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Abstract
Standard particle filtering technique have previously been applied to the problem of fiber tracking
by Brun et al. (2002) and Bjornemo et al. (2002). However, these previous attempts have not utilised
the full power of the technique, and as a result the fiber paths were tracked in a goal directed way.
In this paper we provide an advanced technique by presenting a fast and novel probabilistic method
for white matter fiber tracking in diffusion weighted MRI (DWI), which takes advantage of the
weighting and resampling mechanism of particle filtering. We formulate fiber tracking using a
nonlinear state space model which captures both smoothness regularity of the fibers and the
uncertainties in the local fiber orientations due to noise and partial volume effects. Global fiber
tracking is then posed as a problem of particle filtering. To model the posterior distribution, we
classify voxels of the white matter as either prolate or oblate tensors. We then construct the orientation
distributions for prolate and oblate tensors separately. Finally, the importance density function for
particle filtering is modeled using the von Mises-Fisher distribution on a unit sphere. Fast and
efficient sampling is achieved using Ulrich-Wood’s simulation algorithm. Given a seed point, the
method is able to rapidly locate the globally optimal fiber and also provides a probability map for
potential connections. The proposed method is validated and compared to alternative methods both
on synthetic data and real-world brain MRI datasets.
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1 Introduction
Diffusion tensor MRI (DTI) has become a popular tool for non-invasive exploration of the
anatomical structure of the white matter in vivo (Basser et al., 1994). It endows each voxel
with a 3 × 3 symmetric positive-definite matrix, which characterises the local water diffusion
process. It is based on a local Gaussianity assumption concerning the probability of water
molecule motion in a defined time period. White matter fiber tracking or ”tractography”
estimates likely fiber paths by tracing the local tensor orientations (Mori and Van Zijl, 2002;
Parker, 2004). In this paper, we present a new and fast probabilistic fiber tracking algorithm
which utilises the particle filtering technique and von Mises-Fisher sampling.

1.1 Related Literature
1.1.1 Fiber Tracking—Broadly, the fiber tracking methods described in the literature can
be classified as belonging to two groups. The first group of methods is based on local line
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propagation techniques (or streamline techniques) (Basser et al., 2000; Lazar et al., 2003; Mori
et al., 1999). Step-by-step, they integrate a fiber pathway from a predefined seed point along
the principal diffusion directions, which correspond to the principal eigenvectors of the
diffusion tensors. The main difference among the methods in this group is the way in which
local information is incorporated to locate smooth fiber paths. For instance, Lazar et al.
(2003) use the entire diffusion tensor to deflect the estimated fiber trajectory in the desired
directions. The main drawback of line propagation methods is that errors accumulate as the
propagation takes place over a long distance.

The second group of methods are based on global optimisation techniques (Gossl et al.,
2002; Parker et al., 2002; Pichon et al., 2005). Starting from a seed point, they attempt to locate
an improved estimate of the true fiber pathway using energy minimisation techniques. For
instance, Parker et al. (2002) apply the fast marching technique to propagate connection paths
determined by the principal eigenvectors of the tensors. Gossl et al. (2002) et al. apply Kalman
filtering to track globally optimal paths, according to a fiber smoothness criterion. Pichon et
al. (2005) determine the optimal path between two voxels by solving the Hamilton-Jacobi-
Bellman equation using dynamic programming. Prados et al. (2006) use Riemannian geometry
and control theory to trace the neural fiber bundles by computing the geodesic distances
between seed and end point locations. More recently, Fletcher et al. (2007) develop a
volumetric approach for quantitatively studying region-to-region white matter connectivity
from diffusion tensor MRI. They use the Hamilton-Jacobi equation to formulate the minimal
path problem between two regions.

One common feature of the above methods is that local fiber orientations are determined in a
purely deterministic way. However, due to both noise (Macovski, 1996) and ambiguities for
voxels where multiple fibers cross or branch (partial volume effects (Alexander et al., 2001)),
the local fiber orientations measured by DTI are not completely reliable. For instance, in the
case of partial volume effects, the diffusion process within voxels is no longer Gaussian. As a
result, the diffusion tensor is an incomplete model of the diffusion signal. A natural way to
deal with this problem is to measure uncertainty of the local fiber orientation measurement
probabilistically at each voxel. Jones (2003) quantifies the uncertainties in the fiber orientations
using the bootstrap method and then visualises the orientational field using uncertainty cones.

1.1.2 Probabilistic Fiber Tracking—As a result, probabilistic fiber tracking methods have
received considerable interest recently as a means of incorporating orientational uncertainties
(Brun et al., 2002; Bjornemo et al., 2002; Behrens et al., 2003, 2007; Friman et al., 2006; Lazar
and Alexander, 2005; Parker et al., 2003; Parker and Alexander, 2003, 2005). Instead of
reconstructing fiber pathways deterministically, they aim to measure the probability of
connectivity between brain regions.

These methods have two stages. In the first stage, they model the uncertainty in DTI
measurements at each voxel using a probability density function (PDF) for the fiber orientations
(Behrens et al., 2003; Friman et al., 2006). Behrens et al. (2003) was the first to formalise the
PDF for local fiber orientations using a Bayesian framework. They present three models for
describing the local diffusion process of water molecules, and their models use different levels
of complexity. The parameters of the models are estimated using a Gibbs sampler. They applied
a Markov Chain Monte Carlo (MCMC) procedure to sample from a single fiber orientation
distribution. They then used the set of samples to model the uncertainty in orientation. Friman
et al. (2006) proposed an alternative Bayesian method based on a simplified and more tractable
diffusion tensor model. They replace the continuous PDF of fiber orientation by a set of uniform
samples on a unit sphere. However, their PDF does not consider the uncertainties due to partial
volume effects. Broadly speaking, the diffusion tensor allows the reliable definition of the
principle diffusion direction, which corresponds to the local fiber orientation. However, in
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voxels with more complex configurations such as fiber crossings, the orientation conveyed by
a diffusion tensor is ambiguous. To overcome this difficulty, a multi-tensor (or multi-
compartment) extension of the single diffusion tensor model has been proposed (Tuch et al.,
2002; Frank, 2001; Behrens et al., 2007). The basic idea here is to approximate the diffusion
process using a mixture of Gaussian densities (Frank, 2001). Behrens et al. (2007) determine
the complexity of the fiber structure at each voxel using automatic relevance determination.
They then extend their previous work (Behrens et al., 2003) to deal with multi-orientations
within a voxel by using a multi-compartment description of the diffusion process. More
sophisticated methods for modeling PDFs of multi-fiber orientations at a voxel have also been
developed for characterising the observed diffusion. For instance, Tuch (2004) describe the
observed diffusion for high angular resolution diffusion imaging (HARDI) using the q-space
framework, which is able to resolve fiber crossings. Tournier et al. (2004) express the diffusion-
weighted signal as a spherical convolution of the response function. The approximate PDF for
fiber orientations is then recovered using spherical deconvolution. McGraw et al. (2006) model
the PDF for fiber orientations using a mixture of von Mises-Fisher distributions. They use this
model for segmenting high angular resolution diffusion MRI. Bhalerao and Westin (2007)
build the PDFs from HARDI using a hyperspherical von Mises-Fisher mixture model. They
map the fiber orientation samples to a 5D representation which can avoid the ambiguities
associated with the sign flips of directions in 3D. They then fit their model using Maximum
Likelihood estimation. Although these sophisticated models can better represent diffusion
weighted signals, new imaging methods require much finer angular resolution and more
scanning time than DTI (often 50 or more gradient directions are required). Therefore, in this
paper, we focus on estimating the PDF of fiber orientations using the widely adopted diffusion
tensor imaging model.

