of a simple
translation model imposes a stringent restriction which is often not valid with fluorescein
angiograms.

Another important feature in retinal images is blood vessels. One of the common method to
extract vessels in a 2-D image is to use directional filters (Zana and Klein, 1999, 2001).
Exploiting the property of linearity in vessels, blood vessels can be extracted by using a set of
shifted Gaussian filters rotated at different orientations. Several investigators (Matsopoulos et
al., 1999; Zana and Klein, 1999; Zana and Klein, 2001) have demonstrated the detection of
blood vessels through a mathematical morphology approach using linear structural elements.
This method performs well in detecting bright vessels. For detection of dark vessels, the method
is applied on the negative version of the image. This method, however, has difficulty when
there is great variation in the vessel colors; for example, during the early phase of the fluorescein
angiogram, when both dark and bright vessels are present in the same image (Figure 1-(b)).
Besides morphological methods and directional filters, blood vessels can be extracted by level
sets (Malladi et al., 1995; Bemmel et al., 2003), vesselness measure (Frangi et al., 1998), and
many other methods. Existing methods for vessel detection are not always suitable for
extracting vessels in color and fluorescein images where the color, size, and the brightness of
vessels vary across fluorescein images. These methods are also affected by low image contrast,
which is a common attribute of the late phase images of the fluorescein sequence.

The retinal vascular tree has a regular pattern of bifurcations which form Y-features, and
thereby has the potential to reliable features in the retinal image. Can et al. (1999a, 1999b,
2000) presented a method for Y-feature detection in retinal images. Y-features are extracted
while tracing the vessels by finding the centerline between the left and right boundaries of the
vessel. An important advantage of using the centerline of the vessel is that the Y-feature
detection is less affected by variations in retinal vessel diameter which can occur as a result of
the normal pulsatility or retinal blood flow. Because the centerline cannot be reliably extracted
in the branch area, this tracing method produces multiple and inaccurate center positions, which
subsequently cause errors in image registration. Tsai et al. (2003, 2004) improved this approach
by specifying a branching area and extracting the center position of Y-feature within the area.
With this method, the center position is estimated from the closest point of the three linearly
approximated traces. Nevertheless, this method still produces multiple Y-features in one
branch. Zana and Klein (1999) propose a method that detects the Y-features using the
mathematical morphology approach with structural elements of Y and T shapes. However, this
approach does not estimate the orientation of the Y-features accurately and it tends to generate
a large number of false detections. Choe and Cohen (2005) have proposed a method for which
the initial positions are estimated using directional filters and the accurate position and shape
of the Y-features are obtained by fitting an articulated model to the image boundary. This is
the method we use here.

The most common method for registering image sequences is pairwise registration, which
sequentially registers images. Stewart et al. (2003) and Tsai et al. (2003) propose a dual-
bootstrap ICP algorithm to register a pair of images using blood vessels as features. They
improved the accuracy of the registration and solved the initialization problem of the ICP
algorithm. The downside of this method is that when an incorrectly registered image is added
to the mosaic image, the registration error propagates to all other images. A global registration
method solves this problem by considering a graph that connects all overlapping images and
estimates the global registration error. We discuss global registration in Section 3.3.

2.2 3-D Reconstruction
To obtain the 3-D shape of the retina, practitioners often use specialized devices such as a
scanning laser ophthalmoscope (SLO) or an optical coherence tomography (OCT) system.
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Based on the principle of low-coherence interferometry, OCT provides an in vivo cross-
sectional image of the retina that simulates microscopic visualization and has axial resolutions
under 3μm (Walsh et al. 2005). Unfortunately, the cost of OCT equipment and the expertise
required for its interpretation has limited the widespread adoption of this technology,
particularly in developing countries. In addition, angiographic studies using these OCT systems
have thus far proved to be challenging. An alternative to subjective inspection and high-cost
imaging consists of inferring the 3-D shape of the retina using images acquired with a
commonly-available, lower-cost fundus camera.

A few research efforts have been reported on the concept of reconstructing the 3-D shape of
optic disc from the retinal images (Kai, 2005). Previous methods are relatively simple as they
only consider images that are synchronously acquired using a calibrated rig and therefore
relative calibration is performed offline using a calibration pattern. The problem of 3-D shape
reconstruction of the retinal fundus from a sequence of fluorescein images has not been
addressed in the literature. We believe that a successful 3-D reconstruction of the retina from
a pair of fluorescein images should provide a cost-effective and useful diagnostic tool for
ophthalmologists.