In the second stage, probabilistic tracking algorithms simply repeat a streamline propagation
process (typically 1000 ~ 10000 times) with propagation directions randomly sampled from
the PDF for fiber orientation. The fraction of the streamlines that pass through a voxel provide
an index of the strength of connectivity between that voxel and the seed point. By contrast with
the first stage, few methods have been developed to efficiently sample fiber paths from
orientation PDF. The main difference between existing methods for probabilistic fiber tracking
is found in the way that the PDF for fiber orientation is modeled. Most methods estimate the
connectivity map by sampling directly from the PDF for fiber orientation. For instance, Parker
et al. (2003) modeled the uncertainty of the fiber orientations using the normal distribution,
and the parameters of the distribution is controlled in a heuristic way. They then sequentially
sample fiber paths from the normal distribution. Parker and Alexander (2003) have further
developed their previous work to deal with multi-fiber crossings. They distinguish between
prolate and oblate tensors using the spherical harmonic parameters of the diffusion weighted
signals. They fit the DWIs using both single and multi-tensor models. The normal distribution
is used to control the uncertainties and sample fiber paths in a efficient way. Cook et al.
(2004) further improved the method by capturing the orientation errors using the Watson
distribution. The advantage of these methods is that they are able to efficiently sample fiber
paths in a probabilistic way. Although the normal distributions are easily sample from, the
choice is motivated by computational expediency and it is not clear that it accurately models
the sources of uncertainty present. The main differences between these sequential sampling
methods of Parker et al. (2003); Parker and Alexander (2003); Cook et al. (2004) and our
method are the weighting and resampling stages of particle filtering. On the other hand, the
uncertainties of the fiber orientations have been modeled in a theoretically principled Bayesian
framework by Behrens et al. (2003, 2007) and Friman et al. (2006). However, the fiber
orientation distributions are difficult to simulate directly. As a result, the sampling process is
not easily tractable. Thus it is necessary to resort to Markov Chain Monte Carlo methods
(Behrens et al., 2003) or to evaluate the PDF discretely with low angular resolution. One
drawback of these tracking methods is their computational complexity (often more than several
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hours on a high-end PC (Behrens et al., 2003; Friman et al., 2006)), and this is unacceptable
in practice.

1.1.3 Particle Filtering for Fiber tracking—Particle filtering was originally investigated
for probabilistic fiber tracking by Brun et al. (2002) and Bjornemo et al. (2002). In a short
abstract paper, Brun et al. (2002) was the first to sketch out the idea of applying the sequential
importance sampling and resampling mechanism (also known as particle filtering) for
tractography. Bjornemo et al. (2002) further detailed and developed the ideas in Brun et al.
(2002). Specifically, they discussed in detail the conceptual model of importance sampling and
resampling. They then construct the uncertainties of fiber orientations using a Gaussian noise
model. Stochastic fiber paths are generated from the noisy distribution in a goal directed way.
Finally, The connections between the proposed tracking model and the importance sampling
and resampling framework are discussed. Since the weights of the sampled paths are constant
throughout the propagation process, the weighting and resampling technique are not
incorporated into their tracking model.

1.2 Contribution
Developing on the work of Brun et al. (2002) and Bjornemo et al. (2002), in this paper we
present a fast and novel probabilistic method for white matter fiber tracking based on particle
filtering and von Mises-Fisher sampling. We first formulate fiber tracking using a nonlinear
state space model and recursively compute the posterior distribution using particle filtering
(Doucet et al., 2000, 2001; Gordon et al., 1993). This technique has been successfully used in
computer vision for visual tracking (Isard and Blake, 1998) and contour extraction (Perez et
al., 2001). It provides a sound statistical framework for propagating a sample-based
approximation of the posterior distribution. There are almost no restrictions on the type of
model that can be used. As a result, we can model the fiber orientation distributions for prolate
tensors and oblate tensors separately. The proposed tracking model can capture both
smoothness regularity of the fibers and the uncertainties of the local fiber orientations due to
both noise and partial volume effects. Since samples from the posterior path distribution are
maintained at each propagation step, different decision criteria can be used to identify the
optimal fiber. This procedure is similar to the active testing and tree pruning method for
maximum a posteriori (MAP) road tracking developed by Geman and Jedynak (1996). Given
a seed point, our method is able to rapidly locate the global optimal fiber path and also provide
a probabilistic connectivity map between the seed point and all other voxel locations.

Compared to the methods proposed by Brun et al. (2002); Bjornemo et al. (2002), we make
the following two novel contributions.

First, our proposed method generates reliable fiber paths by fully utilising the weighting and
resampling technique of particle filtering. We model the probability density for fiber
orientations in a theoretically justified way. In order to overcome the difficulty of sampling
the theoretical fiber orientation distribution, we simulate paths using a simpler approximating
distribution (namely the importance density function) for fiber orientations which is efficient
to sample from. We then sequentially evaluate and adjust the sampled paths according to the
true orientation distribution. In this way, the method achieves both efficiency and accuracy.
Second, to implement an effective particle filtering algorithm for fiber tracking, we first apply
the von Mises-Fisher distribution to model the prior and importance density of our tracking
process. Fast sampling is realised on the unit sphere and fiber paths are efficiently generated
using the simulation algorithm for the von Mises-Fisher distribution developed by Ulrich
(1984); Wood (1994).