The first step to obtain a dense stereo map is rectification, a process which aligns the matching
points along horizontal scanlines. In order to rectify two stereo images, the epipolar geometry,
represented by the fundamental matrix, is estimated. The classical approaches for estimating
the fundamental matrix F (using seven or eight points) (Bartoli and Sturm, 2004; Hartley and
Zisserman, 2000; Longuet-Higgins, 1981), are not accurate because the shape of the retina is
relatively flat (Hartley and Zisserman, 2000). Even in disease states such as macular edema,
where the central retina can be “dramatically” thickened, the retinal surface elevation in these
situations is modest compared with the overall radius of curvature of the retina. Furthermore,
although the retinal fundus is a curved 3-D shape, its surface curvature is relatively small.
Kumar et al. (1994) propose a method for computing the fundamental matrix using the plane-
and-parallax approach. The method consists of first estimating the 2-D projective motion, or
the homography, and then inferring the epipoles by using two other matching points belonging
to residual parallax regions. The fundamental matrix is then estimated using the epipoles and
the homography. Werner and Matas (2005) use the RANSAC (RANdom SAmple Consensus)
method (Fischler and Bolles, 1981) to select a set of 7 matching points that are not on a plane
and estimate the fundamental matrix using the plane-and-parallax algorithm.

A comprehensive review of several stereo estimation methods is provided by Scharstein and
Szeliski (2002). In particular, graph cut (Kolmogorov and Zabih, 2001) and belief propagation
(Sun et al., 2003) methods have shown good performance on test sets of stereo images with
scenes having large depth changes, similar intensity for identical pixels, and textured regions.
Retinal images, however, exhibit unique and specific challenges, such as varying intensities,
shallow depth retinal fundus surface (especially in relatively normal retina), and low texture.
Existing methods in the literature are not well adapted for stereo estimation of the retinal fundus
from fluorescein images, as attested by our comparative study presented in the experimental
results section.

3 2-D REGISTRATION
In this section, we propose a method for automatic registration of color and fluorescein
angiograms in 2-D. The method consists of three main steps: First, seed positions for Y-feature
are computed using a PCA-based analysis of directional filters responses. Second, an
articulated model of a Y-feature is fitted to the image features using a gradient descent method.
Third, the extracted Y-features are matched across the images by maximizing mutual
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information, and the geometric transformation between images is established using an affine
model.

3.1 Estimating Initial Y-feature Positions
In this section, we present a method for locating Y-feature candidates in the image. Y-features
are characterized by regions in the image where three vessels converge. The Y-feature should
have exactly 3 strong responses from directional filters spanning 180°. The PCA based analysis
of filter outputs allows us to locate the positions of the Y-features in the image.

3.1.1 Directional Filtering—The approximate position of the Y-features is obtained using
a set of directional filters. We use a 2-D Laplacian of Gaussian (LoG) filter:

(1)

With the proper selection of σx and σy, (σx=16 and σy=4 for a 640×480 image), the elongated
shape of the LoG filter is created. With this base kernel, directional filters are formulated by
rotating the kernel from 0 to 180 degrees. A large number of directional filters generate finer
responses from the Y-features in the image. However, this can cause duplication of the
responses from one vessel. On the other hand, using a small number of filters could result in
some missed Y-features. As a tradeoff, we use 6 directional filters at 6 different angles. In this
paper, all parameters related with image size, such as the filter size, the length of the Y-feature,
the search space, and window size, are specified for a 640×480 image. These parameters can
be changed proportionally to account for the size of an image.

3.1.2 Principal Components Analysis—The initial position of Y-features is estimated
from the 6 filter responses. Since a Y-feature should respond at exactly 3 different directions,
we use the Principal Components Analysis (PCA) method to detect the pixels with large
responses in exactly 3 different filter outputs. A local analysis of the directional filter responses
permits integration of responses from neighboring pixels. The 3×3 neighboring pixels for each
filter response are then transformed to 1-D 9 pixels, and autocorrelation of the 6×9 matrix is
calculated. The resulting 6×6 autocorrelation matrix is decomposed to eigenvalues and
eigenvectors using the Singular Value Decomposition (SVD) method. For each pixel, we
examine the third largest eigenvalue; if that eigenvalue is large, the pixel is considered as a
good candidate for a Y-feature. By sorting pixels by the third largest eigenvalues, we select
the best 100 features for each image. Clearly, this is an approximation. We produce points
which do not correspond to vessel bifurcation, and miss some also, but we found that the method
produce a sufficient number of correct features in practice. In Figure 2, we show the extracted
seed points using the PCA analysis of directional filter outputs.

3.2 Fitting Articulated Y-feature Model
We propose a Y-feature extraction method based on fitting an articulated model. The articulated
model is fitted by maximizing the local intensities inside the template and gradient information
on the boundary of the template.

3.2.1 Articulated Model for Y-features—The considered articulated model for the Y-
features has 8 degrees of freedom (DOF), x=(x,y,θ1,θ2,θ3,w1,w2,w3) which include the center
position, three angles, and three widths for each branch. The length of each branch is fixed.