A preliminary version of the algorithm reported here was first described in a conference paper
(Zhang et al., 2007). However, here we consolidate the work and expand the description of the
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method. Moreover, we provide additional qualitative and quantitative results to validate the
method. The outline of the paper is as follows. In Section 2, we first formally develop the global
fiber tracking model based on a nonlinear state space model, and we also show how particle
filtering can be used to recursively compute the posterior distribution, so as to compute optimal
fiber paths and a probabilistic connectivity map. Section 3 provides the model ingredients
necessary to implement the global tracking technique described in Section 2. Specifically, we
describe how to construct the observation density, the prior density, the importance density
function and the simulation for von Mises-Fisher distribution. In Section 4, we evaluate both
qualitatively and quantitatively the performance of the algorithm on synthetic data and real-
world diffusion MRI datasets. We also compare the results of our method with those obtained
using alternative methods described elsewhere in the literature. Section 5 concludes the paper
and discusses directions for future research.

2 Tracking Algorithm
The problem of fiber tracking from a 3D diffusion MRI volume is to extract the most likely
fiber pathway from a predefined seed point. Contrary to the standard tracking problem where
local information is gathered as time progresses, we collect the whole set of data before tracking
begins. Thus, at each step of propagation, we set the observation set as the data visible only
from the current position. In this sense, the fiber tracking problem is similar to the contour
extraction (Perez et al., 2001) and road tracking (Geman and Jedynak, 1996) in computer vision.
However, it is a more challenging problem because there are numerous fiber paths in white
matter that exhibit crossings and dispersion.

We formulate the fiber tracking problem using a state space model. Given the prior probability
densities that characterise the properties of the expected fiber paths and the observation
densities that characterise the uncertainty of local fiber orientations, a posterior distribution of
the target fiber can be estimated. Because of the complex geometry of the fiber paths and the
various uncertainties of the orientation measurements, both the prior density and the
observation density are non-Gaussian. Thus, standard linear state space techniques such as the
Kalman filter are inappropriate here, and a nonlinear filter is necessary. In contrast to the work
of Gossl et al. (2002) which used the Kalman filter to locate the optimal path with regard to
smoothness constraint for the fibers, our method deals with both smoothness regularity and
uncertainties of fiber orientations induced by noise and partial volume effects.

2.1 Global Tracking Model
A white matter fiber path P can be modeled as a sequence of points in the image space Ω ⊂
R3, i.e. Pn+1 = (x0, x1, …, xn+1), as shown in Fig. 1. Thus, commencing from a seed point x0,
the progressive growth of a path in discrete time can be described as

(1)

where ρi and υ̂i are respectively the step size and the direction of propagation (unit vector) at
step i. As with most previous methods, we set the step size to be a constant, i.e. ρi = ρ, i = 0,
…, n. Thus, the dynamics of path growth is only determined by the propagation directions υ ̂i.
In the following, we denote a path as a sequence of unit vectors Pn+1 = υ ̂0:n = {υ ̂0, …, υ ̂n}. Let

 be the set of observations or image data of a 3D diffusion weighted imaging (DWI) volume.
The image data observed at the location indexed i, υ̂i, is yi = (υ ̂i) = (xi), i.e. (υ ̂i) refers to
the DWI information observed at the starting point of unit vector υ ̂i connecting xi and xi+1 (see
Fig. 1). Our goal is to propagate a sequence of unit vectors {υi, i = 0, 1, …, n} that best estimate
the true fiber path based on the conditional prior density p(υ ̂i+1|υ ̂0:i) and the conditional
observation density p( |υ ̂0:i).
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We assume that the tracking dynamics forms a Markov chain, so that

(2)

This means the new state is conditioned directly only on the immediately preceding state, and
is independent of the past. Thus, the prior for the fiber path is

(3)

We also assume that the observations or diffusion measurements (DWI) are conditionally
independent given υ ̂0:n, i.e.

(4)

where Ω is the set of voxels of the image volume. Additionally, if we assume that the diffusion
measurement at a point does not depend on any points in the history of the path, then p(yi|
υ ̂0:i) = p(yi|υ ̂i). Based on the Equation (3) and the assumptions, the posterior distribution p
(υ ̂0:n| ) can be expanded as

(5)

Applying Bayes theorem, we have

(6)

In our tracking model we do not assume any prior information about the diffusion
measurements (DWI), thus we can simply consider p(yi) as a fixed regularity factor of the
system. As a result, we can write

(7)

Most previous methods reported in the literature (Behrens et al., 2003, 2007; Parker et al.,
2003; Parker and Alexander, 2003) for probabilistic fiber tracking estimate the posterior p
(υ ̂0:n| ) by sampling 1000 ~ 10000 streamline paths from the conditional observation density
p(yi|υ ̂i). However, the density p(yi|υ ̂i) is often complicated, thus the sampling is difficult and
time consuming (Behrens et al. (2003, 2007)). Moreover, these methods do not take into
account the smoothness constraint for fibers. On the other hand, Friman et al. (2006) estimate
the posterior by sampling from p(υ ̂i|υ ̂i−1, ). This sampling is again difficult and requires the
computation of the integral in Equation (7) over the new state. To avoid these difficulties,
Friman et al. discretise the problem using a finite set of several thousand directions for
propagating paths from υ̂i−1 to υ̂i. Thus, sampling the discretised version of p(υ ̂i|υ ̂i−1, )
becomes feasible, and the integral becomes a sum. In addition to introducing errors, this
discretised sampling is still time consuming, since each discretised direction must be evaluated
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at all locations in the volume. Moreover, simple sequential sampling methods may degenerate
as the number of propagation steps becomes large (Doucet et al., 2001).

2.2 Recursive Posterior using Particle Filtering
We wish to estimate the posterior distribution iteratively in time. By inserting Equation (6)
into Equation (5), we have

(8)

where p(υ ̂0| ) is predefined. The modeling of the transition probability p(υ ̂i|υ ̂i−1) and the
distribution p(yi|υ ̂i) will be detailed in the next section of this paper. We recast the problem of
tracking the expected fiber path as that of approximating the maximum a Posteriori (MAP)
path from the posterior distribution.

It is straightforward to obtain the following recursive formula for the posterior from Equation
(8)

(9)

Since the denominator of this expression requires the evaluation of a complex high-dimensional
integral, it is infeasible to locate the maximum likelihood path analytically. In conjunction with
the methods described above, we evaluate the posterior using a large number of samples which
efficiently characterise the required posterior. Thus, statistical quantities, such as the mean,
variance and maximum likelihood, can be estimated using the sample set. Since it is seldom
possible to obtain samples from the posterior directly, we use particle filtering (sequential
Monte Carlo technique) to recursively compute a finite set of sample paths from the posterior
based on the Equation (9).

To sample a set of K paths, we place K particles at the starting point of the path and allow them

to propagate as time progresses. Given the states of the set of particles  at time
i, the process of sequentially propagating the particles to the next time step i + 1 can be described
in three stages. These are referred to as prediction, weighting and selection and described in
detail in the following paragraphs. Let π(υ ̂0:i| ) be a so-called importance function which has
a support including that of the posterior p(υ ̂0:i| ). For our sequential importance sampling,
suppose that we choose an importance function of the form (Doucet et al., 2000)

(10)

In the first prediction stage, the simulated path  with index k is grown by one step to be

 through sampling from the importance function  . The new set of paths is
generally not an efficient approximation of the posterior distribution at time i + 1. Thus, in the
second or weighting stage, we measure the reliability of the approximation using a ratio,
referred to as the importance weight, between the true posteriori and its approximation. The
importance weight is given by
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(11)

We are more interested in the normalised importance weights, given by

(12)

Inserting Equation (9) and Equation (11) into the above expression, we have the proportionality

(13)

The choice of importance function plays an important role in determining the performance of
particle filtering. This choice will be detailed in the next section of this paper. At this point the
resulting weighted set of paths provides an approximation of the target posterior. However,

the distribution of the weights  may become skewed as time increases. The purpose of the
final or selection stage is to avoid this degeneracy.We measure the degeneracy of the algorithm
using the effective sample size Neff introduced in Liu (1996),

(14)

When Neff is below a fixed threshold Ns, then resampling procedure is used (Doucet et al.,
2001; Gordon et al., 1993). The key idea here is to eliminate the paths or particles with low

weights  and to multiply offspring particles with high weights. We obtain the surviving
particles by resampling K times from the discrete approximating distribution according to the

importance weight set  .

Both fiber reconstruction and connectivity map computation can be easily accomplished using
the discrete distribution of the posterior conveyed by the importance weight set. The MAP
estimate of the true fiber path from starting point x0 is the path with the maximal importance
weight. In order to compute the connectivity map, the algorithm records the full tracking history
of all the particles at each time step. The probability of connectivity between x0 and a specific
voxel is computed as the fraction of particles that pass through that voxel.

2.2.1 Relationship to Alternative Tracking Methods—Here, we analyse in detail the
relationship between our method and the alternative method proposed by Brun et al. (2002)
and Bjornemo et al. (2002). Generally speaking, the two methods are developed in rather
different settings. Our method is formulated using a non-linear state space model for
tractography, and uses particle filtering as a natural tool for finding the posterior distribution
of the fiber paths. By contrast, the method in Brun et al. (2002) and Bjornemo et al. (2002) is
built on the vanilla particle filtering technique given in Liu et al. (2001). They propose a so-
called rough tracking model using the particle filtering technique. The weakness of their
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method is that they do not incorporate the weighting and resampling steps of particle filtering
in their tracking method and the proposed tracking method works in a goal directed way.

More specifically, Bjornemo et al. (2002) proposed the following weighting scheme for
sampling

(15)

The model assumed for pi(xi|xi−1) is based on Gaussian noise. Additionally, it is assumed that
πi(xi|xi−1) = pi(xi|xi−1) and pi(xi−1)= pi−1(xi−1). As a result, wi+1 = wi for all the propagation
steps and resampling therefore becomes unnecessary.

Compared to the method in Brun et al. (2002) and Bjornemo et al. (2002), we use the weighting

scheme given in Equation (13). We sample from the importance density  which
is constructed using a von Mises-Fisher model. The importance density is fitted in a simple
way to estimate the observation density. As we will show in the following, our observation p
(yi|υ ̂i) is based on a theoretically justified noise model. Unfortunately, it is intractable to make
samples directly. Although we make samples from a simplified and more tractable importance
distribution, we evaluate and recursively adjust the samples according to their true distribution
using the weighting and resampling mechanism of particle filtering. As a result, the sampled
fiber paths are simulated so as to reliably reflect the theoretical posterior p(υ ̂0:i+1| ) given in
Equation (9).

3 Algorithm Ingredients
In this section, we give the details of the local ingredients of the global tracking model using
particle filtering.

3.1 Observation Density
We commence by showing how to model the observation density p(yi|υ ̂i), which encodes the
uncertainty in local fiber orientation due to both noise and partial volume effects. Our
observation density function is constructed using a single diffusion tensor model. Despite its
weakness in capturing complex fiber structures, DTI is still the most widely used diffusion
MRI modality. Formally, the diffusion-weighted intensity sj is related to the diffusion tensor
D by the Stejskal-Tanner equation (Basser et al., 1994)

(16)

where gradient direction ĝj and the b-value bj are the scanner parameters for data acquisition,
and, s0 is the intensity with no diffusion gradients applied.

Let λ1 ≥ λ2 ≥ λ3 ≥ 0 be the decreasing eigenvalues of diffusion tensor D and ê1, ê2, ê3 be the
corresponding normalized eigenvectors. The degree of anisotropy of water diffusion at a voxel
can be characterised using the fractional anisotropy (FA) (Basser and Pierpaoli, 1996) of the
diffusion tensor D. We can classify the diffusion tensors in white matter into two groups. For
prolate tensors, λ1 > (λ2 ≈ λ3), and, for oblate tensors, (λ1 ≈ λ2) < λ3. Tensor classification can
be estimated using the prolate shape metric proposed by Westin et al. (2002), i.e.
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(17)

In this paper, we distinguish prolate tensors and oblate tensors by using a threshold τ = 0:25.