Using the geometric properties of the Y-features in the retinal images, we constrain the arms
to be neither too close nor too far from each other. The half width of each arm, wi (i=1,2,3), is
the distance between the center of the vessel and its boundary. The width is also constrained
to be between the minimum and maximal size of the vessels we are interested in detecting.
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3.2.2 Initialization of Y-feature Shape—Given the seed points extracted by the PCA
analysis of the response of the directional filters, the initial orientations of the three arms of
the model need to be estimated. Can et al. (1999a) proposes the use of a rectangular grid and
local detection of the maximum intensities for each vertical and horizontal line over the whole
image. This approach, however, has several potential flaws: (1) a large number of grids must
be dealt with, (2) Y-features located at the edges of the grid cannot be detected, and (3) the
selection of local maxima from the four grid lines is combined in an ad-hoc manner into the
three best vessels. Our method detects three bright or dark vessels from the circular boundary
of the Y-feature located on the seed points. Along the circle, peaks or valleys of intensities are
detected. Peaks represent bright vessels and valleys correspond to dark vessels. For each peak
or valley, the best three arms are selected based on the following error function:

(2)

where L is the length of the branch, wi is the half width of the branch, i is the index of the
considered arm, and I(xi, yi) is the image intensity at xi = x + w sinθi + l · cosθi, yi = y + w ·
cosθi + l · sinθi, where (x,y) is the center position of the model. FI(x) describes the sum of
intensities inside the Y-feature model, represented by the shaded area in Figure 3. The angles
of the Y-feature model are determined by connecting the center of the model and three vessels
on the boundary. In the case of a dark vessel, three valleys that minimize FI(x) are selected,
and, for a bright vessel, three peaks maximizing FI(x) are considered for the initial angles of
the Y-feature model.

3.2.3 Fitting Y-features—After initializing the position of the Y-feature and the angle of
the branches, we fit the articulated Y-features using gradient descent. In addition to the
constraints defined by Equation (2), the gradient value along the boundaries of the vessels is
utilized to enhance the accuracy of the estimated Y-feature model. We minimize the following
energy:

(3)

where G(xi, yi) is the gradient value on the boundary, and m=0 for a dark vessel, m=1 for a
bright vessel. G(xi, yi) is computed by the gradient of Gaussian filter output. When an
articulated Y-feature is correctly fit, the sum of the intensity values, FI(x), in a Y-feature will
be maximum for a bright vessel and the boundaries of the model are on the edge of the image.
In addition, we constrain the angle and width of the branch to be within a specified range of
values. The relative angles between the branches of the Y-model are defined by g1(θ), g2(θ),
and g3(θ) as follows:

, where θ=(θ1, θ2, θ3) and angle boundaries are set to bl = π/9,bu=10π/9. These bounds were
defined empirically after observing that no Y-feature goes beyond the specified boundary
angles in the working set of retinal images for this study. Similarly, the half width of each
branch is constrained by defining an upper and lower bound on the width:

In our experiments, half width boundaries are set to ωl =1, ωb = 4. The length of the Y-feature
model and the width of vessel boundaries are determined to be proportional to the size of the
image. These constraints are enforced using Lagrange multiplier, thus solving the constrained
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optimization problem with the above inequalities (Bertsekas, 1999). We use a penalization
approach using a barrier function. The inequality constraints on the angles θ and the width of
the arms w=(w1, w2, w3) are translated to the penalty function:

(4)

Figure 4 shows plots of the barrier function B(x) with different values of s, which controls the
smoothness of the barrier function. As s increases, the curve becomes steeper near the
boundaries. In our experiments we set s = 1. α and β are parameters to homogenize radian and
pixel into metric quantities.

The extraction of Y-features in the image consists of initializing the model using the feature
point location and orientations and fitting the articulated Y-model to the image features by
minimizing the function:

(5)

where λ is the trade-off between the goodness of fit to image features and the constraints on
the orientation of the arms and their thickness. The function E is minimized iteratively using
a gradient-based approach.

Fitting is performed based on Equation (5). Since the articulated Y-feature has 8 degrees of
freedom, if we update all 8 parameters at once, the gradient algorithm could be trapped in a
local minimum. To prevent this, we fix the three endpoints of the branch and update only the
position and the width of the arms. Once the center point of the Y-feature converges to a
stationary location, the angles and widths of the branches are updated. The gradient-based
minimization scheme is iterated until it reaches a maximum number of iterations, set to 25, or
the parameters reach stationary values. Figure 5 shows the fitting process. As the PCA analysis
detects both types of vessel (i.e. bright/dark), the model is fitted twice to detect Y-features,
first assuming dark vessels and second assuming bright vessels. After alignment, the Y-feature
candidate with the higher gradient value on the boundary is selected.

All fitted Y-features do not necessarily correspond to real bifurcations of vessels. Indeed, many
initial Y-features are selected based on whether they have a high response to the directional
filters, as described in Section 3.1.2). A large number of seed points are considered in order
not to miss any real Y-feature in the image. After fitting the articulated model to the selected
image regions, we discard some of the extracted Y-feature points where the boundary of the
arms of the articulated model does not lie on strong edge points. If 2/3 of the boundary of any
arm is not on the edge, the Y-feature model is discarded.