In the case of prolate tensors (cl > τ), it can be assumed that the single dominant diffusion
direction, ^1, is in the direction of the underlying fiber orientation. The modeling of our prior
distribution for prolate tensors is based on the work of Anderson (2005), Alexander (2005) and
Friman et al. (2006). Borrowing ideas from Anderson (2005), we assume that the prolate
diffusion tensor within a voxel is a single axially-symmetric tensor. Let us set up a local
coordinate system for the diffusion tensor D so that it can be written as a diagonal matrix diag
(λ⊥, λ⊥, λ‖) where the axis corresponding to λ‖ is associated with the fiber orientation. In
spherical coordinates, let θ be the polar angle from the λ‖-axis and ψ be the azimuth angle from
one of λ⊥-axis. Then, a gradient direction ĝj with (θ, ψ) has local coordinates g(θ, ψ) = [sin θ
cos ψ, sin θ sin ψ, cos θ]. Thus, diffusion along ĝj is

(18)

Suppose the trace of the diffusion tensor tr(D) is known and varies unsignificantly over the
white matter. The mean of the three main diffusivities is λ̄ = tr(D)/3, and as a result λ‖ = 3λ̄ −
2λ⊥. Let υ̂ be the true fiber orientation, then cos θ = υ̂ · ĝj . Therefore, Equation (18) can be
written as

(19)

which is equivalent to the constraint tensor model of Alexander (2005) and Friman et al.
(2006). By inserting Equation (19) into Equation (16), we have

(20)

Here, the intensity measured along any gradient direction is subject to two unknown
parameters, i.e. υ ̂ and λ⊥.

Due to noise, the intensity uj in the DWI measured by the scanner is a noisy observation of the
true signal sj. It is well known that the noise in MRI can be described accurately by a Rician
distribution Salvador et al. (2005). Salvador et al. (2005) showed that the error distribution
conforms closely to a normal distribution with a zero-mean and standard deviation equal to the

inverse of the signal-to-noise ratio (SNR), i.e.  , where ϱj = sj/
σj is the SNR. Let the intensities observed at voxel i be yi = {u0, u1, …, uM} where M is the
number of gradient directions used in data acquisition. Following the idea of Friman et al.
(2006), we setup the observation density at voxel i for prolate tensors by multiplying the error
distribution over all gradient directions of the DWIs, i.e.
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(21)

where sj is given by Equation (20). To find the observation density of the variable υ ̂i for fiber
orientations, we need to solve for three unknown parameters, i.e. λ̄ = tr(D)/3, λ⊥ and ϱj, in
Equation (21). The value of tr(D) and λ⊥ can be estimated using the method in (Anderson,
2005). Here, we simply set tr(D) to be the trace of the diffusion tensor D estimated using the
linear least squares estimation (Basser et al., 1994), and set λ⊥ = (λ2 + λ3)/2. The SNR is
estimated using the weighted least squares method in (Salvador et al., 2005). Panels (a) and
(c) of Fig. 2 show two examples of the fiber orientation distribution calculated using Equation
(21). The figure shows that the orientation distribution of a prolate tensor is concentrated when
its FA and cl are both relatively large.

In the case of oblate tensors (cl ≤ τ), the dominant direction of diffusion is ambiguous and
Equation (21) is inappropriate. It is possible that diffusion in the plane defined by ê1 and ê2
contains two or more significant non-collinear diffusion directions, each corresponding to a
separate fiber tract. This situation may be indicative of fiber crossings and branchings, a well-
known challenge in the analysis of DTI. In this case, we set up a local coordinate system with
ê3 as the Z axis and represent the fiber orientation υ ̂ in spherical coordinates. Let θ′ be the polar
angle from the ê3-axis, i.e. θ′ = arccos(υ ̂ · ê3), and ψ̂ be the azimuth angle (relative to an arbitrary
reference direction in the plane spanned by ê1 and ê2). The vector υ ̂ is predominantly distributed
on the plane spanned by ê1 and ê2. Hence, we choose the distribution of the polar angle θ′ to
be normal with mean π/2 and standard deviation σ. The azimuth ψ′ is assumed to have a uniform
distribution over the interval [0, 2π]. Thus, our fiber orientation distribution for oblate tensors
is given by

(22)

Here, ê3 is the eigenvector of the diffusion tensor D estimated using linear least squares. Panel
(c) of Fig. 2 shows an example of the observation density of the fiber orientation for an oblate
tensor in white matter.

3.2 Prior Density
The state transition probability p(υ ̂i+1|υ ̂i) specifies a prior distribution for the change in fiber
direction between two successive steps. Here, we adopt a model of the prior density based on
the von Mises-Fisher (vMF) distribution over a unit sphere. This is one of the simplest
parametric distribution for directional data (Mardia and Jupp, 2000).

For a d-dimensional unit random vector x, the probability density function for the vMF
distribution is given by

(23)

where κ ≥ 0, ‖μ ‖ = 1, and Id/2−1(·) denotes the modified Bessel function of the first kind and
order d/2 − 1. The density fd(x; μ, κ) is parameterised by the mean direction vector μ and the
concentration parameter κ. The greater the value of κ the higher the concentration of the
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distribution around the mean direction μ. In particular, when κ = 0, the distribution is uniform
over the sphere, and as κ → ∞, the distribution tends to a point density. The distribution is
rotationally symmetric around the mean μ, and is unimodal for κ > 0.

In our case, the directions are defined on a two directional unit sphere in R3, i.e. d = 3. We
choose to model the prior state transition probability using the vMF distribution with mean
υ ̂i and concentration parameter κ, i.e.

(24)

The value of the concentration parameter κ controls the smoothness regularity of the tracked
paths. The value of κ is set manually to optimally balance the prior constraints on smoothness
against the evidence of υi+1 observed from the image data. In our real-world experiments, we
set κ = 30.

3.3 Importance Density Function
As pointed out by Doucet et al. (2000), the optimal importance density, which minimises the
variance of the importance weight wĩ+1 conditional upon υ ̂i+1 and , is p(υ ̂i+1|υ ̂i, ). However,
as noted above, the optimal density suffers from two major drawbacks. In our case it is both
difficult to sample from p(υ ̂i+1|υ ̂i, ) and to evaluate the integral analytically over the new
state. Thus, our aim is to devise a suboptimal importance function that best represents p(yi+1|
υ ̂i+1)p(υ ̂i+1|υ ̂i) subject to the constraint that it can be sampled from in a straightforward manner.

A popular choice is to use the prior distribution as the importance function, i.e

(25)

The von Mises-Fisher distribution in Equation (24) can be efficiently sampled from using the
simulation algorithm developed by Wood (1994). In this case, υ ̂i+1 is predicted from υ ̂i and the
importance weight is updated using

(26)

However, the prior importance function is not particularly efficient. Since no observational
information is used, the generated particles are often outliers of the posterior distribution. As
a result, the weights may exhibit large variations and the results of estimation may be poor.
Indeed, if the diffusion tensor at υ̂iis prolate, then the movement to the state υi+1 is mainly
attributable to the fiber orientation distribution. Thus, the posterior distribution is more strongly
influenced by the observation density. For prolate tensors, we believe that the observation
density in Equation (21) is a good choice for the importance function. However, it is difficult
to sample from such a density function.