3.3 Matching and Global Registration
The circulation of the fluorescein dye in the retinal vessels induces different grey level
properties in the color and angiogram images, making the matching of extracted Y-features
challenging. We propose to match extracted Y-features across modalities and through different
phases of the circulation using the local maximization of the mutual information (Wells et al.,
1996; Viola and Wells, 1997). To match individual Y-features, geometric descriptions are too
coarse, and intensity matches are unreliable due to the intensity changes. Instead, we do match
intensities, but use mutual information rather than correlation. A RANSAC method (Fischler
and Bolles, 1981) is used for pairwise registration of images. This, however, does not provide
robust registration for the entire image sequence, and a global registration is required. We
propose a method of achieving a robust global registration of color and fluorescein frames
using the all pairs’ shortest path algorithm.
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3.3.1 Matching Y-features using Mutual Information—We consider a rectangular
window enclosing the Y-feature model in the source image and compare it to other windows
in the target image within a search area, which is set to a fifth of the image size. Y-features for
which the mutual information is maximal among the set of candidates are paired. Mutual
information for a pair of rectangular windows zA in the source image and zB in the target image
is defined by Viola and Wells (1997):

(6)

where H (z) = −∫p(z) ln p(z) dz is Shannon’s entropy of the image window z, and p is the
distribution of the grey levels in the considered window. We approximate the entropy as:

where Nz is the size of the window z, and the density function p(z) is estimated based on Parzen
window density estimation. We consider a Gaussian density function for the Parzen window
WP, and the distribution of the grey levels is locally approximated as follows:

where Np is the number of samples in the Parzen window WP, and gψ (z) is the uni- or bi-variate
Gaussian density function with diagonal covariance matrix ψ (Wells et al., 1996). The entropy
function is then rewritten as:

(7)

3.3.2 Global Registration—Using matched pairs of Y-features, images are registered using
an affine transform. The RANSAC method is used to find the inliers among the matched
features. The best three matching pairs are selected to obtain the best affine transform, which
minimizes the geometric errors of every match:

(8)

where xi and yi are a matching pair and A is affine transform obtained from selected 3 pairs of
Y-features. With the selected affine transform, the geometric error for each matching pair is
computed. Based on the error, the outliers of the matching pairs are removed, and the inliers
are considered for estimating the affine transform.

Figure 6-(a) and (b) displays the extracted Y-features. The small squares in the image indicate
locations selected as an initial Y-feature but later rejected due to low image gradients along
the edges of the Y-feature arms. Figure 6-(c) and (d) show the corresponding inlier pairs after
matching and registration.

Image sequences of angiograms can be registered sequentially using pairwise registration.
However, if one image is not correctly registered, this error propagates to the remaining images.
Furthermore, registration across modalities varies in accuracy according to the phase of
circulation of the fluorescein dye in the retinal vessels. Global registration is introduced to
automatically reduce the errors of registration of an unordered set of images within and across
modalities. Global registration is intended to identify the best registration among all pairs of
images, while minimizing the global registration error.
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To address this problem, we construct a complete and undirected graph, where the nodes
correspond to the images to be registered and the edges correspond to pairwise registration of
the images. A cost is associated to each edge representing registration error computed by
Equation (8) obtained by the pairwise registration described above. The global registration
problem is formulated as finding the shortest path from every node to all the other nodes in
this complete and undirected graph. The all-pairs’ shortest paths are calculated using the Floyd-
Warshall algorithm (Floyd-Warshall, 1962). With this algorithm, the shortest paths from every
node to all other nodes are obtained. A node with the lowest sum of costs is selected as a
reference frame. And the shortest paths from the reference frame to all other frames are simply
decided by the all pairs’ shortest path algorithm (Choe et al. 2006a). Figure 7 illustrates the
difference between pairwise and global registration.

3.4 Experimental Results
We conducted experiments on our registration method on 11 sets of retinal images. The 11
image sets were chosen by an experienced retinal specialist (Dr. Alexander Walsh) to be
representative of the typical range of images encountered in clinical practice, encompassing a
range of common retinal diseases. Each set has one color image and approximately 20
angiographic images, including very dark ones with poor contrast. In most of the previous work
dealing with retinal angiogram registration, these images are simply discarded and not
registered. Furthermore, in some pathological cases, irregular spots with very strong contrast
bias the extraction of Y-features.

Figure 8 shows the pairwise registration of two images using an affine transform. Global
registration was derived using the all pairs’ shortest path algorithm described above. One
example of the global registration tree is shown in Figure 10. The node is each picture and the
weight of the edge is the geometric error. Figure 9 shows the final mosaic obtained after
registering a set of images. The images are α-blended images, where α = 1/# of images.

We have conducted an evaluation to quantify the accuracy of the detection of the Y-feature
using the proposed articulated model. We have measured the number of detected Y-features,
as a variable of the total number of seeds points NS detected by the PCA-based algorithm. The
obtained ROC curve is displayed in Figure 11. The ROC curve is saturated at a false detection
rate of approximately 0.17 with a positive detection rate of more than 0.96. Ground truth was
provided by hand-tagging the location of the Y-features in the image set.

Evaluating the accuracy of the registration across modalities is a difficult task because of lack
of ground truth. We defined the ground truth by having Dr. Alexander Walsh, an experienced
retinal specialist, annotate corresponding points manually, and computed the affine transform
matrix based on these points.

We have also compared the proposed approach based on the matching of Y-features to other
different methods that use other image features. In Table 1, we show the registration error
obtained by: PCA-based features, pairwise registration of Y-features fitted to image
characteristics, and using the global registration method. 91.09% of images (235 out of 258
images) were accepted for the registration, and 8.91% of images (23 out of 258 images) were
automatically discarded from the registration since they had high registration errors. We notice
an improvement of the accuracy by using the proposed all pairs’ shortest path algorithm. The
geometric error of the matching points was calculated from the manually estimated ground
truth affine transform. The average pixel error of the proposed method is 2.757204. This value
was obtained by averaging over the whole set of images considered in the 11 sets of images
(224 pairs). However, this evaluation of 2-D registration using manual annotation has
limitations. First, manual annotation cannot be perfect, since annotation is performed by a
human. Second, the actual shape of the retina is a 3-D surface, but we registered the images
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by 2-D affine transformation. Also, it should be noted that the distribution of Y-features plays
a role in registration. If Y-features are absent from a large portion of the images, registration
may not be accurate. These sources of errors contribute to the results reported in Table 1. We
address these limitations by reconstructing the 3-D shape of a retina.

4 3-D RECONSTRUCTION
In this section, we propose an automatic method for 3-D reconstruction from a pair of retinal
images. The method consists of three steps: First, the matched Y-features are used to estimate
the epipolar geometry based on a plane-and-parallax approach. Second, the images are rectified
by the estimated fundamental matrix; after rectification, the search space on the scanline for
stereo matching is estimated based on the Y-feature correspondences. Subsequently, a dense
disparity map is estimated using mutual information. Figure 12 shows examples of retinal
image pairs used in this study.

4.1 Estimation of Epipolar Geometry
The pair of images with the lowest registration error between them is selected for 3-D shape
reconstruction among a sequence of images. Among all pairs, this selected pair is likely to have
more Y-features and a similar density of Y-features. The homography and the fundamental
matrix are estimated from a set of Y-feature correspondences between two images. This section
describes the method for estimating the epipolar geometry from a pair of fluorescein images
of the retinal fundus.

Using the matched pairs of Y-features, images are registered by a homography. The RANSAC
method is used to detect the inliers among the matched features. The best four corresponding
pairs of Y-features are selected to estimate the homography, which minimizes the geometric
error:

(9)

where xi and yi are 3×1 vectors of the matching pair and H is the 2-D homography.

At least seven point correspondences are necessary to estimate the fundamental matrix of the
epipolar geometry. However, various standard implementations of the 7-points and 8-points
algorithm were tested and did not provide satisfactory results (Hartley, 1995; Kumar et al.,
1994). Figure 13 shows the result of the corresponding epipolar lines defined by the
fundamental matrix estimated by the 8-point algorithm. In Figure 13, we show examples of
erroneous estimation of the epipolar geometry from a set of correctly matched Y features.

In the examples above, the motion of the camera between two acquisitions is close to a pure
translation. There are two common situations where a degenerate case occurs in the estimation
of the fundamental matrix (Hartley and Zisserman, 2000): Cases in which both camera centers
and the 3-D points are on a ruled quadric, or when all the points lie on a plane. In the case of
retinal images, the later case is common because the surface of the retina is relatively flat
(except in a few patients with severe retinal disease). Although the points are not on the same
plane, the range of 3-D depth is too shallow to get a satisfactory fundamental matrix from the
8-point algorithm.

To overcome this limitation of the 8-point algorithm on retinal images, we use the plane-and-
parallax algorithm proposed by Kumar et al. (1994). Given 4 corresponding points, first a
homography is calculated. Adding 2 more point correspondences belonging to residual parallax
regions enables us to estimate the location of the epipoles. The fundamental matrix can then
be estimated by:
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(10)

where H is the homography obtained from the Equation (9) and the epipole e′ is the intersection
of (Hx1)×y1 and (Hx2)×y2 where xi and yi (i=1,2) are a matching pair of features, and [·]× is
a matrix notation for the calculation of the cross product. Figure 14 illustrates the plane-and-
parallax algorithm to estimate the fundamental matrix.

We have implemented a RANSAC-based algorithm for the plane-and-parallax method, similar
to the one used for the estimation of the homography. For each estimated homography, we
randomly select two additional features with large geometric errors reported by Equation (9)
to form a fundamental matrix. Subsequently, we select the fundamental matrix that satisfies
the following equation.

(11)

where xi and yi is the corresponding pair. Figure 15 shows the corresponding epipolar lines
obtained by the plane-and-parallax approach. The plane-and-parallax algorithm can reconstruct
not only flat-like surfaces but also surfaces with greater 3-D variations. After estimating the
fundamental matrix, stereo images are rectified using Gluckman and Nayar’s method (2001)
for the estimation of the depth map.