To overcome this problem, we model the observation density in Equation (21) using the von
Mises-Fisher distribution. Since we use an axially symmetric tensor model, the distribution of
fiber orientations in Equation (21) is also rotationally symmetric around the direction of largest
probability, as shown in Fig. 2. We therefore use the leading eigenvector,  , of the diffusion
tensor Di at υ̂i estimated using the linear least squares as the mean direction of the fiber
orientation distribution. We have found experimentally that the leading eigenvector  of Di is
almost identical to the direction of maximum probability for the distribution in Equation (21).
This is based on a test of 1000 prolate tensors from the brain MRI dataset described later in
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Section 4.2. The average difference between the two directions is less than 2°. Another issue
we need to address it to select the concentration parameter νi at each state υ̂i. An accurate
solution is to fit the von Mises-Fisher distribution to the observation distribution in Equation
(21) using the algorithm described in (Hill, 1981). However, this will significantly increase the
computational complexity of the algorithm, which is one of the advantage of our algorithm
over other methods such as those described in (Behrens et al., 2003) and (Friman et al.,
2006). To overcome this problem, we sample a number of prolate tensors with different FA
values from the MRI dataset. We then fit the concentration parameter νi to the observation
density in Equation (21) for each of these tensors using Hill’s algorithm (Hill, 1981). Figure
3 shows the concentration parameter νi as a function of the FA of prolate tensors. The figure
reveals that the relationship between the concentration parameter and the tensor FA is
empirically well described by using an exponential function, i.e.

(27)

where α and γ are estimated from the above sampled fittings. Moreover, for particle filtering
it is not necessary that the importance density is identical to the observation density. Therefore,
for prolate tensors we set the importance density as

(28)

where νi is estimated from FA using Equation (27). For oblate tensors, since the observation
density in Equation (22) is wide, in this case we still use the prior given in Equation (25) as
the importance density.

3.4 Simulation of von Mises-Fisher Distribution
The von Mises-Fisher distribution can be efficiently sampled from using the simulation
algorithm developed by Ulrich (1984), which is further improved by Wood (1994). Ulrich’s
algorithm is designed for a general group of distributions on unit d-spheres, including the von
Mises-Fisher distribution. Here, we discuss the ideas of Ulrich (1984) and Wood (1994) which
are necessary for implementing our proposed tracking method. Ulrich (1984) observed that if
we sample a unit vector V from the (d − 1)-dimensional sphere and sample a scalar random
variable from the density

(29)

then the concatenated unit vector X = ((1 − W)1/2VT,W)T has a von Mises-Fisher distribution.
Therefore, simulating the von Mises-Fisher distribution can be solved by simulating the density
g(x). However, it is still intractable to sample from g(x) directly. To overcome this problem,
the acceptance-rejection technique is used to develop an algorithm that makes samples from
Equation (29) by using the following envelop density

(30)
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where  is the so-called Beta function. To maximise the

acceptance ratio  . As a result, simulation of von
Mises-Fisher distribution is achieved by sampling from e(x, q) following the standard
acceptance-rejection method. According to the Monte Carlo evaluation performed by Ulrich
(1984), if generating a sample from a normal distribution takes CPU time t0, then in our case
d = 3 it requires CPU time 4t0 ~ 7t0 to sample a unit vector from the vMF distribution. This is
sufficiently efficient for us to sequentially sample fiber paths from the von Mise-Fisher
distribution.

3.5 Algorithm Outline
To summarise, the iteration steps of the algorithm are as follows:

• given K particles at step i: 

• compute diffusion tensor  for each particle k using linear least square fitting

• Prediction: for k = 1, …, K

– if  is a prolate tensor, sample  according to Equation (28)

– if  is a oblate tensor, sample  according to Equation (25)

• Weighting: for k = 1, …, K

– if prolate tensor, compute  from Equation (13) using Equation (21), (24)
and (28)

– if oblate tensor, compute  from Equation (13) using Equation (22), (24)
and (25)

– normalise all these weights

• Selection: Evaluate Neff using Equation (14).

– if Neff ≥ Ns, then for k = 1, …, K, 

– if Neff < Ns, then for k = 1, …, K, sample an index z(k) from discrete

distribution  and set 

4 Experimental Results
We have evaluated our algorithm both on synthetic tensor fields and real-world MRI brain
datasets. We have also qualitatively and quantitatively compared the results of our method with
those obtained using the streamline method (Mori et al., 1999) and the probabilistic tracking
method of Friman et al. (2006). Since our particles propagate in a continuous domain, an
interpolation issue arises for diffusion data that is acquired only on a discrete grid. Here, we
use the trilinear interpolation method introduced in (Zhukov and Barr, 2002). This method is
computationally inexpensive and can preserve the positive-definiteness on the diffusion
tensors.

4.1 Synthetic Dataset
We commence by evaluating the performance of the algorithm on synthetic tensor fields. Each
of the datasets used in this section contain 128 × 128 × 40 voxels, have an in-plane resolution

Zhang et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2009 November 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of 2 × 2 mm and a slice thickness of 2mm. The procedure for generating synthetical additive
noise is as follows. Suppose that the minimum and maximum image scalar values are ul and
uh. We refer to the noise level as being r%, if the standard deviation of the distribution from

which the noise is sampled is  . For each voxel, a noise value is sampled from
an appropriate distribution (Rician in our case) with zero mean and variance  , and then added
to the intensity value of that voxel.