4.2 Stereo Matching and 3-D Surface Estimation
4.2.1 Estimating the Search Space—In this section, we address the problem of estimation
of depth range from the set of matched Y-features. The definition of a suitable search space
within the scanlines for stereo matching is important: when the search space is too narrow, the
corresponding points cannot be identified, on the other hand, when the search space is too wide,
it may be possible to detect the corresponding pixels in the scanline, but the detection is not
necessarily accurate. A proper range for the search space gives a high confidence in matching;
and it also reduces the computation time. Most of the existing algorithms manually select the
search space to get the best results. One approach for automatically estimating the search space
is based on using a coarse-to-fine search (Magarely and Dick, 1998). This method assesses the
approximate offset of the search space from the coarser level, and does not provide an accurate
estimate. In addition, error from wrong matches in the coarser level can be propagated to the
finer level. Moallem and Faez (2001) define the search space based on the maximum of the
disparity gradient value. This requires scenes or surfaces with strong disparity in depth, and
therefore may not be applicable to many retinal images. We propose a method that
automatically defines the search range by using the matched Y-features.

Although some cases of severe retinal disease may have “dramatic” distortion of the retinal
morphology with focal elevations of the retina several hundreds of microns above the expected
retinal surface, for many patients the retina has a relatively small 3-D depth variation. As such,
the disparity search space is fairly shallow. Since disparities for the sparse key features are
known, disparity at other points can be easily extrapolated because the retinal surface is an
almost planar surface. Assuming that corresponding Y-features are well distributed across the
images, the search space can be easily estimated from the set of known disparities. Figure 16-
(a)(b)(c) shows the histogram of the dense disparity map. Figure 16-(d)(e)(f) shows the
histogram of Y-features’ disparities. We note that the shape of the distribution can be well
approximated by a Gaussian distribution. Even though the number of sample points defined
by the Y-features is much smaller, the histogram follows the same pattern as the one estimated
on the dense disparity map. The average and the variance of the Y-features’ disparity are also
similar to those of the disparity map.
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After rectifying the position of matching Y-features, we can obtain the mean(μY) and the
standard deviation(σY) of disparities among all transformed Y-feature correspondences. The
search space S is then determined by the following inequality:

(12)

which has 99.994% confidence interval in the Gaussian distribution.

4.2.2 Dense Disparity Map using Mutual Information—After rectification, all
matching pixels are located on the same scanlines. On the scanline, the lower and the upper
bound of the search space are estimated by the method described in the previous section. This
method produces a 1-D shallow search space which enables a more accurate computation of
the dense disparity map. In case of the retinal fundus where the intensities of the matching
areas vary across the stereo images, a general cross-correlation based algorithm does not
provide satisfactory results. Instead, we propose using mutual information for matching points
along the scanlines and estimating the depth map.

Kim et al. (2003) used only joint entropy H(zA, zB) rather than mutual information. The
proposed method does not work well on low-textured areas. When mostly textureless areas are
compared to each other, joint entropy has a high value on textureless area, which is incorrect.
However, marginal entropies H(zA) and H(zB) help to boost the mutual information value on
the textured structures. Hirschmüller (2005) estimates the discretized density function p(z) in
order to reduce the time complexity. p(z) is calculated at the given point and it is convolved
with a 2-D Gaussian to simulate the density function. However this simplification reduces the
accuracy of mutual information.

We utilize Equation (6) to implement mutual information. In mutual information, the marginal
entropies H(zA) and H(zB) are included and the density function p(z) is computed individually
using a Parzen window estimation with Gaussian assumption. The disparity of each pixel is
determined by following equation.

(13)

where MI(zA, zB,d) is mutual information from Equation (6) and zB,d is the window of d pixel
distance from the window zB in the second image. Each pixel is centered in a window zA, which
is then compared with a window zB,d in the other image within the search space S. The pair of
windows that has maximum mutual information determines the disparity of each pixel position.

Since the range of disparity values is shallow, the subpixel resolution of disparity is essential
in 3-D reconstruction of retinal images to avoid “staircasing” in the disparity map. We estimate
the disparity map with subpixel resolution using a quadric interpolation relying on neighboring
mutual information values as follows:

(14)

where a=MI(disparity−1), b= MI(disparity), c= MI(disparity+1), and disparity is the value of
selected disparity in Equation (13). Every disparity is determined individually by the mutual
information matching criterion. We did not apply any smoothness constraint to calculate
disparities. Based on the taxonomy of stereo algorithms (Scharstein and Szeliski, 2002), only
the matching function is applied. Neither aggregation nor optimization methods are used. We
have implemented a number of methods to perform this task (Kolmogorov and Zabih, 2001;
Scharstein and Szeliski, 2002; Webpage of Middlebury source code). In our experiments we
have observed that such methods only degrade the accuracy of the matching.
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4.3 Experimental Results
The reconstructed 3-D shape is evaluated by comparing our results to aligned OCT data from
a commercial instrument (Carl Zeiss Meditec, Dublin, CA). Our data differs slightly from OCT
data since we have a disparity map – not a true depth map. A more accurate depth map would
require knowledge of the internal camera parameters, which are currently unavailable.

4.3.1 3-D shape of the retinal fundus—We conducted experiments on more than 20 sets
of stereo image and 5 challenging pairs of fluorescein images as selected by an experienced
retina specialist (4 pairs are shown in Figure 12). Retina_A has a large elevated lesion in the
center of the image. The stereo images of Retina_A have a very strong illumination change.
Retina_B is the concave shape with a very small lesion in the upper middle part of the image.
Three different stereo pairs of Retina_C are tested, and two sets are shown in Figure 12-(e)(f)
and (g)(h). The images demonstrate a retinal pigment epithelial detachment (‘blister’) in the
macula secondary to choroidal neovascularization from age-related macular degeneration. The
‘blister’ in the Figure 12-(h) is out of focus, which makes the image reconstruction difficult.
After the Y-features in each image are extracted and matched, the epipolar geometry is
estimated using the plane-and-parallax algorithm (Figure 14). The stereo images are rectified
based on the fundamental matrix, and the search space is estimated from the set of matching
Y-features (Figure 16 and Equation (12)). Using mutual information, subpixel resolution dense
disparity maps are estimated and shown in Figure 17.

In Figure 17-(a)(d), (b)(e) and (c)(f), 3-D shape of Retina_A, Retina_B, and Retina_C are
shown from different views. In these images, the disparity values have been scaled (by a factor
of 30) to magnify the 3-D depth. The estimated 3-D depth maps have little noise even though
we did not apply any post-matching smoothing step. The calculated depth values near the
boundary are incorrect due to occlusions. The size and degree of the elevated lesion area of
Retina_A is demonstrated in Figure 17-(a)(d). Figure 17-(b)(e) shows the concave shape of the
fundus in this myopic patient’s eye. In Figure 17-(c)(f), 3-D shape of a blister-like elevation
of the retinal surface is accurately estimated.

4.3.2 Evaluation of the stereo matching—The evaluation of 3-D surfaces is a difficult
process in medical imaging because of the difficulty in accessing ground truth measurements.
One possible source of ground truth data is obtained in this study from OCT. However, because
OCT data and fundus images are acquired by different machines, it is not easy to align the data
to the 3-D shape data. Therefore, for evaluation, we matched several feature positions, which
have high curvature values, from the OCT to the 3-D depth map to align them to obtain a 3-D
transformation matrix T. Differences between the 3-D point in the transformed OCT data, T
(X), and its nearest neighbor point in the 3-D depth map, Y, are calculated as an evaluation
criterion.

(15)

where NX is the number of the points in OCT data.

In the first experiment, we evaluate the performance of mutual information according to the
window sizes. There are two windows in mutual information. One is z in Equation (7), which
is the area window enclosing the current pixel position. The other is Wp, which is the Parzen
window to estimate the density function. Nz and Np are the sizes of each window. First, we
fixed the Np =3 and measured the pixel errors, changing the area window size, Nz. Second, we
fixed the area window size to Nz =14 and monitored the errors, changing the Parzen window
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size, Np. Three sets of stereo images of Retina_C, which has OCT ground truth, are tested for
this evaluation. The error measures for these two scenarios are plotted in Figure 18-(a) and (b).

As shown in Figure 18-(a), as the area window size increases, the errors first decrease, then
stabilize, and increase. The graph of Parzen window size also follows a similar pattern as shown
in Figure 18-(b). Since mutual information is a statistical measure, more data would give better
accuracy. However, when the window size is too large, the saliency of mutual information
decreases. In addition, when a larger window is used, the computation is slower.

In the second experiment, we evaluated the performance of different stereo matching
algorithms using OCT ground truth. We have used the evaluation codes from the Middlebury
stereo database and source code (http://www.middlebury.edu/stereo) for SSD, DP (Dynamic
Programming), SO (Scanline Optimization), and GC (Graph Cut) algorithms. For SSD, not
only sum of squared differences, but AD (absolute differences) were also compared with
different parameters, such as window size, shiftable window, and truncation. For global
optimization algorithms, such as DP, SO, and GC, we compared the performances with two
matching functions (SSD and AD) and with different smoothness terms, and the best
parameters for each image were selected for each method. We implemented NCC (Normalized
Cross Correlation) and mutual information. As shown in Table 2, mutual information
outperforms all other methods in terms of accuracy. Mutual information generated a low
amount of noise and was highly accurate, even in areas with low texture.

In Figure 19-(a)(b)(c)(d), the surfaces of the 3-D retinal fundus are shown. We reduced the
boundary area by a small amount to remove outliers caused by occlusions. In Figure 19-(e)(f)
(g)(h), the image texture is mapped on top of the 3-D depth map. The line, which matches with
the intersection position of the surface images on the left, displays the 3-D depth of the texture.
Except the boundary area, most of areas are well reconstructed. The 3-D shape of lesions and
an optic disc are also accurately estimated.

5 CONCLUSION
We have described methods for 2-D registration and 3-D shape reconstruction of the retinal
fundus. Extracting Y-features with an articulated model provides robust, accurate, and fully
automatic registration of color and fluorescein retinal images. The PCA analysis of the
directional filter responses generates good estimates of the initial position of Y-features. The
fitting of the articulated Y-feature model provides accurate estimates of the Y-feature positions
in the image and removes false positives. Our experiments show that the proposed global
registration has good performance in registering color images and fluorescein angiograms of
the retina, even in difficult cases where the images contrast is poor.