Our first example aims to qualitatively demonstrate the robustness of the algorithm under the
influence of noise. To do this, we first generate a noise-free synthetic tensor field. The data
contains a single cylinder, and the principal diffusion directions of the voxels within the
cylinder form a concentric vector field, as shown in panel (a) of Fig. 4. Each voxel is visualised
by an ellipsoid whose principal axes are the three orthogonal eigenvectors of the tensor, and
the radii of the ellipsoid along the axes are determined by the magnitude of the corresponding
eigenvalues. Then, we add different levels of noise to the tensor field. The proposed particle
filter algorithm is then used to track the global optimal fiber (MAP path) from a seed point
using 1000 particles for 650 propagation steps with step size 1mm. Our result is compared with
that obtained using the standard local streamline method (FACT) (Mori et al., 1999) and the
Bayesian method of Friman et al. (2006). For Friman’s method, we sample 1000 paths
commencing from the seed point using the reported discrete sampling technique with 2562
predefined directions on the unit sphere, and select the path with maximal probability as the
optimal fiber. The resulting optimal fiber path for each of the three methods together with the
ground truth path are shown in subfigures (b) and (d) of Fig. 4. Subfigures (c) and (e) show
the trajectories of the particles obtained using our method at propagation step 300 for the results
in subfigures (b) and (d) respectively. The figure shows that under relatively mild levels of
noise (10% noise) both our method and Friman’s method reconstruct the true fiber path quite
well. However, our method runs significantly faster than Friman method. For instance, the
MATLAB implementation of our method takes less than 100 seconds for 1000 samples to
propagate for 100 steps on a PC with P4 CPU. The Friman method requires at least three times
more to sample 1000 paths with the same length. Additionally, the MCMC method of Behrens
et al. runs significantly more slowly according to their evaluation (Behrens et al., 2003). On
the other hand, when the level of noise is large (25% noise), our method performs better than
Friman’s method as shown in Fig. 4(c). This demonstrates that our algorithm samples paths
more effectively due to the continuous simulation of the von Mises-Fisher distribution and the
resampling step of particle filtering. The results also reveal that the streamline method FACT
is sensitive to noise, and that it performs less accurately compared both to our method and
Friman’s method under low and high levels of noise.

In Figure 5, we have quantitatively compared the performance of our method with that of two
alternative methods (Mori et al., 1999;Friman et al., 2006) on an artificial fiber bundle. Here,
we first construct a synthetic ground truth tensor field containing a curved fiber bundle with
large curvatures at some locations, as shown in Fig 5(a). Fig 5(b) shows a zoomed region of
Fig 5(a) to better visualise the details of the synthetic fibers. Here, we add noise to the synthetic
image in the following way. We first generate a baseline image and six synthetic noise-free
diffusion weighted images from the tensor image in Fig 5(a) with gradient directions [1, 0, 1],
[−1, 0, 1], [0, 1, 1], [0, 1, −1], [1, 1, 0] and [−1, 1, 0]. Next, we add increasing levels of Rician
noise to the baseline image and each of the six DWIs. We then apply our method, the streamline
method (FACT) (Mori et al., 1999) and the Friman method (Friman et al., 2006) to the noisy
datasets to reconstruct the fibers. We estimate the tensor image from the noisy DWIs using
least squares fitting (Basser et al., 1994). For each method, we obtain the best possible results
(in our case MAP path) by manually adjusting the relevant parameters. To evaluate the results,
we sample a number of points on the ground truth fiber path, and compute the mean of distance
error between the sampled ground truth points and the corresponding points on the
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reconstructed paths for each of the three methods. Fig 5(c) illustrates how the error distance is
measured between a sample point on the ground truth path and the corresponding point on the
tracked path. Fig 5(d) plots the mean distance error for each method as a function of the level
of Rician noise. The figure reveals that our method achieves the smallest error at all levels of
noise. Moreover, our method also exhibits a more reproducible behavior when the level of
noise is severe. The figure also reveals that both our method and the Friman method (Friman
et al., 2006) (the probabilistic methods) perform better than the streamline method (Mori et al.,
1999). This is most evident at high levels of noise.

In Figure 6, we show the behavior of the algorithm under both noise and fiber crossings. We
again generate a noise-free synthetic tensor field. In this case a right angle crossing between
horizontal and vertical fibers is synthesized (as shown in the top row of Fig. 6). Additionally,
we also add 5% Rician noise to the data set. In the crossing region, the first and second
eigenvalues of the tensor are assumed to be equal. As a consequence, the diffusion tensors here
are oblate ellipsoids. By contrast, the prolate tensors in regions without fiber crossing are
elongated ellipsoids. We then apply our method to track the fiber from a seed by propagating
1000 particles for 200 steps. The globally optimal MAP paths for the particle trajectories are
computed and visually compared with the ground truth fiber path in Fig 6(b). Although the
principal eigenvector of the oblate tensors are not aligned with the fiber orientations, the result
shows that our method still works fairly well under fiber crossing. The algorithm can interpolate
over gaps in the transition region, and allows the prior density to predominantly control the
propagation of the particles in crossing regions. Subfigure (c) of Fig. 6 shows the trajectories
for each of the particles at the final stage of propagation. The figure further reveals that our
method is able to deal with multi-fiber crossings by propagating a proportion of the particles
along each of the possible fiber branches. Since the aforementioned methods have not been
specifically considered in the modeling of oblate tensors, we do not compare our result with
the alternatives.

4.2 Brain Diffusion MRI
Real world diffusion MRI data was acquired from a healthy adult volunteer using a Siemens
Allegra 3T head-only scanner. A 128 × 128 × 58 volume image was acquired with 2 × 2 ×
2mm voxel resolution. A six-direction gradient scheme was used with 10 repetitions per-image,
b = 1000s/mm2 for the gradient directions, and b = 0s/mm2 for the baseline image. Repetitions
were aligned via rigid registration of the baseline images. A step length of 1mm and 5000
particles were used for all examples. The propagation of a particle was halted when it exits
white matter, characterised by a low FA value (FA<0.2).