For 3-D shape reconstruction, we proposed a method that integrates reliable landmarks, defined
by Y- features, a plane-and-parallax approach for robust epipolar geometry estimation, and the
mutual information criteria to estimate the dense stereo map. The performance of 3-D
reconstruction is validated by OCT data. The 3-D reconstruction is robust even though the
retinal surface is relative flat.

All processes were completed without any user interaction, and they were extensively tested
and evaluated on a number of retinal images. By registering the retina images and
reconstructing the 3-D shape of the retinal fundus, the proposed method can provide a useful
tool for ophthalmologists in the diagnosis of retinal disease. In future work, we intend to focus
on the 3-D Euclidean reconstruction of a retinal fundus and registration of images using the
reconstructed 3-D structure.
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Figure 1.
Color and Fluorescein Images of a Retinal Fundus
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Figure 2.
Initial Y-feature position in two images of different modalities. Only the best 100 features are
selected.
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Figure 3.
Articulated model of a Y-feature.
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Figure 4.
The barrier functions with lower and upper boundary w.r.t. to s. When the value x is closer to
the lower or upper bounds, the function penalizes x by associating a large value.
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Figure 5.
Fitting a Y-feature model to the image data. The yellow and white points correspond
respectively to the seed point, and the estimated center point. The green and red crosses indicate
respectively local valleys, and peaks in the grey level distribution. (a)(d) Initial Y-feature model
of bright or dark vessel. (b)(e) Y-feature model after fitting. (c)(f) Detected Y-features. Every
valid Y-feature is classified into bright or dark vessels.
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Figure 6.
(a) (b) Fitted and validated Y-feature. Squares indicate non-validated Y-features. (c),(d)
Matching pairs of Y-features across modalities
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Figure 7.
Global registration of frames across modalities (a) Pairwise registration of consecutive images
(b) Global registration constructed from the proposed method.
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Figure 8.
A view of registered color and dark images
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Figure 9.
Mosaic image of registered angiograms
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Figure 10.
An example of global registration from the selected reference frame to all other frames using
the shortest path algorithm. Nodes of images are connected by arcs with average pixel error
between the two images.
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Figure 11.
ROC curve of Y-feature detection according to the number of seed points, NS
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Figure 12.
Various pairs of retinal images (a)(b) Images of Retina_A with strong illumination changes.
(c)(d) Images of Retina_B (e)(f) and (g)(h) Two pairs of stereo retinal images of Retina_C
from a patient with age-related macular degeneration (e)(f) A characteristic ‘blister’ in the
macula is harder to see in the red-free images (e)(f) than it is in the images taken after injection
of fluorescein dye (g)(h) into the antecubital vein. The image in (h) is blurry which complicates
stereoscopic measurements.
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Figure 13.
Examples of estimated epipolar geometry using an 8-point algorithm in the case of a translation
of the camera. The estimated epipolar geometry is inaccurate.(a)(b) Retina_A (c)(d) Retina_B
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Figure 14.
Illustration of the estimation of fundamental matrix using the plane-and-parallax algorithm.
Four corresponding points define the projective geometry, H. Two additional points in the
residual parallax regions define the epipole e′, which then provides the estimate of the
fundamental matrix F=[e′]×H
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Figure 15.
The epipolar lines obtained from the plane-and-parallax based fundamental matrix estimation.
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Figure 16.
(a)(b)(c) Histograms of all pixels’ disparity for each stereo pair. (d)(e)(f) Histograms of Y-
features’ disparity. The mean(μ) and the standard deviation(σ) of each histogram is (a)μ=
−6.1,σ=2.221 (d) μY=−6.0,σY =2.801 (b) μ=−55.1 σ=2.459 (e) μY =−54.3 σY =2.121 (c) μ=−2.8
σ=0.983 (f) μY =−3.5 σY =1.336
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Figure 17.
Dense 3-D depth maps using mutual information
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Figure 18.
(a) Errors with varying area window size, Nz, of mutual information. (b) Errors with varying
Parzen window size, Np.
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Figure 19.
Reconstructed 3-D shape of the retinal fundus (a)(b)(c)(d) Surface maps. (e)(f)(g)(h) Texture
maps. Each line matches with the line of the surface map on the left.
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Table 1
Comparison of average geometric pixel errors using: pairwise registration of corners, pairwise registration of extracted
Y-features, and global registration using Y-features.

Pairwise Registration with PCA-
based features

Pairwise Registration with Y-
features

Global Registration with Y-
features

Total Error 4.335719 3.792287 2.757204
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Table 2
Disparity errors between OCT data and 3-D shape in pixel metric for each stereo algorithm

Stereo Matching Algorithms Image 1 Image 2 Image 3

 Sum of Squared Distances (SSD) 0.282563 0.510051 1.352426
Dynamic Programming (DP) 0.285503 1.142079 0.673890
 Scanline Optimization(SO) 0.332272 0.626138 1.777096
Graph Cut (GC) 0.290186 0.515139 1.708525
Normalized Cross Correlation(NCC) 0.159760 0.437529 0.258479
Mutual Information(MI) 0.152694 0.328937 0.245442

The parameters are fine-tuned to obtain the best performance. In this table, the best results for each method are shown.
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