Fig. 7(a) shows the trajectories of 1000 particles seeded from a point in the Corpus callosum.
Although we use 5000 particles for all examples, we show the trajectories of only 1000 particles
in the results due to visualisation problems and the limited processing capability of our PC.
However, the configurations of the trajectories of all 5000 particles are almost identical to those
of the 1000 particles shown in the figures. The reason for this is that because of the re-sampling
process used, there are many paths overlapping each other in the final step of tracking (This
observation is based on our empirical evaluations of the results). Hence, we discard the repeated
paths for visualisation purpose. Fig. 7(a) shows that the sampled paths provide a robust
delineation of the expected fiber bundle. Fig. 7(b) shows an additional example with two seed
points in the superior longitudinal fasciculus. This example reveals how our probabilistic
algorithm is able to handle splitting fibers and ambiguous neighborhoods. Fig. 7(c) shows the
global optimal MAP paths of the examples in Fig. 7(a) and Fig. 7(b). We also compared our
result with that obtained using our implementation of the method in (Bjornemo et al., 2002)
and Friman’s method based on the same seed points as shown in Fig. 7(b). The distribution of
the sampled paths of the method in (Bjornemo et al., 2002) is controlled by a regularisation
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parameter α and stochastic parameter β. The larger the stochastic parameter, the more dispersed
the resulting sample paths. Fig. 7(d) shows 1000 paths sampled using the method of (Bjornemo
et al., 2002). One problem with the method is that there is no prior distribution for the local
fiber orientations and the profile of the sampled paths are empirically controlled by a stochastic
parameter. By contrast, both our method and Friman’s method aim to locate the true posterior
distribution of the fibers from reliable prior distributions of the local fiber orientations. In our
method, particles with low probability of existence are eliminated during the resampling stage,
and the sampled paths are most concentrated around the final optimal fiber. Fig. 7(e) shows
1000 sample paths using Friman’s method. The figure shows that the sampled paths from
Friman’s method are more dispersed, with a number of paths which have low probabilities.
Moreover, our algorithm runs much faster than Friman’s algorithm. To further evaluate the
algorithm, we select two seed points from the MAP path of the example in Fig. 7(a) and let the
algorithm track from one to the other. Fig. 7(e) shows 1000 sample paths from each seed point.
The figure shows that the sampled paths from the two seed points are almost overlapping with
each other. Fig. 7(f) shows their two optimal MAP paths, which are very close to each other.
Thus, the second seed point can successfully return to the first one along the MAP path. This
example shows that the performance of our algorithm is robust and stable.

On the other hand, based on the particle traces, we can calculate the probability of connection
between the seed voxel and a specific voxel by computing the fraction of particles passing
through that voxel. We can thus produce a probability map of connections between the seed
and all remaining voxels. In Fig. 8(a), we show the probability map from a seed point in the
Corpus callosum. The coloring shows the likelihood of paths (connecting the seed voxel and
each of the remaining voxels) generated by our algorithm. Fig. 8(b) gives a probability map of
longer fiber tracts of two seed points shown in Fig. 8(b). The result here is compared to that
of the method in (Bjornemo et al., 2002), as shown in Fig. 8(c), and Friman’s method, as shown
in Fig. 8(d), which gives a wider distribution.

5 Conclusion
We have presented a new method for probabilistic white matter fiber tracking. The global
tracking model is formulated using a state space framework, which is implemented by applying
particle filtering to recursively estimate the posterior distribution of fibers and to locate the
global optimal fiber path. Each ingredient of the tracking algorithm is detailed. For modeling
the fiber orientation distribution, we classify voxels of the white matter as either prolate or
oblate tensors. For pro-late tensors, the orientation distribution is theoretically formulated by
combining the axially symmetric tensor model with a noise model for DWI. For oblate tensors,
the orientation distribution is computed using a normal distribution of angles between fiber
orientations and the smallest eigenvectors of the tensors. Fast and efficient sampling is realised
using the von Mises-Fisher distribution. As a consequence, there is no need to apply MCMC
sampling (Behrens et al., 2003) or to discretise the state space (Friman et al., 2006) to sample
paths from the fiber orientation distribution.

Based on our experimental evaluations, the advantages of the proposed algorithm are threefold.
First, unlike previous methods which are computationally very expensive, our method shows
improved computational efficiency and is able to rapidly locate the global optimal fiber and to
compute the connectivity map for the seed point. Second, our method can more accurately
reconstruct the true fiber paths in very noisy images. It gives smaller errors between the
reconstructed path and the true fiber path. Third, the proposed method is able to deal with fiber
crossings because we separately model the orientation distributions for different shapes of
diffusion tensors.
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However, there are several ways in which the method can be further improved. For instance,
our model of the orientation distribution for oblate tensors is not accurate enough to capture
the complex configurations at fiber crossings. Thus, there are large uncertainties at such voxels.
More sophisticated methods will have to be developed for dealing with fiber crossings in our
future work. One possibility is the use of mixtures of von Mises-Fisher distributions (McGraw
et al., 2006). To validate the method in a quantitative way, real world datasets with annotated
ground truth are needed. Developing simulated and real DTI sets with ground truth for
validation and across-site comparison is an active area of imaging research, but to our
knowledge these are not yet available to the community.
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Fig. 1.
Path representation.
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Fig. 2.
Example of the observation density of three tensors from the brain white matter. (a) a prolate
tensor with FA = 0.9299, cl = 0.9193. (b) a prolate tensor with FA = 0.3737, cl = 0.3297. (c)
an oblate tensor FA = 0.7115, cl = 0.2157. For voxels with prolate tensors, the larger the value
of FA and cl, the more focused the fiber orientation distribution. For voxels with oblate tensors,
fiber orientations are focused on the plane spanned by the two leading eigenvector.
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Fig. 3.
Fitting concentration parameter as a function of FA value of tensors.
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Fig. 4.
(a) Synthetic data consisting of a cylinder and a sample slice with a zoomed view. (b) Tracked
results of our method (MAP path), streamline method (FACT) (Mori et al., 1999) and the
Friman method (Friman et al., 2006) under 10% noise. (c) A snapshot of the sampled paths of
our method at propagation step 300 of case in (b). (d) Results under 25% noise. (e) A snapshot
of the sampled paths of our method at propagation step 300 of case in (d).
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Fig. 5.
(a) Synthetic ground truth fiber bundle. (b) A zoomed portion of the image in (a). (c) Illustration
of error measurement between the ground truth fiber path and the reconstructed fiber path by
fiber tracking algorithms. (d) Mean error comparison of the results of our method with those
of FACT algorithm (Mori et al., 1999) and Friman method (Friman et al., 2006) under different
levels of Rician noise.
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Fig. 6.
Top: synthetic data with fiber crossing. Bottom: tracking result of our method.
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Fig. 7.
(a): 1000 particle traces from a seed point in Corpus callosum. (b): from two seed points in the
superior longitudinal fasciculus. (c): Optimal MAP paths of (a) and (b). (d): 1000 path samples
using the method in (Bjornemo et al., 2002) from the same seed points as in (b) with parameters
α = 0.001, β = 80. (e): 1000 path samples using Friman’s method (Friman et al., 2006) from
the same seed points as in (b). (f): Zoomed particle traces of two seed points from the MAP
path of example (a). (g): Optimal MAP paths of (f).
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Fig. 8.
Probability map of our algorithm from (a): a seed point in the Corpus callosum, and, (b): from
two seed points in the superior longitudinal fasciculus. (c): Probability map of the method in
(Bjornemo et al., 2002) from the same seed points as in (b). (d): Probability map of Friman’s
method from the same seed points as in (b).
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